A statistical atlas of cerebral arteries generated using multi-center MRA datasets from healthy subjects. View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Pauline Mouches, Nils D Forkert

ABSTRACT

Magnetic resonance angiography (MRA) can capture the variation of cerebral arteries with high spatial resolution. These measurements include valuable information about the morphology, geometry, and density of brain arteries, which may be useful to identify risk factors for cerebrovascular and neurological diseases at an early time point. However, this requires knowledge about the distribution and morphology of vessels in healthy subjects. The statistical arterial brain atlas described in this work is a free and public neuroimaging resource that can be used to identify vascular morphological changes. The atlas was generated based on 544 freely available multi-center MRA and T1-weighted MRI datasets. The arteries were automatically segmented in each MRA dataset and used for vessel radius quantification. The binary segmentation and vessel size information were non-linearly registered to the MNI brain atlas using the T1-weighted MRI datasets to construct atlases of artery occurrence probability, mean artery radius, and artery radius standard deviation. This public neuroimaging resource improves the understanding of the distribution and size of arteries in the healthy human brain. More... »

PAGES

29

References to SciGraph publications

Journal

TITLE

Scientific Data

ISSUE

1

VOLUME

6

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41597-019-0034-5

DOI

http://dx.doi.org/10.1038/s41597-019-0034-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113378282

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30975990


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Calgary", 
          "id": "https://www.grid.ac/institutes/grid.22072.35", 
          "name": [
            "Department of Radiology, University of Calgary, Calgary, Canada. pauline.mouches@ucalgary.ca.", 
            "Hotchkiss Brain Institute, University of Calgary, Calgary, Canada. pauline.mouches@ucalgary.ca."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mouches", 
        "givenName": "Pauline", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Calgary", 
          "id": "https://www.grid.ac/institutes/grid.22072.35", 
          "name": [
            "Department of Radiology, University of Calgary, Calgary, Canada. nils.forkert@ucalgary.ca.", 
            "Hotchkiss Brain Institute, University of Calgary, Calgary, Canada. nils.forkert@ucalgary.ca."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Forkert", 
        "givenName": "Nils D", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s12021-016-9320-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002411168", 
          "https://doi.org/10.1007/s12021-016-9320-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12021-016-9320-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002411168", 
          "https://doi.org/10.1007/s12021-016-9320-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cmpb.2009.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008920304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mri.2012.07.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014990864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0146-664x(80)90054-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017627930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rstb.2001.0915", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020547766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nic.2012.02.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039275422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1474-4422(13)70124-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049427712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1474-4422(13)70124-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049427712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1361-8415(98)80009-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051898748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/42.836373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061170896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/jns.1976.45.3.0259", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071090982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/jns.1976.45.3.0259", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071090982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/jns.1976.45.3.0259", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071090982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/jns.1977.46.5.0563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071091156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/jns.1977.46.5.0563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071091156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/jns.1977.46.5.0563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071091156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/jns.1978.48.4.0534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071091434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/jns.1978.48.4.0534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071091434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/jns.1978.48.4.0534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071091434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/jns.1981.54.2.0151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071092341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/jns.1981.54.2.0151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071092341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/jns.1981.54.2.0151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071092341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/jns.2000.92.4.0676", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071099520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/jns.2000.92.4.0676", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071099520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/jns.2000.92.4.0676", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071099520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3414/me10-02-0003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071312091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3414/me13-02-0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071312243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076945049", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079546064", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Magnetic resonance angiography (MRA) can capture the variation of cerebral arteries with high spatial resolution. These measurements include valuable information about the morphology, geometry, and density of brain arteries, which may be useful to identify risk factors for cerebrovascular and neurological diseases at an early time point. However, this requires knowledge about the distribution and morphology of vessels in healthy subjects. The statistical arterial brain atlas described in this work is a free and public neuroimaging resource that can be used to identify vascular morphological changes. The atlas was generated based on 544 freely available multi-center MRA and T1-weighted MRI datasets. The arteries were automatically segmented in each MRA dataset and used for vessel radius quantification. The binary segmentation and vessel size information were non-linearly registered to the MNI brain atlas using the T1-weighted MRI datasets to construct atlases of artery occurrence probability, mean artery radius, and artery radius standard deviation. This public neuroimaging resource improves the understanding of the distribution and size of arteries in the healthy human brain.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41597-019-0034-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1050678", 
        "issn": [
          "2052-4463"
        ], 
        "name": "Scientific Data", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "A statistical atlas of cerebral arteries generated using multi-center MRA datasets from healthy subjects.", 
    "pagination": "29", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41597-019-0034-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113378282"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101640192"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30975990"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41597-019-0034-5", 
      "https://app.dimensions.ai/details/publication/pub.1113378282"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-16T06:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000377_0000000377/records_106837_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/s41597-019-0034-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41597-019-0034-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41597-019-0034-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41597-019-0034-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41597-019-0034-5'


 

This table displays all metadata directly associated to this object as RDF triples.

125 TRIPLES      21 PREDICATES      46 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41597-019-0034-5 schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author N17c66d6cd228487094104c2afef9e0ce
4 schema:citation sg:pub.10.1007/s12021-016-9320-y
5 https://app.dimensions.ai/details/publication/pub.1076945049
6 https://app.dimensions.ai/details/publication/pub.1079546064
7 https://doi.org/10.1016/0146-664x(80)90054-4
8 https://doi.org/10.1016/j.cmpb.2009.09.002
9 https://doi.org/10.1016/j.mri.2012.07.008
10 https://doi.org/10.1016/j.nic.2012.02.006
11 https://doi.org/10.1016/s1361-8415(98)80009-1
12 https://doi.org/10.1016/s1474-4422(13)70124-8
13 https://doi.org/10.1098/rstb.2001.0915
14 https://doi.org/10.1109/42.836373
15 https://doi.org/10.3171/jns.1976.45.3.0259
16 https://doi.org/10.3171/jns.1977.46.5.0563
17 https://doi.org/10.3171/jns.1978.48.4.0534
18 https://doi.org/10.3171/jns.1981.54.2.0151
19 https://doi.org/10.3171/jns.2000.92.4.0676
20 https://doi.org/10.3414/me10-02-0003
21 https://doi.org/10.3414/me13-02-0001
22 schema:datePublished 2019-12
23 schema:datePublishedReg 2019-12-01
24 schema:description Magnetic resonance angiography (MRA) can capture the variation of cerebral arteries with high spatial resolution. These measurements include valuable information about the morphology, geometry, and density of brain arteries, which may be useful to identify risk factors for cerebrovascular and neurological diseases at an early time point. However, this requires knowledge about the distribution and morphology of vessels in healthy subjects. The statistical arterial brain atlas described in this work is a free and public neuroimaging resource that can be used to identify vascular morphological changes. The atlas was generated based on 544 freely available multi-center MRA and T1-weighted MRI datasets. The arteries were automatically segmented in each MRA dataset and used for vessel radius quantification. The binary segmentation and vessel size information were non-linearly registered to the MNI brain atlas using the T1-weighted MRI datasets to construct atlases of artery occurrence probability, mean artery radius, and artery radius standard deviation. This public neuroimaging resource improves the understanding of the distribution and size of arteries in the healthy human brain.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf N34f78fbb68114bd1ad997a1f7c61a58e
29 N3d747228c94340f9a4bd948f552a5688
30 sg:journal.1050678
31 schema:name A statistical atlas of cerebral arteries generated using multi-center MRA datasets from healthy subjects.
32 schema:pagination 29
33 schema:productId N18d70a58f6314271acb0d027fef72461
34 N48bc74bc77794b94b032f5eefbe52cc3
35 Nfab70c420e3e4d5ca860a9bb06d17422
36 Nfc8dc4e2b27f40f29dbde2bb291d63f8
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113378282
38 https://doi.org/10.1038/s41597-019-0034-5
39 schema:sdDatePublished 2019-04-16T06:25
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher Nc04acabba4a44238812866f5854607e7
42 schema:url http://www.nature.com/articles/s41597-019-0034-5
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N17c66d6cd228487094104c2afef9e0ce rdf:first Nfe553ea825124b8394ee3fd2bfda0b06
47 rdf:rest N3835e095ee064c97a4eef8f4c2e8ca86
48 N18d70a58f6314271acb0d027fef72461 schema:name doi
49 schema:value 10.1038/s41597-019-0034-5
50 rdf:type schema:PropertyValue
51 N34f78fbb68114bd1ad997a1f7c61a58e schema:issueNumber 1
52 rdf:type schema:PublicationIssue
53 N3835e095ee064c97a4eef8f4c2e8ca86 rdf:first N6c38d50e857c4070836d1897c3274b8b
54 rdf:rest rdf:nil
55 N3d747228c94340f9a4bd948f552a5688 schema:volumeNumber 6
56 rdf:type schema:PublicationVolume
57 N48bc74bc77794b94b032f5eefbe52cc3 schema:name nlm_unique_id
58 schema:value 101640192
59 rdf:type schema:PropertyValue
60 N6c38d50e857c4070836d1897c3274b8b schema:affiliation https://www.grid.ac/institutes/grid.22072.35
61 schema:familyName Forkert
62 schema:givenName Nils D
63 rdf:type schema:Person
64 Nc04acabba4a44238812866f5854607e7 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 Nfab70c420e3e4d5ca860a9bb06d17422 schema:name dimensions_id
67 schema:value pub.1113378282
68 rdf:type schema:PropertyValue
69 Nfc8dc4e2b27f40f29dbde2bb291d63f8 schema:name pubmed_id
70 schema:value 30975990
71 rdf:type schema:PropertyValue
72 Nfe553ea825124b8394ee3fd2bfda0b06 schema:affiliation https://www.grid.ac/institutes/grid.22072.35
73 schema:familyName Mouches
74 schema:givenName Pauline
75 rdf:type schema:Person
76 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
77 schema:name Medical and Health Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
80 schema:name Neurosciences
81 rdf:type schema:DefinedTerm
82 sg:journal.1050678 schema:issn 2052-4463
83 schema:name Scientific Data
84 rdf:type schema:Periodical
85 sg:pub.10.1007/s12021-016-9320-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1002411168
86 https://doi.org/10.1007/s12021-016-9320-y
87 rdf:type schema:CreativeWork
88 https://app.dimensions.ai/details/publication/pub.1076945049 schema:CreativeWork
89 https://app.dimensions.ai/details/publication/pub.1079546064 schema:CreativeWork
90 https://doi.org/10.1016/0146-664x(80)90054-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017627930
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1016/j.cmpb.2009.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008920304
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/j.mri.2012.07.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014990864
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/j.nic.2012.02.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039275422
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/s1361-8415(98)80009-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051898748
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/s1474-4422(13)70124-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049427712
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1098/rstb.2001.0915 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020547766
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1109/42.836373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061170896
105 rdf:type schema:CreativeWork
106 https://doi.org/10.3171/jns.1976.45.3.0259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071090982
107 rdf:type schema:CreativeWork
108 https://doi.org/10.3171/jns.1977.46.5.0563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071091156
109 rdf:type schema:CreativeWork
110 https://doi.org/10.3171/jns.1978.48.4.0534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071091434
111 rdf:type schema:CreativeWork
112 https://doi.org/10.3171/jns.1981.54.2.0151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071092341
113 rdf:type schema:CreativeWork
114 https://doi.org/10.3171/jns.2000.92.4.0676 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071099520
115 rdf:type schema:CreativeWork
116 https://doi.org/10.3414/me10-02-0003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071312091
117 rdf:type schema:CreativeWork
118 https://doi.org/10.3414/me13-02-0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071312243
119 rdf:type schema:CreativeWork
120 https://www.grid.ac/institutes/grid.22072.35 schema:alternateName University of Calgary
121 schema:name Department of Radiology, University of Calgary, Calgary, Canada. nils.forkert@ucalgary.ca.
122 Department of Radiology, University of Calgary, Calgary, Canada. pauline.mouches@ucalgary.ca.
123 Hotchkiss Brain Institute, University of Calgary, Calgary, Canada. nils.forkert@ucalgary.ca.
124 Hotchkiss Brain Institute, University of Calgary, Calgary, Canada. pauline.mouches@ucalgary.ca.
125 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...