Evolution of the intrinsic electronic phase separation in La0.6Er0.1Sr0.3MnO3 perovskite View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-12-05

AUTHORS

Lili Chen, Jiyu Fan, Wei Tong, Dazhi Hu, Yanda Ji, Jindong Liu, Lei Zhang, Li Pi, Yuheng Zhang, Hao Yang

ABSTRACT

Magnetic and electronic transport properties of perovskite manganite La0.6Er0.1Sr0.3MnO3 have been thoroughly examined through the measurements of magnetization, electron paramagnetic resonance(EPR), and resistivity. It was found that the substitution of Er3+ for La3+ ions introduced the chemical disorder and additional strain in this sample. An extra resonance signal occurred in EPR spectra at high temperatures well above TC gives a strong evidence of electronic phase separation(EPS). The analysis of resistivity enable us to identify the polaronic transport mechanism in the paramagnetic region. At low temperature, a new ferromagnetic interaction generates in the microdomains of Er3+-disorder causing the second increase of magnetization. However, the new ferromagnetic interaction does not improve but decreases electronic transport due to the enhancement of interface resistance among neighboring domains. In view of a really wide temperature region for the EPS existence, this sample provides an ideal platform to uncover the evolution law of different magnetic structures in perovskite manganites. More... »

PAGES

14

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-016-0009-0

DOI

http://dx.doi.org/10.1038/s41598-016-0009-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005919260

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28442764


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China", 
          "id": "http://www.grid.ac/institutes/grid.64938.30", 
          "name": [
            "Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Lili", 
        "id": "sg:person.016530267261.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016530267261.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China", 
          "id": "http://www.grid.ac/institutes/grid.64938.30", 
          "name": [
            "Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fan", 
        "givenName": "Jiyu", 
        "id": "sg:person.011265215351.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011265215351.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "High Magnetic Field Laboratory, Chinese Academy of Sciences, 230031, Hefei, China", 
          "id": "http://www.grid.ac/institutes/grid.467854.c", 
          "name": [
            "High Magnetic Field Laboratory, Chinese Academy of Sciences, 230031, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tong", 
        "givenName": "Wei", 
        "id": "sg:person.0634215477.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634215477.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China", 
          "id": "http://www.grid.ac/institutes/grid.64938.30", 
          "name": [
            "Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Dazhi", 
        "id": "sg:person.011420157061.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011420157061.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China", 
          "id": "http://www.grid.ac/institutes/grid.64938.30", 
          "name": [
            "Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ji", 
        "givenName": "Yanda", 
        "id": "sg:person.012215537461.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012215537461.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China", 
          "id": "http://www.grid.ac/institutes/grid.64938.30", 
          "name": [
            "Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Jindong", 
        "id": "sg:person.013013120061.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013013120061.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "High Magnetic Field Laboratory, Chinese Academy of Sciences, 230031, Hefei, China", 
          "id": "http://www.grid.ac/institutes/grid.467854.c", 
          "name": [
            "High Magnetic Field Laboratory, Chinese Academy of Sciences, 230031, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Lei", 
        "id": "sg:person.015247643660.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015247643660.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "High Magnetic Field Laboratory, Chinese Academy of Sciences, 230031, Hefei, China", 
          "id": "http://www.grid.ac/institutes/grid.467854.c", 
          "name": [
            "High Magnetic Field Laboratory, Chinese Academy of Sciences, 230031, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pi", 
        "givenName": "Li", 
        "id": "sg:person.01065252511.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065252511.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "High Magnetic Field Laboratory, Chinese Academy of Sciences, 230031, Hefei, China", 
          "id": "http://www.grid.ac/institutes/grid.467854.c", 
          "name": [
            "High Magnetic Field Laboratory, Chinese Academy of Sciences, 230031, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Yuheng", 
        "id": "sg:person.01117171420.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117171420.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China", 
          "id": "http://www.grid.ac/institutes/grid.64938.30", 
          "name": [
            "Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Hao", 
        "id": "sg:person.01237113432.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237113432.79"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature02364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034240890", 
          "https://doi.org/10.1038/nature02364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/21142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027984436", 
          "https://doi.org/10.1038/21142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms11260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038839222", 
          "https://doi.org/10.1038/ncomms11260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/40363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012831485", 
          "https://doi.org/10.1038/40363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038036867", 
          "https://doi.org/10.1038/nature03300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/386256a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052817361", 
          "https://doi.org/10.1038/386256a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016693497", 
          "https://doi.org/10.1038/nature01299"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-12-05", 
    "datePublishedReg": "2016-12-05", 
    "description": "Magnetic and electronic transport properties of perovskite manganite La0.6Er0.1Sr0.3MnO3 have been thoroughly examined through the measurements of magnetization, electron paramagnetic resonance(EPR), and resistivity. It was found that the substitution of Er3+ for La3+ ions introduced the chemical disorder and additional strain in this sample. An extra resonance signal occurred in EPR spectra at high temperatures well above TC gives a strong evidence of electronic phase separation(EPS). The analysis of resistivity enable us to identify the polaronic transport mechanism in the paramagnetic region. At low temperature, a new ferromagnetic interaction generates in the microdomains of Er3+-disorder causing the second increase of magnetization. However, the new ferromagnetic interaction does not improve but decreases electronic transport due to the enhancement of interface resistance among neighboring domains. In view of a really wide temperature region for the EPS existence, this sample provides an ideal platform to uncover the evolution law of different magnetic structures in perovskite manganites.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41598-016-0009-0", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8379446", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8125003", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7181732", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "keywords": [
      "polaronic transport mechanism", 
      "ferromagnetic interactions", 
      "electronic phase separation", 
      "electronic transport properties", 
      "different magnetic structures", 
      "measurements of magnetization", 
      "electronic phases", 
      "magnetic structure", 
      "chemical disorder", 
      "electronic transport", 
      "transport properties", 
      "resonance signals", 
      "wide temperature region", 
      "perovskite manganites", 
      "Electron-Paramagnetic", 
      "ideal platform", 
      "analysis of resistivity", 
      "paramagnetic region", 
      "EPR spectra", 
      "low temperature", 
      "magnetization", 
      "temperature region", 
      "resistivity", 
      "transport mechanism", 
      "neighboring domains", 
      "phase separation", 
      "manganites", 
      "paramagnetic", 
      "ions", 
      "spectra", 
      "perovskites", 
      "high temperature", 
      "temperature", 
      "Tc", 
      "interaction", 
      "measurements", 
      "interface resistance", 
      "region", 
      "properties", 
      "enhancement", 
      "La3", 
      "strong evidence", 
      "transport", 
      "signals", 
      "phase", 
      "structure", 
      "evolution", 
      "existence", 
      "samples", 
      "separation", 
      "evolution law", 
      "second increase", 
      "law", 
      "substitution", 
      "mechanism", 
      "platform", 
      "additional strains", 
      "increase", 
      "domain", 
      "microdomains", 
      "view", 
      "analysis", 
      "evidence", 
      "strains", 
      "resistance", 
      "disorders"
    ], 
    "name": "Evolution of the intrinsic electronic phase separation in La0.6Er0.1Sr0.3MnO3 perovskite", 
    "pagination": "14", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005919260"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-016-0009-0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28442764"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-016-0009-0", 
      "https://app.dimensions.ai/details/publication/pub.1005919260"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_698.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41598-016-0009-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-016-0009-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-016-0009-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-016-0009-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-016-0009-0'


 

This table displays all metadata directly associated to this object as RDF triples.

226 TRIPLES      21 PREDICATES      98 URIs      83 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-016-0009-0 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nb11b47e09c004e77add73527cf816fe1
4 schema:citation sg:pub.10.1038/21142
5 sg:pub.10.1038/386256a0
6 sg:pub.10.1038/40363
7 sg:pub.10.1038/nature01299
8 sg:pub.10.1038/nature02364
9 sg:pub.10.1038/nature03300
10 sg:pub.10.1038/ncomms11260
11 schema:datePublished 2016-12-05
12 schema:datePublishedReg 2016-12-05
13 schema:description Magnetic and electronic transport properties of perovskite manganite La0.6Er0.1Sr0.3MnO3 have been thoroughly examined through the measurements of magnetization, electron paramagnetic resonance(EPR), and resistivity. It was found that the substitution of Er3+ for La3+ ions introduced the chemical disorder and additional strain in this sample. An extra resonance signal occurred in EPR spectra at high temperatures well above TC gives a strong evidence of electronic phase separation(EPS). The analysis of resistivity enable us to identify the polaronic transport mechanism in the paramagnetic region. At low temperature, a new ferromagnetic interaction generates in the microdomains of Er3+-disorder causing the second increase of magnetization. However, the new ferromagnetic interaction does not improve but decreases electronic transport due to the enhancement of interface resistance among neighboring domains. In view of a really wide temperature region for the EPS existence, this sample provides an ideal platform to uncover the evolution law of different magnetic structures in perovskite manganites.
14 schema:genre article
15 schema:isAccessibleForFree true
16 schema:isPartOf N65ad5b0e709b4a9e918909af28e62c23
17 Nae266d34c86840e19804f13d7130dd07
18 sg:journal.1045337
19 schema:keywords EPR spectra
20 Electron-Paramagnetic
21 La3
22 Tc
23 additional strains
24 analysis
25 analysis of resistivity
26 chemical disorder
27 different magnetic structures
28 disorders
29 domain
30 electronic phase separation
31 electronic phases
32 electronic transport
33 electronic transport properties
34 enhancement
35 evidence
36 evolution
37 evolution law
38 existence
39 ferromagnetic interactions
40 high temperature
41 ideal platform
42 increase
43 interaction
44 interface resistance
45 ions
46 law
47 low temperature
48 magnetic structure
49 magnetization
50 manganites
51 measurements
52 measurements of magnetization
53 mechanism
54 microdomains
55 neighboring domains
56 paramagnetic
57 paramagnetic region
58 perovskite manganites
59 perovskites
60 phase
61 phase separation
62 platform
63 polaronic transport mechanism
64 properties
65 region
66 resistance
67 resistivity
68 resonance signals
69 samples
70 second increase
71 separation
72 signals
73 spectra
74 strains
75 strong evidence
76 structure
77 substitution
78 temperature
79 temperature region
80 transport
81 transport mechanism
82 transport properties
83 view
84 wide temperature region
85 schema:name Evolution of the intrinsic electronic phase separation in La0.6Er0.1Sr0.3MnO3 perovskite
86 schema:pagination 14
87 schema:productId Na10b3064e2f84df4b1eb3cbde69bc3bb
88 Naa9b9cadb79443aeafbabd1687494c4b
89 Ne7e944d0da1d45d19df45a71413f44f4
90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005919260
91 https://doi.org/10.1038/s41598-016-0009-0
92 schema:sdDatePublished 2022-10-01T06:41
93 schema:sdLicense https://scigraph.springernature.com/explorer/license/
94 schema:sdPublisher Nd5dd72abd1b145feaf2f6c7534f521c4
95 schema:url https://doi.org/10.1038/s41598-016-0009-0
96 sgo:license sg:explorer/license/
97 sgo:sdDataset articles
98 rdf:type schema:ScholarlyArticle
99 N210d0269c7574cd3b4397ffff955bc91 rdf:first sg:person.011265215351.18
100 rdf:rest Nd5690b38f997412bbd4c4f95b8f781e0
101 N35e6450709b24249bb0bbe4f9f4fede1 rdf:first sg:person.015247643660.97
102 rdf:rest N3aefadaafbf84ab4be70b38d23739b3a
103 N3aefadaafbf84ab4be70b38d23739b3a rdf:first sg:person.01065252511.17
104 rdf:rest Nd94e0eea16204b50a2b474c7ee2e387a
105 N45597f227fa548689ab16d2cc271faf7 rdf:first sg:person.01237113432.79
106 rdf:rest rdf:nil
107 N65ad5b0e709b4a9e918909af28e62c23 schema:volumeNumber 6
108 rdf:type schema:PublicationVolume
109 N82cf68432f9044dda4c924abe9474b1d rdf:first sg:person.011420157061.69
110 rdf:rest Ncc83db5da31e4e4986d7e74e70ea4972
111 Na10b3064e2f84df4b1eb3cbde69bc3bb schema:name pubmed_id
112 schema:value 28442764
113 rdf:type schema:PropertyValue
114 Naa9b9cadb79443aeafbabd1687494c4b schema:name doi
115 schema:value 10.1038/s41598-016-0009-0
116 rdf:type schema:PropertyValue
117 Nae266d34c86840e19804f13d7130dd07 schema:issueNumber 1
118 rdf:type schema:PublicationIssue
119 Nb11b47e09c004e77add73527cf816fe1 rdf:first sg:person.016530267261.59
120 rdf:rest N210d0269c7574cd3b4397ffff955bc91
121 Ncc83db5da31e4e4986d7e74e70ea4972 rdf:first sg:person.012215537461.38
122 rdf:rest Needdc980c0634dd3b71fe731dc6e25d8
123 Nd5690b38f997412bbd4c4f95b8f781e0 rdf:first sg:person.0634215477.07
124 rdf:rest N82cf68432f9044dda4c924abe9474b1d
125 Nd5dd72abd1b145feaf2f6c7534f521c4 schema:name Springer Nature - SN SciGraph project
126 rdf:type schema:Organization
127 Nd94e0eea16204b50a2b474c7ee2e387a rdf:first sg:person.01117171420.13
128 rdf:rest N45597f227fa548689ab16d2cc271faf7
129 Ne7e944d0da1d45d19df45a71413f44f4 schema:name dimensions_id
130 schema:value pub.1005919260
131 rdf:type schema:PropertyValue
132 Needdc980c0634dd3b71fe731dc6e25d8 rdf:first sg:person.013013120061.96
133 rdf:rest N35e6450709b24249bb0bbe4f9f4fede1
134 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
135 schema:name Engineering
136 rdf:type schema:DefinedTerm
137 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
138 schema:name Materials Engineering
139 rdf:type schema:DefinedTerm
140 sg:grant.7181732 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-016-0009-0
141 rdf:type schema:MonetaryGrant
142 sg:grant.8125003 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-016-0009-0
143 rdf:type schema:MonetaryGrant
144 sg:grant.8379446 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-016-0009-0
145 rdf:type schema:MonetaryGrant
146 sg:journal.1045337 schema:issn 2045-2322
147 schema:name Scientific Reports
148 schema:publisher Springer Nature
149 rdf:type schema:Periodical
150 sg:person.01065252511.17 schema:affiliation grid-institutes:grid.467854.c
151 schema:familyName Pi
152 schema:givenName Li
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065252511.17
154 rdf:type schema:Person
155 sg:person.01117171420.13 schema:affiliation grid-institutes:grid.467854.c
156 schema:familyName Zhang
157 schema:givenName Yuheng
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117171420.13
159 rdf:type schema:Person
160 sg:person.011265215351.18 schema:affiliation grid-institutes:grid.64938.30
161 schema:familyName Fan
162 schema:givenName Jiyu
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011265215351.18
164 rdf:type schema:Person
165 sg:person.011420157061.69 schema:affiliation grid-institutes:grid.64938.30
166 schema:familyName Hu
167 schema:givenName Dazhi
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011420157061.69
169 rdf:type schema:Person
170 sg:person.012215537461.38 schema:affiliation grid-institutes:grid.64938.30
171 schema:familyName Ji
172 schema:givenName Yanda
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012215537461.38
174 rdf:type schema:Person
175 sg:person.01237113432.79 schema:affiliation grid-institutes:grid.64938.30
176 schema:familyName Yang
177 schema:givenName Hao
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237113432.79
179 rdf:type schema:Person
180 sg:person.013013120061.96 schema:affiliation grid-institutes:grid.64938.30
181 schema:familyName Liu
182 schema:givenName Jindong
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013013120061.96
184 rdf:type schema:Person
185 sg:person.015247643660.97 schema:affiliation grid-institutes:grid.467854.c
186 schema:familyName Zhang
187 schema:givenName Lei
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015247643660.97
189 rdf:type schema:Person
190 sg:person.016530267261.59 schema:affiliation grid-institutes:grid.64938.30
191 schema:familyName Chen
192 schema:givenName Lili
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016530267261.59
194 rdf:type schema:Person
195 sg:person.0634215477.07 schema:affiliation grid-institutes:grid.467854.c
196 schema:familyName Tong
197 schema:givenName Wei
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634215477.07
199 rdf:type schema:Person
200 sg:pub.10.1038/21142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027984436
201 https://doi.org/10.1038/21142
202 rdf:type schema:CreativeWork
203 sg:pub.10.1038/386256a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052817361
204 https://doi.org/10.1038/386256a0
205 rdf:type schema:CreativeWork
206 sg:pub.10.1038/40363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012831485
207 https://doi.org/10.1038/40363
208 rdf:type schema:CreativeWork
209 sg:pub.10.1038/nature01299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016693497
210 https://doi.org/10.1038/nature01299
211 rdf:type schema:CreativeWork
212 sg:pub.10.1038/nature02364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034240890
213 https://doi.org/10.1038/nature02364
214 rdf:type schema:CreativeWork
215 sg:pub.10.1038/nature03300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038036867
216 https://doi.org/10.1038/nature03300
217 rdf:type schema:CreativeWork
218 sg:pub.10.1038/ncomms11260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038839222
219 https://doi.org/10.1038/ncomms11260
220 rdf:type schema:CreativeWork
221 grid-institutes:grid.467854.c schema:alternateName High Magnetic Field Laboratory, Chinese Academy of Sciences, 230031, Hefei, China
222 schema:name High Magnetic Field Laboratory, Chinese Academy of Sciences, 230031, Hefei, China
223 rdf:type schema:Organization
224 grid-institutes:grid.64938.30 schema:alternateName Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China
225 schema:name Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China
226 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...