Multi-channel EEG recordings during a sustained-attention driving task View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-04-05

AUTHORS

Zehong Cao, Chun-Hsiang Chuang, Jung-Kai King, Chin-Teng Lin

ABSTRACT

We describe driver behaviour and brain dynamics acquired from a 90-minute sustained-attention task in an immersive driving simulator. The data included 62 sessions of 32-channel electroencephalography (EEG) data for 27 subjects driving on a four-lane highway who were instructed to keep the car cruising in the centre of the lane. Lane-departure events were randomly induced to cause the car to drift from the original cruising lane towards the left or right lane. A complete trial included events with deviation onset, response onset, and response offset. The next trial, in which the subject was instructed to drive back to the original cruising lane, began 5-10 seconds after finishing the previous trial. We believe that this dataset will lead to the development of novel neural processing methodology that can be used to index brain cortical dynamics and detect driving fatigue and drowsiness. This publicly available dataset will be beneficial to the neuroscience and brain-computer interface communities. More... »

PAGES

19

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41597-019-0027-4

DOI

http://dx.doi.org/10.1038/s41597-019-0027-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113261608

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30952963


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Attention", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Automobile Driving", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain-Computer Interfaces", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electroencephalography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Psychomotor Performance", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Discipline of ICT, School of Technology, Environments and Design, College of Sciences and Engineering, University of Tasmania, Hobart, TAS Australia", 
          "id": "http://www.grid.ac/institutes/grid.1009.8", 
          "name": [
            "Discipline of ICT, School of Technology, Environments and Design, College of Sciences and Engineering, University of Tasmania, Hobart, TAS Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cao", 
        "givenName": "Zehong", 
        "id": "sg:person.015364757715.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015364757715.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.260664.0", 
          "name": [
            "Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chuang", 
        "givenName": "Chun-Hsiang", 
        "id": "sg:person.0657666365.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657666365.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Brain Research Center, National Chiao Tung University, Hsinchu, Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.260539.b", 
          "name": [
            "Brain Research Center, National Chiao Tung University, Hsinchu, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "King", 
        "givenName": "Jung-Kai", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre for Artificial Intelligence, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW Australia", 
          "id": "http://www.grid.ac/institutes/grid.117476.2", 
          "name": [
            "Centre for Artificial Intelligence, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Chin-Teng", 
        "id": "sg:person.0602355520.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0602355520.25"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/srep21353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012893770", 
          "https://doi.org/10.1038/srep21353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sdata.2018.133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105441944", 
          "https://doi.org/10.1038/sdata.2018.133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-02812-0_47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042856388", 
          "https://doi.org/10.1007/978-3-642-02812-0_47"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sdata.2018.3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101001451", 
          "https://doi.org/10.1038/sdata.2018.3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04-05", 
    "datePublishedReg": "2019-04-05", 
    "description": "We describe driver behaviour and brain dynamics acquired from a 90-minute sustained-attention task in an immersive driving simulator. The data included 62 sessions of 32-channel electroencephalography (EEG) data for 27 subjects driving on a four-lane highway who were instructed to keep the car cruising in the centre of the lane. Lane-departure events were randomly induced to cause the car to drift from the original cruising lane towards the left or right lane. A complete trial included events with deviation onset, response onset, and response offset. The next trial, in which the subject was instructed to drive back to the original cruising lane, began 5-10\u2009seconds after finishing the previous trial. We believe that this dataset will lead to the development of novel neural processing methodology that can be used to index brain cortical dynamics and detect driving fatigue and drowsiness. This publicly available dataset will be beneficial to the neuroscience and brain-computer interface communities.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41597-019-0027-4", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7074290", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7074295", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1050678", 
        "issn": [
          "2052-4463"
        ], 
        "name": "Scientific Data", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "keywords": [
      "response onset", 
      "previous trials", 
      "complete trial", 
      "trials", 
      "EEG recordings", 
      "cortical dynamics", 
      "deviation onset", 
      "onset", 
      "brain dynamics", 
      "subjects", 
      "response offset", 
      "next trial", 
      "channel EEG recordings", 
      "sustained-attention task", 
      "drowsiness", 
      "electroencephalography (EEG) data", 
      "events", 
      "sessions", 
      "recordings", 
      "fatigue", 
      "lane departure events", 
      "data", 
      "brain-computer interface (BCI) community", 
      "center", 
      "sustained-attention driving task", 
      "driving simulator", 
      "neuroscience", 
      "driving task", 
      "development", 
      "seconds", 
      "task", 
      "community", 
      "right lane", 
      "behavior", 
      "immersive driving simulator", 
      "available datasets", 
      "car", 
      "driver behavior", 
      "dataset", 
      "methodology", 
      "offset", 
      "dynamics", 
      "simulator", 
      "four-lane highway", 
      "lanes", 
      "interface communities", 
      "processing methodology", 
      "highway", 
      "novel neural processing methodology", 
      "neural processing methodology", 
      "index brain cortical dynamics", 
      "brain cortical dynamics"
    ], 
    "name": "Multi-channel EEG recordings during a sustained-attention driving task", 
    "pagination": "19", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113261608"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41597-019-0027-4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30952963"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41597-019-0027-4", 
      "https://app.dimensions.ai/details/publication/pub.1113261608"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_796.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41597-019-0027-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41597-019-0027-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41597-019-0027-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41597-019-0027-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41597-019-0027-4'


 

This table displays all metadata directly associated to this object as RDF triples.

194 TRIPLES      22 PREDICATES      90 URIs      78 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41597-019-0027-4 schema:about N1912aabc62b34bd884506e414e53612d
2 N3dfbc971011741cc95e24a5cf2b8654e
3 N4a577d4e261f49b69b691e2cfaacdb3f
4 N51c9cec51c9c4714926ce5cda8da97f0
5 Na6f30ab0d3544353b28903341c94695e
6 Nb8c9a871785448e4ab7f23a4ef68fe79
7 Nbff31768963f4de3983ef0b512011a5e
8 Nfaf814e720f84ade922559345bce7429
9 anzsrc-for:11
10 anzsrc-for:1109
11 schema:author Nefc85abc6f3b42d5966758765dfb2b1d
12 schema:citation sg:pub.10.1007/978-3-642-02812-0_47
13 sg:pub.10.1038/sdata.2018.133
14 sg:pub.10.1038/sdata.2018.3
15 sg:pub.10.1038/srep21353
16 schema:datePublished 2019-04-05
17 schema:datePublishedReg 2019-04-05
18 schema:description We describe driver behaviour and brain dynamics acquired from a 90-minute sustained-attention task in an immersive driving simulator. The data included 62 sessions of 32-channel electroencephalography (EEG) data for 27 subjects driving on a four-lane highway who were instructed to keep the car cruising in the centre of the lane. Lane-departure events were randomly induced to cause the car to drift from the original cruising lane towards the left or right lane. A complete trial included events with deviation onset, response onset, and response offset. The next trial, in which the subject was instructed to drive back to the original cruising lane, began 5-10 seconds after finishing the previous trial. We believe that this dataset will lead to the development of novel neural processing methodology that can be used to index brain cortical dynamics and detect driving fatigue and drowsiness. This publicly available dataset will be beneficial to the neuroscience and brain-computer interface communities.
19 schema:genre article
20 schema:inLanguage en
21 schema:isAccessibleForFree true
22 schema:isPartOf N6112d9dc5ef648ca8a276787ff74a927
23 Nef277f1bc82c45fdab925639d4576c81
24 sg:journal.1050678
25 schema:keywords EEG recordings
26 available datasets
27 behavior
28 brain cortical dynamics
29 brain dynamics
30 brain-computer interface (BCI) community
31 car
32 center
33 channel EEG recordings
34 community
35 complete trial
36 cortical dynamics
37 data
38 dataset
39 development
40 deviation onset
41 driver behavior
42 driving simulator
43 driving task
44 drowsiness
45 dynamics
46 electroencephalography (EEG) data
47 events
48 fatigue
49 four-lane highway
50 highway
51 immersive driving simulator
52 index brain cortical dynamics
53 interface communities
54 lane departure events
55 lanes
56 methodology
57 neural processing methodology
58 neuroscience
59 next trial
60 novel neural processing methodology
61 offset
62 onset
63 previous trials
64 processing methodology
65 recordings
66 response offset
67 response onset
68 right lane
69 seconds
70 sessions
71 simulator
72 subjects
73 sustained-attention driving task
74 sustained-attention task
75 task
76 trials
77 schema:name Multi-channel EEG recordings during a sustained-attention driving task
78 schema:pagination 19
79 schema:productId N53400c7944f14b61b0efd6e16e310d9f
80 Nacce5258a27646f78505e7efe2309bb8
81 Nd19390fba8134efa91956eeada671f14
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113261608
83 https://doi.org/10.1038/s41597-019-0027-4
84 schema:sdDatePublished 2022-01-01T18:50
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher Nece93b7bfdc848d0a5ebbb496c7c2953
87 schema:url https://doi.org/10.1038/s41597-019-0027-4
88 sgo:license sg:explorer/license/
89 sgo:sdDataset articles
90 rdf:type schema:ScholarlyArticle
91 N12260242f1ca4e7dbd87bc2c8c92016b rdf:first N51a42e9ab2644327943d8999c446030d
92 rdf:rest N5bedbaee281d46dab00ba0989647e3a9
93 N1912aabc62b34bd884506e414e53612d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Attention
95 rdf:type schema:DefinedTerm
96 N3dfbc971011741cc95e24a5cf2b8654e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Humans
98 rdf:type schema:DefinedTerm
99 N4a577d4e261f49b69b691e2cfaacdb3f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Electroencephalography
101 rdf:type schema:DefinedTerm
102 N51a42e9ab2644327943d8999c446030d schema:affiliation grid-institutes:grid.260539.b
103 schema:familyName King
104 schema:givenName Jung-Kai
105 rdf:type schema:Person
106 N51c9cec51c9c4714926ce5cda8da97f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Brain-Computer Interfaces
108 rdf:type schema:DefinedTerm
109 N53400c7944f14b61b0efd6e16e310d9f schema:name pubmed_id
110 schema:value 30952963
111 rdf:type schema:PropertyValue
112 N5bedbaee281d46dab00ba0989647e3a9 rdf:first sg:person.0602355520.25
113 rdf:rest rdf:nil
114 N6112d9dc5ef648ca8a276787ff74a927 schema:volumeNumber 6
115 rdf:type schema:PublicationVolume
116 Na6f30ab0d3544353b28903341c94695e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Brain
118 rdf:type schema:DefinedTerm
119 Nacce5258a27646f78505e7efe2309bb8 schema:name doi
120 schema:value 10.1038/s41597-019-0027-4
121 rdf:type schema:PropertyValue
122 Nb46cf7649e024c4aae0b2c009418476c rdf:first sg:person.0657666365.26
123 rdf:rest N12260242f1ca4e7dbd87bc2c8c92016b
124 Nb8c9a871785448e4ab7f23a4ef68fe79 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Adult
126 rdf:type schema:DefinedTerm
127 Nbff31768963f4de3983ef0b512011a5e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Psychomotor Performance
129 rdf:type schema:DefinedTerm
130 Nd19390fba8134efa91956eeada671f14 schema:name dimensions_id
131 schema:value pub.1113261608
132 rdf:type schema:PropertyValue
133 Nece93b7bfdc848d0a5ebbb496c7c2953 schema:name Springer Nature - SN SciGraph project
134 rdf:type schema:Organization
135 Nef277f1bc82c45fdab925639d4576c81 schema:issueNumber 1
136 rdf:type schema:PublicationIssue
137 Nefc85abc6f3b42d5966758765dfb2b1d rdf:first sg:person.015364757715.45
138 rdf:rest Nb46cf7649e024c4aae0b2c009418476c
139 Nfaf814e720f84ade922559345bce7429 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Automobile Driving
141 rdf:type schema:DefinedTerm
142 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
143 schema:name Medical and Health Sciences
144 rdf:type schema:DefinedTerm
145 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
146 schema:name Neurosciences
147 rdf:type schema:DefinedTerm
148 sg:grant.7074290 http://pending.schema.org/fundedItem sg:pub.10.1038/s41597-019-0027-4
149 rdf:type schema:MonetaryGrant
150 sg:grant.7074295 http://pending.schema.org/fundedItem sg:pub.10.1038/s41597-019-0027-4
151 rdf:type schema:MonetaryGrant
152 sg:journal.1050678 schema:issn 2052-4463
153 schema:name Scientific Data
154 schema:publisher Springer Nature
155 rdf:type schema:Periodical
156 sg:person.015364757715.45 schema:affiliation grid-institutes:grid.1009.8
157 schema:familyName Cao
158 schema:givenName Zehong
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015364757715.45
160 rdf:type schema:Person
161 sg:person.0602355520.25 schema:affiliation grid-institutes:grid.117476.2
162 schema:familyName Lin
163 schema:givenName Chin-Teng
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0602355520.25
165 rdf:type schema:Person
166 sg:person.0657666365.26 schema:affiliation grid-institutes:grid.260664.0
167 schema:familyName Chuang
168 schema:givenName Chun-Hsiang
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657666365.26
170 rdf:type schema:Person
171 sg:pub.10.1007/978-3-642-02812-0_47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042856388
172 https://doi.org/10.1007/978-3-642-02812-0_47
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/sdata.2018.133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105441944
175 https://doi.org/10.1038/sdata.2018.133
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/sdata.2018.3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101001451
178 https://doi.org/10.1038/sdata.2018.3
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/srep21353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012893770
181 https://doi.org/10.1038/srep21353
182 rdf:type schema:CreativeWork
183 grid-institutes:grid.1009.8 schema:alternateName Discipline of ICT, School of Technology, Environments and Design, College of Sciences and Engineering, University of Tasmania, Hobart, TAS Australia
184 schema:name Discipline of ICT, School of Technology, Environments and Design, College of Sciences and Engineering, University of Tasmania, Hobart, TAS Australia
185 rdf:type schema:Organization
186 grid-institutes:grid.117476.2 schema:alternateName Centre for Artificial Intelligence, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW Australia
187 schema:name Centre for Artificial Intelligence, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW Australia
188 rdf:type schema:Organization
189 grid-institutes:grid.260539.b schema:alternateName Brain Research Center, National Chiao Tung University, Hsinchu, Taiwan
190 schema:name Brain Research Center, National Chiao Tung University, Hsinchu, Taiwan
191 rdf:type schema:Organization
192 grid-institutes:grid.260664.0 schema:alternateName Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, Taiwan
193 schema:name Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, Taiwan
194 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...