High resolution paddy rice maps in cloud-prone Bangladesh and Northeast India using Sentinel-1 data. View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Mrinal Singha, Jinwei Dong, Geli Zhang, Xiangming Xiao

ABSTRACT

Knowledge of where, when, and how much paddy rice is planted is crucial information for understating of regional food security, freshwater use, climate change, and transmission of avian influenza virus. We developed seasonal paddy rice maps at high resolution (10 m) for Bangladesh and Northeast India, typical cloud-prone regions in South Asia, using cloud-free Synthetic Aperture Radar (SAR) images from Sentinel-1 satellite, the Random Forest classifier, and the Google Earth Engine (GEE) cloud computing platform. The maps were provided for all the three distinct rice growing seasons of the region: Boro, Aus and Aman. The paddy rice maps were evaluated against the independent validation samples, and compared with the existing products from the International Rice Research Institute (IRRI) and the analysis of Moderate Resolution Imaging Spectroradiometer (MODIS) data. The generated paddy rice maps were spatially consistent with the compared maps and had a satisfactory accuracy over 90%. This study showed the potential of Sentinel-1 data and GEE on large scale paddy rice mapping in cloud-prone regions like tropical Asia. More... »

PAGES

26

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41597-019-0036-3

DOI

http://dx.doi.org/10.1038/s41597-019-0036-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113378296

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30976017


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Geographic Sciences and Natural Resources Research", 
          "id": "https://www.grid.ac/institutes/grid.424975.9", 
          "name": [
            "Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Singha", 
        "givenName": "Mrinal", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Geographic Sciences and Natural Resources Research", 
          "id": "https://www.grid.ac/institutes/grid.424975.9", 
          "name": [
            "Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China. dongjw@igsnrr.ac.cn."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dong", 
        "givenName": "Jinwei", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "China Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.22935.3f", 
          "name": [
            "College of Land Science and Technology, China Agricultural University, Beijing, 100193, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Geli", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oklahoma", 
          "id": "https://www.grid.ac/institutes/grid.266900.b", 
          "name": [
            "Department of Microbiology and Plant Biology, Center for Spatial Analysis, University of Oklahoma, Norman, Oklahoma, 73019, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xiao", 
        "givenName": "Xiangming", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.isprsjprs.2016.01.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004688415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0065-2113(04)92004-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005336064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01431161.2012.738946", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008183332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2009.08.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008764231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-4290(99)00047-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010660839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2016gb005381", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011045229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.202483599", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012829309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10333-015-0515-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013814751", 
          "https://doi.org/10.1007/s10333-015-0515-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.isprsjprs.2016.05.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019682690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.isprsjprs.2016.05.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019682690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/hessd-4-439-2007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020008396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2011.05.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021819188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2011.09.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022112388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scitotenv.2016.10.223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022155204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scitotenv.2016.10.223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022155204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2011eo130001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024581563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2011eo130001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024581563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010933404324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024739340", 
          "https://doi.org/10.1023/a:1010933404324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0710581105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029709322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1748-9326/8/4/044041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034807940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/2150704x.2016.1225172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040757869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms5116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041959327", 
          "https://doi.org/10.1038/ncomms5116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01431160412331269698", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044570760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs70201461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048355664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2016.02.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049181935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/514s50a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051903363", 
          "https://doi.org/10.1038/514s50a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/36.551933", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061161531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/36.842003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061162350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2017.06.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090359717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cloudcom.2010.69", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095606623"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Knowledge of where, when, and how much paddy rice is planted is crucial information for understating of regional food security, freshwater use, climate change, and transmission of avian influenza virus. We developed seasonal paddy rice maps at high resolution (10\u2009m) for Bangladesh and Northeast India, typical cloud-prone regions in South Asia, using cloud-free Synthetic Aperture Radar (SAR) images from Sentinel-1 satellite, the Random Forest classifier, and the Google Earth Engine (GEE) cloud computing platform. The maps were provided for all the three distinct rice growing seasons of the region: Boro, Aus and Aman. The paddy rice maps were evaluated against the independent validation samples, and compared with the existing products from the International Rice Research Institute (IRRI) and the analysis of Moderate Resolution Imaging Spectroradiometer (MODIS) data. The generated paddy rice maps were spatially consistent with the compared maps and had a satisfactory accuracy over 90%. This study showed the potential of Sentinel-1 data and GEE on large scale paddy rice mapping in cloud-prone regions like tropical Asia.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41597-019-0036-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1050678", 
        "issn": [
          "2052-4463"
        ], 
        "name": "Scientific Data", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "High resolution paddy rice maps in cloud-prone Bangladesh and Northeast India using Sentinel-1 data.", 
    "pagination": "26", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41597-019-0036-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113378296"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101640192"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30976017"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41597-019-0036-3", 
      "https://app.dimensions.ai/details/publication/pub.1113378296"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-16T06:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000377_0000000377/records_106831_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/s41597-019-0036-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41597-019-0036-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41597-019-0036-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41597-019-0036-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41597-019-0036-3'


 

This table displays all metadata directly associated to this object as RDF triples.

173 TRIPLES      21 PREDICATES      55 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41597-019-0036-3 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N172cdbc66d184df0b510af70322c58ce
4 schema:citation sg:pub.10.1007/s10333-015-0515-x
5 sg:pub.10.1023/a:1010933404324
6 sg:pub.10.1038/514s50a
7 sg:pub.10.1038/ncomms5116
8 https://doi.org/10.1002/2016gb005381
9 https://doi.org/10.1016/j.isprsjprs.2016.01.011
10 https://doi.org/10.1016/j.isprsjprs.2016.05.010
11 https://doi.org/10.1016/j.rse.2009.08.016
12 https://doi.org/10.1016/j.rse.2011.05.028
13 https://doi.org/10.1016/j.rse.2011.09.026
14 https://doi.org/10.1016/j.rse.2016.02.016
15 https://doi.org/10.1016/j.rse.2017.06.031
16 https://doi.org/10.1016/j.scitotenv.2016.10.223
17 https://doi.org/10.1016/s0065-2113(04)92004-4
18 https://doi.org/10.1016/s0378-4290(99)00047-7
19 https://doi.org/10.1029/2011eo130001
20 https://doi.org/10.1073/pnas.0710581105
21 https://doi.org/10.1073/pnas.202483599
22 https://doi.org/10.1080/01431160412331269698
23 https://doi.org/10.1080/01431161.2012.738946
24 https://doi.org/10.1080/2150704x.2016.1225172
25 https://doi.org/10.1088/1748-9326/8/4/044041
26 https://doi.org/10.1109/36.551933
27 https://doi.org/10.1109/36.842003
28 https://doi.org/10.1109/cloudcom.2010.69
29 https://doi.org/10.3390/rs70201461
30 https://doi.org/10.5194/hessd-4-439-2007
31 schema:datePublished 2019-12
32 schema:datePublishedReg 2019-12-01
33 schema:description Knowledge of where, when, and how much paddy rice is planted is crucial information for understating of regional food security, freshwater use, climate change, and transmission of avian influenza virus. We developed seasonal paddy rice maps at high resolution (10 m) for Bangladesh and Northeast India, typical cloud-prone regions in South Asia, using cloud-free Synthetic Aperture Radar (SAR) images from Sentinel-1 satellite, the Random Forest classifier, and the Google Earth Engine (GEE) cloud computing platform. The maps were provided for all the three distinct rice growing seasons of the region: Boro, Aus and Aman. The paddy rice maps were evaluated against the independent validation samples, and compared with the existing products from the International Rice Research Institute (IRRI) and the analysis of Moderate Resolution Imaging Spectroradiometer (MODIS) data. The generated paddy rice maps were spatially consistent with the compared maps and had a satisfactory accuracy over 90%. This study showed the potential of Sentinel-1 data and GEE on large scale paddy rice mapping in cloud-prone regions like tropical Asia.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf N7b9017814c1c4bbaa834740ac85dc05d
38 N9b35b1a543b14084ac8b667a9efd6b86
39 sg:journal.1050678
40 schema:name High resolution paddy rice maps in cloud-prone Bangladesh and Northeast India using Sentinel-1 data.
41 schema:pagination 26
42 schema:productId N3fd3f7c05c0747ce92c0d89afbb10596
43 N63a732052e904feb9b12fc1d429889b4
44 N86723283eba242de9cc9f7c57d14ef01
45 Ncc1a587a36264632ad8f176b8d8d1e55
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113378296
47 https://doi.org/10.1038/s41597-019-0036-3
48 schema:sdDatePublished 2019-04-16T06:24
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N6c4a652a26b942fbbd915956ac66c421
51 schema:url http://www.nature.com/articles/s41597-019-0036-3
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N172cdbc66d184df0b510af70322c58ce rdf:first N291da0fd3cc94145acd28d576398cfd4
56 rdf:rest N74b22b95c58c4f3b969f5aaa4f5a3f9e
57 N214f3e223d9a449ca1dc3273042b719f schema:affiliation https://www.grid.ac/institutes/grid.22935.3f
58 schema:familyName Zhang
59 schema:givenName Geli
60 rdf:type schema:Person
61 N25be75d2c4c14a56bd2c2aa7dfe04ed4 schema:affiliation https://www.grid.ac/institutes/grid.424975.9
62 schema:familyName Dong
63 schema:givenName Jinwei
64 rdf:type schema:Person
65 N291da0fd3cc94145acd28d576398cfd4 schema:affiliation https://www.grid.ac/institutes/grid.424975.9
66 schema:familyName Singha
67 schema:givenName Mrinal
68 rdf:type schema:Person
69 N3fd3f7c05c0747ce92c0d89afbb10596 schema:name doi
70 schema:value 10.1038/s41597-019-0036-3
71 rdf:type schema:PropertyValue
72 N46071b11d1934ad29863b0632fe068b7 rdf:first N214f3e223d9a449ca1dc3273042b719f
73 rdf:rest N4ba5097053b8498c87a088a3e8524470
74 N4ba5097053b8498c87a088a3e8524470 rdf:first Nfdad47d51b2347fbbda78bdd2d60489c
75 rdf:rest rdf:nil
76 N63a732052e904feb9b12fc1d429889b4 schema:name nlm_unique_id
77 schema:value 101640192
78 rdf:type schema:PropertyValue
79 N6c4a652a26b942fbbd915956ac66c421 schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 N74b22b95c58c4f3b969f5aaa4f5a3f9e rdf:first N25be75d2c4c14a56bd2c2aa7dfe04ed4
82 rdf:rest N46071b11d1934ad29863b0632fe068b7
83 N7b9017814c1c4bbaa834740ac85dc05d schema:issueNumber 1
84 rdf:type schema:PublicationIssue
85 N86723283eba242de9cc9f7c57d14ef01 schema:name dimensions_id
86 schema:value pub.1113378296
87 rdf:type schema:PropertyValue
88 N9b35b1a543b14084ac8b667a9efd6b86 schema:volumeNumber 6
89 rdf:type schema:PublicationVolume
90 Ncc1a587a36264632ad8f176b8d8d1e55 schema:name pubmed_id
91 schema:value 30976017
92 rdf:type schema:PropertyValue
93 Nfdad47d51b2347fbbda78bdd2d60489c schema:affiliation https://www.grid.ac/institutes/grid.266900.b
94 schema:familyName Xiao
95 schema:givenName Xiangming
96 rdf:type schema:Person
97 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
98 schema:name Information and Computing Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
101 schema:name Artificial Intelligence and Image Processing
102 rdf:type schema:DefinedTerm
103 sg:journal.1050678 schema:issn 2052-4463
104 schema:name Scientific Data
105 rdf:type schema:Periodical
106 sg:pub.10.1007/s10333-015-0515-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013814751
107 https://doi.org/10.1007/s10333-015-0515-x
108 rdf:type schema:CreativeWork
109 sg:pub.10.1023/a:1010933404324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024739340
110 https://doi.org/10.1023/a:1010933404324
111 rdf:type schema:CreativeWork
112 sg:pub.10.1038/514s50a schema:sameAs https://app.dimensions.ai/details/publication/pub.1051903363
113 https://doi.org/10.1038/514s50a
114 rdf:type schema:CreativeWork
115 sg:pub.10.1038/ncomms5116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041959327
116 https://doi.org/10.1038/ncomms5116
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1002/2016gb005381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011045229
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.isprsjprs.2016.01.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004688415
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.isprsjprs.2016.05.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019682690
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.rse.2009.08.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008764231
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.rse.2011.05.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021819188
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.rse.2011.09.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022112388
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.rse.2016.02.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049181935
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.rse.2017.06.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090359717
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.scitotenv.2016.10.223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022155204
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/s0065-2113(04)92004-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005336064
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/s0378-4290(99)00047-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010660839
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1029/2011eo130001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024581563
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1073/pnas.0710581105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029709322
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1073/pnas.202483599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012829309
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1080/01431160412331269698 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044570760
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1080/01431161.2012.738946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008183332
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1080/2150704x.2016.1225172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040757869
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1088/1748-9326/8/4/044041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034807940
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1109/36.551933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061161531
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1109/36.842003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061162350
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1109/cloudcom.2010.69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095606623
159 rdf:type schema:CreativeWork
160 https://doi.org/10.3390/rs70201461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048355664
161 rdf:type schema:CreativeWork
162 https://doi.org/10.5194/hessd-4-439-2007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020008396
163 rdf:type schema:CreativeWork
164 https://www.grid.ac/institutes/grid.22935.3f schema:alternateName China Agricultural University
165 schema:name College of Land Science and Technology, China Agricultural University, Beijing, 100193, China.
166 rdf:type schema:Organization
167 https://www.grid.ac/institutes/grid.266900.b schema:alternateName University of Oklahoma
168 schema:name Department of Microbiology and Plant Biology, Center for Spatial Analysis, University of Oklahoma, Norman, Oklahoma, 73019, USA.
169 rdf:type schema:Organization
170 https://www.grid.ac/institutes/grid.424975.9 schema:alternateName Institute of Geographic Sciences and Natural Resources Research
171 schema:name Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
172 Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China. dongjw@igsnrr.ac.cn.
173 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...