Multi-year whole-blood transcriptome data for the study of onset and progression of Parkinson's Disease. View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Matthew N Z Valentine, Kosuke Hashimoto, Takeshi Fukuhara, Shinji Saiki, Kei-Ichi Ishikawa, Nobutaka Hattori, Piero Carninci

ABSTRACT

Parkinson's disease (PD) is an age-related, chronic and progressive neurodegenerative disorder characterized by a loss of multifocal neurons, resulting in both non-motor and motor symptoms. While several genetic and environmental contributory risk factors have been identified, more exact methods for diagnosing and assessing prognosis of PD have yet to be established. Here we describe the generation and validation of a dataset comprising whole-blood transcriptomes originally intended for use in detection of blood biomarkers and transcriptomic network changes indicative of PD. Whole-blood samples extracted from both early-stage PD patients and healthy controls were sequenced using no-amplification non-tagging cap analysis of gene expression (nAnT-iCAGE) to analyse differences in global RNA expression patterns across the conditions. Subsequent sampling of a subset of PD patients one-year later provides the opportunity to study changes in transcriptomes arising due to disease progression. More... »

PAGES

20

Journal

TITLE

Scientific Data

ISSUE

1

VOLUME

6

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41597-019-0022-9

DOI

http://dx.doi.org/10.1038/s41597-019-0022-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113261555

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30952910


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Division of Genomic Medicine, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Valentine", 
        "givenName": "Matthew N Z", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Division of Genomic Medicine, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hashimoto", 
        "givenName": "Kosuke", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Juntendo University", 
          "id": "https://www.grid.ac/institutes/grid.258269.2", 
          "name": [
            "Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fukuhara", 
        "givenName": "Takeshi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Juntendo University", 
          "id": "https://www.grid.ac/institutes/grid.258269.2", 
          "name": [
            "Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saiki", 
        "givenName": "Shinji", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Juntendo University", 
          "id": "https://www.grid.ac/institutes/grid.258269.2", 
          "name": [
            "Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ishikawa", 
        "givenName": "Kei-Ichi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Juntendo University", 
          "id": "https://www.grid.ac/institutes/grid.258269.2", 
          "name": [
            "Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hattori", 
        "givenName": "Nobutaka", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Division of Genomic Medicine, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan. carninci@riken.jp."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Carninci", 
        "givenName": "Piero", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ng1789", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001417778", 
          "https://doi.org/10.1038/ng1789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1789", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001417778", 
          "https://doi.org/10.1038/ng1789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0896-6273(03)00568-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003090951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.17.5.427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004075938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4939-0805-9_7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004176565", 
          "https://doi.org/10.1007/978-1-4939-0805-9_7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ana.410440612", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005944585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/33416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007440052", 
          "https://doi.org/10.1038/33416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/33416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007440052", 
          "https://doi.org/10.1038/33416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gku1120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009325915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btw354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010049881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.6831208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012125501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0091041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018991335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(05)17829-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019372906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1474-4422(06)70373-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020596663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12787", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022158752", 
          "https://doi.org/10.1038/nature12787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-15-144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023100554", 
          "https://doi.org/10.1186/1471-2105-15-144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jnnp.2003.033530", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024627834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(05)17830-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027565520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature13182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029370855", 
          "https://doi.org/10.1038/nature13182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/42166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029460877", 
          "https://doi.org/10.1038/42166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/42166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029460877", 
          "https://doi.org/10.1038/42166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mds.26424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033876860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neurobiolaging.2015.10.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036425305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1474-4422(06)70471-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039529917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ana.410270309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039912918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0317167100031814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040089835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neurobiolaging.2014.10.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040266176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jamaneurol.2016.0947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042442923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1096284", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046339118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bts635", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053365587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1077209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062447020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.57.8.1497", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064380248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.57.8.1497", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064380248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.57.8.1497", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064380248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-06767-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090990603", 
          "https://doi.org/10.1038/s41598-017-06767-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-06767-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090990603", 
          "https://doi.org/10.1038/s41598-017-06767-y"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Parkinson's disease (PD) is an age-related, chronic and progressive neurodegenerative disorder characterized by a loss of multifocal neurons, resulting in both non-motor and motor symptoms. While several genetic and environmental contributory risk factors have been identified, more exact methods for diagnosing and assessing prognosis of PD have yet to be established. Here we describe the generation and validation of a\u00a0dataset comprising whole-blood transcriptomes originally intended for use in detection of blood biomarkers and transcriptomic network changes indicative of PD. Whole-blood samples extracted from both early-stage PD patients and healthy controls were sequenced using no-amplification non-tagging cap analysis of gene expression (nAnT-iCAGE) to analyse differences in global RNA expression patterns across the conditions. Subsequent sampling of a subset of PD patients one-year later provides the opportunity to study changes in transcriptomes arising due to disease progression.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41597-019-0022-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1050678", 
        "issn": [
          "2052-4463"
        ], 
        "name": "Scientific Data", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Multi-year whole-blood transcriptome data for the study of onset and progression of Parkinson's Disease.", 
    "pagination": "20", 
    "productId": [
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30952910"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101640192"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41597-019-0022-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113261555"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41597-019-0022-9", 
      "https://app.dimensions.ai/details/publication/pub.1113261555"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000372_0000000372/records_117128_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/s41597-019-0022-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41597-019-0022-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41597-019-0022-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41597-019-0022-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41597-019-0022-9'


 

This table displays all metadata directly associated to this object as RDF triples.

203 TRIPLES      21 PREDICATES      58 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41597-019-0022-9 schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author N10ed2e34572d4356a98a23c8aa24314e
4 schema:citation sg:pub.10.1007/978-1-4939-0805-9_7
5 sg:pub.10.1038/33416
6 sg:pub.10.1038/42166
7 sg:pub.10.1038/nature12787
8 sg:pub.10.1038/nature13182
9 sg:pub.10.1038/ng1789
10 sg:pub.10.1038/s41598-017-06767-y
11 sg:pub.10.1186/1471-2105-15-144
12 https://doi.org/10.1001/jamaneurol.2016.0947
13 https://doi.org/10.1002/ana.410270309
14 https://doi.org/10.1002/ana.410440612
15 https://doi.org/10.1002/mds.26424
16 https://doi.org/10.1016/j.neurobiolaging.2014.10.039
17 https://doi.org/10.1016/j.neurobiolaging.2015.10.026
18 https://doi.org/10.1016/s0140-6736(05)17829-5
19 https://doi.org/10.1016/s0140-6736(05)17830-1
20 https://doi.org/10.1016/s0896-6273(03)00568-3
21 https://doi.org/10.1016/s1474-4422(06)70373-8
22 https://doi.org/10.1016/s1474-4422(06)70471-9
23 https://doi.org/10.1017/s0317167100031814
24 https://doi.org/10.1093/bioinformatics/bts635
25 https://doi.org/10.1093/bioinformatics/btw354
26 https://doi.org/10.1093/nar/gku1120
27 https://doi.org/10.1101/gr.6831208
28 https://doi.org/10.1126/science.1077209
29 https://doi.org/10.1126/science.1096284
30 https://doi.org/10.1136/jnnp.2003.033530
31 https://doi.org/10.1212/wnl.17.5.427
32 https://doi.org/10.1212/wnl.57.8.1497
33 https://doi.org/10.1371/journal.pone.0091041
34 schema:datePublished 2019-12
35 schema:datePublishedReg 2019-12-01
36 schema:description Parkinson's disease (PD) is an age-related, chronic and progressive neurodegenerative disorder characterized by a loss of multifocal neurons, resulting in both non-motor and motor symptoms. While several genetic and environmental contributory risk factors have been identified, more exact methods for diagnosing and assessing prognosis of PD have yet to be established. Here we describe the generation and validation of a dataset comprising whole-blood transcriptomes originally intended for use in detection of blood biomarkers and transcriptomic network changes indicative of PD. Whole-blood samples extracted from both early-stage PD patients and healthy controls were sequenced using no-amplification non-tagging cap analysis of gene expression (nAnT-iCAGE) to analyse differences in global RNA expression patterns across the conditions. Subsequent sampling of a subset of PD patients one-year later provides the opportunity to study changes in transcriptomes arising due to disease progression.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf Nc50784162506415da9529b62efd11321
41 Nd100f55d5dfd498ca6a35e6789c4768c
42 sg:journal.1050678
43 schema:name Multi-year whole-blood transcriptome data for the study of onset and progression of Parkinson's Disease.
44 schema:pagination 20
45 schema:productId N3e7fd5a825fd46aaa0db72f3b7444a76
46 N55f3d83522bb4fbd89284c93c6cd3314
47 Nb06812e1573b43168a95266a4a6736bd
48 Nce3826eeb1eb41508bdcb219e332ed9d
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113261555
50 https://doi.org/10.1038/s41597-019-0022-9
51 schema:sdDatePublished 2019-04-11T14:21
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher Nc9616da862ce4235ac998764e9d06d67
54 schema:url http://www.nature.com/articles/s41597-019-0022-9
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N09f4e9ef21ae44cf9e04b8f17f158e98 schema:name Division of Genomic Medicine, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
59 rdf:type schema:Organization
60 N10ed2e34572d4356a98a23c8aa24314e rdf:first Na6b5c137dda847e98f5f50cb6d0d8c01
61 rdf:rest N5af5e2ab2d3a49ca97d4a9466d5d54b3
62 N1aa4d906e42a4bd9be51f22738227c52 schema:affiliation https://www.grid.ac/institutes/grid.258269.2
63 schema:familyName Hattori
64 schema:givenName Nobutaka
65 rdf:type schema:Person
66 N3db9afa4d16c4cacabde42d0f02ba4b5 rdf:first N869ea2d7c7ea4ff4a37b2c5ad4c221dc
67 rdf:rest N4c298bb3560949b2a5c0640ecac0def0
68 N3e7fd5a825fd46aaa0db72f3b7444a76 schema:name dimensions_id
69 schema:value pub.1113261555
70 rdf:type schema:PropertyValue
71 N4c298bb3560949b2a5c0640ecac0def0 rdf:first N1aa4d906e42a4bd9be51f22738227c52
72 rdf:rest N924d6eeb5a0545a68b89fabbb703905e
73 N55f3d83522bb4fbd89284c93c6cd3314 schema:name nlm_unique_id
74 schema:value 101640192
75 rdf:type schema:PropertyValue
76 N5af5e2ab2d3a49ca97d4a9466d5d54b3 rdf:first Nf92dd92c2c9a4bbcb70ff9fbb6725488
77 rdf:rest Na4fcb226f966449a8a15d3edc4608383
78 N772fa04b6a6f4c0a90ae460cfa3e7a43 schema:name Division of Genomic Medicine, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
79 rdf:type schema:Organization
80 N869ea2d7c7ea4ff4a37b2c5ad4c221dc schema:affiliation https://www.grid.ac/institutes/grid.258269.2
81 schema:familyName Ishikawa
82 schema:givenName Kei-Ichi
83 rdf:type schema:Person
84 N924d6eeb5a0545a68b89fabbb703905e rdf:first Nb0fab3699f584627adc248b642a21f46
85 rdf:rest rdf:nil
86 N9e33a0faa8ba4269bd9d612f0b01a620 schema:affiliation https://www.grid.ac/institutes/grid.258269.2
87 schema:familyName Saiki
88 schema:givenName Shinji
89 rdf:type schema:Person
90 Na4fcb226f966449a8a15d3edc4608383 rdf:first Nd492516655bc41f88823a04af46dfea3
91 rdf:rest Nc736d70b60fa4cf993694da8c3e6556c
92 Na6b5c137dda847e98f5f50cb6d0d8c01 schema:affiliation N772fa04b6a6f4c0a90ae460cfa3e7a43
93 schema:familyName Valentine
94 schema:givenName Matthew N Z
95 rdf:type schema:Person
96 Nb01f2b363cca40c294cfa36ae0e28195 schema:name Division of Genomic Medicine, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan. carninci@riken.jp.
97 rdf:type schema:Organization
98 Nb06812e1573b43168a95266a4a6736bd schema:name pubmed_id
99 schema:value 30952910
100 rdf:type schema:PropertyValue
101 Nb0fab3699f584627adc248b642a21f46 schema:affiliation Nb01f2b363cca40c294cfa36ae0e28195
102 schema:familyName Carninci
103 schema:givenName Piero
104 rdf:type schema:Person
105 Nc50784162506415da9529b62efd11321 schema:volumeNumber 6
106 rdf:type schema:PublicationVolume
107 Nc736d70b60fa4cf993694da8c3e6556c rdf:first N9e33a0faa8ba4269bd9d612f0b01a620
108 rdf:rest N3db9afa4d16c4cacabde42d0f02ba4b5
109 Nc9616da862ce4235ac998764e9d06d67 schema:name Springer Nature - SN SciGraph project
110 rdf:type schema:Organization
111 Nce3826eeb1eb41508bdcb219e332ed9d schema:name doi
112 schema:value 10.1038/s41597-019-0022-9
113 rdf:type schema:PropertyValue
114 Nd100f55d5dfd498ca6a35e6789c4768c schema:issueNumber 1
115 rdf:type schema:PublicationIssue
116 Nd492516655bc41f88823a04af46dfea3 schema:affiliation https://www.grid.ac/institutes/grid.258269.2
117 schema:familyName Fukuhara
118 schema:givenName Takeshi
119 rdf:type schema:Person
120 Nf92dd92c2c9a4bbcb70ff9fbb6725488 schema:affiliation N09f4e9ef21ae44cf9e04b8f17f158e98
121 schema:familyName Hashimoto
122 schema:givenName Kosuke
123 rdf:type schema:Person
124 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
125 schema:name Medical and Health Sciences
126 rdf:type schema:DefinedTerm
127 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
128 schema:name Neurosciences
129 rdf:type schema:DefinedTerm
130 sg:journal.1050678 schema:issn 2052-4463
131 schema:name Scientific Data
132 rdf:type schema:Periodical
133 sg:pub.10.1007/978-1-4939-0805-9_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004176565
134 https://doi.org/10.1007/978-1-4939-0805-9_7
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/33416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007440052
137 https://doi.org/10.1038/33416
138 rdf:type schema:CreativeWork
139 sg:pub.10.1038/42166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029460877
140 https://doi.org/10.1038/42166
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/nature12787 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022158752
143 https://doi.org/10.1038/nature12787
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/nature13182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029370855
146 https://doi.org/10.1038/nature13182
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/ng1789 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001417778
149 https://doi.org/10.1038/ng1789
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/s41598-017-06767-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1090990603
152 https://doi.org/10.1038/s41598-017-06767-y
153 rdf:type schema:CreativeWork
154 sg:pub.10.1186/1471-2105-15-144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023100554
155 https://doi.org/10.1186/1471-2105-15-144
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1001/jamaneurol.2016.0947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042442923
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1002/ana.410270309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039912918
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1002/ana.410440612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005944585
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1002/mds.26424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033876860
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.neurobiolaging.2014.10.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040266176
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.neurobiolaging.2015.10.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036425305
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/s0140-6736(05)17829-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019372906
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/s0140-6736(05)17830-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027565520
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/s0896-6273(03)00568-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003090951
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/s1474-4422(06)70373-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020596663
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/s1474-4422(06)70471-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039529917
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1017/s0317167100031814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040089835
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1093/bioinformatics/bts635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053365587
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1093/bioinformatics/btw354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010049881
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1093/nar/gku1120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009325915
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1101/gr.6831208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012125501
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1126/science.1077209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062447020
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1126/science.1096284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046339118
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1136/jnnp.2003.033530 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024627834
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1212/wnl.17.5.427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004075938
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1212/wnl.57.8.1497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064380248
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1371/journal.pone.0091041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018991335
200 rdf:type schema:CreativeWork
201 https://www.grid.ac/institutes/grid.258269.2 schema:alternateName Juntendo University
202 schema:name Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan.
203 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...