Multi-year whole-blood transcriptome data for the study of onset and progression of Parkinson's Disease. View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Matthew N Z Valentine, Kosuke Hashimoto, Takeshi Fukuhara, Shinji Saiki, Kei-Ichi Ishikawa, Nobutaka Hattori, Piero Carninci

ABSTRACT

Parkinson's disease (PD) is an age-related, chronic and progressive neurodegenerative disorder characterized by a loss of multifocal neurons, resulting in both non-motor and motor symptoms. While several genetic and environmental contributory risk factors have been identified, more exact methods for diagnosing and assessing prognosis of PD have yet to be established. Here we describe the generation and validation of a dataset comprising whole-blood transcriptomes originally intended for use in detection of blood biomarkers and transcriptomic network changes indicative of PD. Whole-blood samples extracted from both early-stage PD patients and healthy controls were sequenced using no-amplification non-tagging cap analysis of gene expression (nAnT-iCAGE) to analyse differences in global RNA expression patterns across the conditions. Subsequent sampling of a subset of PD patients one-year later provides the opportunity to study changes in transcriptomes arising due to disease progression. More... »

PAGES

20

Journal

TITLE

Scientific Data

ISSUE

1

VOLUME

6

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41597-019-0022-9

DOI

http://dx.doi.org/10.1038/s41597-019-0022-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113261555

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30952910


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Division of Genomic Medicine, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Valentine", 
        "givenName": "Matthew N Z", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Division of Genomic Medicine, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hashimoto", 
        "givenName": "Kosuke", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Juntendo University", 
          "id": "https://www.grid.ac/institutes/grid.258269.2", 
          "name": [
            "Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fukuhara", 
        "givenName": "Takeshi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Juntendo University", 
          "id": "https://www.grid.ac/institutes/grid.258269.2", 
          "name": [
            "Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saiki", 
        "givenName": "Shinji", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Juntendo University", 
          "id": "https://www.grid.ac/institutes/grid.258269.2", 
          "name": [
            "Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ishikawa", 
        "givenName": "Kei-Ichi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Juntendo University", 
          "id": "https://www.grid.ac/institutes/grid.258269.2", 
          "name": [
            "Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hattori", 
        "givenName": "Nobutaka", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Division of Genomic Medicine, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan. carninci@riken.jp."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Carninci", 
        "givenName": "Piero", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ng1789", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001417778", 
          "https://doi.org/10.1038/ng1789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1789", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001417778", 
          "https://doi.org/10.1038/ng1789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0896-6273(03)00568-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003090951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.17.5.427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004075938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4939-0805-9_7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004176565", 
          "https://doi.org/10.1007/978-1-4939-0805-9_7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ana.410440612", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005944585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/33416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007440052", 
          "https://doi.org/10.1038/33416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/33416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007440052", 
          "https://doi.org/10.1038/33416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gku1120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009325915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btw354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010049881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.6831208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012125501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0091041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018991335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(05)17829-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019372906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1474-4422(06)70373-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020596663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12787", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022158752", 
          "https://doi.org/10.1038/nature12787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-15-144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023100554", 
          "https://doi.org/10.1186/1471-2105-15-144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jnnp.2003.033530", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024627834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(05)17830-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027565520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature13182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029370855", 
          "https://doi.org/10.1038/nature13182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/42166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029460877", 
          "https://doi.org/10.1038/42166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/42166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029460877", 
          "https://doi.org/10.1038/42166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mds.26424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033876860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neurobiolaging.2015.10.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036425305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1474-4422(06)70471-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039529917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ana.410270309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039912918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0317167100031814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040089835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neurobiolaging.2014.10.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040266176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jamaneurol.2016.0947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042442923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1096284", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046339118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bts635", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053365587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1077209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062447020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.57.8.1497", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064380248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.57.8.1497", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064380248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.57.8.1497", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064380248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-06767-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090990603", 
          "https://doi.org/10.1038/s41598-017-06767-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-06767-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090990603", 
          "https://doi.org/10.1038/s41598-017-06767-y"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Parkinson's disease (PD) is an age-related, chronic and progressive neurodegenerative disorder characterized by a loss of multifocal neurons, resulting in both non-motor and motor symptoms. While several genetic and environmental contributory risk factors have been identified, more exact methods for diagnosing and assessing prognosis of PD have yet to be established. Here we describe the generation and validation of a\u00a0dataset comprising whole-blood transcriptomes originally intended for use in detection of blood biomarkers and transcriptomic network changes indicative of PD. Whole-blood samples extracted from both early-stage PD patients and healthy controls were sequenced using no-amplification non-tagging cap analysis of gene expression (nAnT-iCAGE) to analyse differences in global RNA expression patterns across the conditions. Subsequent sampling of a subset of PD patients one-year later provides the opportunity to study changes in transcriptomes arising due to disease progression.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41597-019-0022-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1050678", 
        "issn": [
          "2052-4463"
        ], 
        "name": "Scientific Data", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Multi-year whole-blood transcriptome data for the study of onset and progression of Parkinson's Disease.", 
    "pagination": "20", 
    "productId": [
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30952910"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101640192"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41597-019-0022-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113261555"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41597-019-0022-9", 
      "https://app.dimensions.ai/details/publication/pub.1113261555"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000372_0000000372/records_117128_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/s41597-019-0022-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41597-019-0022-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41597-019-0022-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41597-019-0022-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41597-019-0022-9'


 

This table displays all metadata directly associated to this object as RDF triples.

203 TRIPLES      21 PREDICATES      58 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41597-019-0022-9 schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author N87f447863cb54850a35eec7bb2374bdd
4 schema:citation sg:pub.10.1007/978-1-4939-0805-9_7
5 sg:pub.10.1038/33416
6 sg:pub.10.1038/42166
7 sg:pub.10.1038/nature12787
8 sg:pub.10.1038/nature13182
9 sg:pub.10.1038/ng1789
10 sg:pub.10.1038/s41598-017-06767-y
11 sg:pub.10.1186/1471-2105-15-144
12 https://doi.org/10.1001/jamaneurol.2016.0947
13 https://doi.org/10.1002/ana.410270309
14 https://doi.org/10.1002/ana.410440612
15 https://doi.org/10.1002/mds.26424
16 https://doi.org/10.1016/j.neurobiolaging.2014.10.039
17 https://doi.org/10.1016/j.neurobiolaging.2015.10.026
18 https://doi.org/10.1016/s0140-6736(05)17829-5
19 https://doi.org/10.1016/s0140-6736(05)17830-1
20 https://doi.org/10.1016/s0896-6273(03)00568-3
21 https://doi.org/10.1016/s1474-4422(06)70373-8
22 https://doi.org/10.1016/s1474-4422(06)70471-9
23 https://doi.org/10.1017/s0317167100031814
24 https://doi.org/10.1093/bioinformatics/bts635
25 https://doi.org/10.1093/bioinformatics/btw354
26 https://doi.org/10.1093/nar/gku1120
27 https://doi.org/10.1101/gr.6831208
28 https://doi.org/10.1126/science.1077209
29 https://doi.org/10.1126/science.1096284
30 https://doi.org/10.1136/jnnp.2003.033530
31 https://doi.org/10.1212/wnl.17.5.427
32 https://doi.org/10.1212/wnl.57.8.1497
33 https://doi.org/10.1371/journal.pone.0091041
34 schema:datePublished 2019-12
35 schema:datePublishedReg 2019-12-01
36 schema:description Parkinson's disease (PD) is an age-related, chronic and progressive neurodegenerative disorder characterized by a loss of multifocal neurons, resulting in both non-motor and motor symptoms. While several genetic and environmental contributory risk factors have been identified, more exact methods for diagnosing and assessing prognosis of PD have yet to be established. Here we describe the generation and validation of a dataset comprising whole-blood transcriptomes originally intended for use in detection of blood biomarkers and transcriptomic network changes indicative of PD. Whole-blood samples extracted from both early-stage PD patients and healthy controls were sequenced using no-amplification non-tagging cap analysis of gene expression (nAnT-iCAGE) to analyse differences in global RNA expression patterns across the conditions. Subsequent sampling of a subset of PD patients one-year later provides the opportunity to study changes in transcriptomes arising due to disease progression.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf N95d19c5367fa4cc088c3a2c2ab696a71
41 Nf080f31190ab43efa4e7526268bae931
42 sg:journal.1050678
43 schema:name Multi-year whole-blood transcriptome data for the study of onset and progression of Parkinson's Disease.
44 schema:pagination 20
45 schema:productId N0aafa9aac41a4877a8ff6bd6a186091c
46 N27c694343e93474eb7ed894b6ed7a55c
47 N82ff84f207fc48cc8970ba1556106dc8
48 Nc6fc22820d444cbb99a9dcfc8d6c78c4
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113261555
50 https://doi.org/10.1038/s41597-019-0022-9
51 schema:sdDatePublished 2019-04-11T14:21
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N823bd4e961b24a0e81a5efbf7f820e23
54 schema:url http://www.nature.com/articles/s41597-019-0022-9
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N0aafa9aac41a4877a8ff6bd6a186091c schema:name doi
59 schema:value 10.1038/s41597-019-0022-9
60 rdf:type schema:PropertyValue
61 N13bc9c7da1b64141932e3b2904b6e977 schema:affiliation N77dca1cce7ff449997100bdd6e460d34
62 schema:familyName Carninci
63 schema:givenName Piero
64 rdf:type schema:Person
65 N27c694343e93474eb7ed894b6ed7a55c schema:name dimensions_id
66 schema:value pub.1113261555
67 rdf:type schema:PropertyValue
68 N2e2eabd0521f48938df381768263c62e rdf:first Nf860f5b929184463b85c2a45d870a640
69 rdf:rest N76ba2ec279e44d269bfac6d90c26eebc
70 N4be1926a50fe4bfca5da4ce37cc3b04d rdf:first N9e3f85b2525445e6bb5aaf4ebef6a8ab
71 rdf:rest Ne05f7de8b663423f869ccc9f5a382761
72 N55e9bc1f09fc4a24a81577729cb5a30b schema:affiliation https://www.grid.ac/institutes/grid.258269.2
73 schema:familyName Fukuhara
74 schema:givenName Takeshi
75 rdf:type schema:Person
76 N59f6bb36a8c84b3aa4d39a748ad570f9 schema:affiliation https://www.grid.ac/institutes/grid.258269.2
77 schema:familyName Hattori
78 schema:givenName Nobutaka
79 rdf:type schema:Person
80 N64ac61f5549948eeb0ceaed2b9937dd7 schema:affiliation Nfd284a4f9ff6441da4689cbc35f9ddd2
81 schema:familyName Valentine
82 schema:givenName Matthew N Z
83 rdf:type schema:Person
84 N76ba2ec279e44d269bfac6d90c26eebc rdf:first N55e9bc1f09fc4a24a81577729cb5a30b
85 rdf:rest Nd283310406cb4485a1c6540a1184cf8e
86 N77dca1cce7ff449997100bdd6e460d34 schema:name Division of Genomic Medicine, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan. carninci@riken.jp.
87 rdf:type schema:Organization
88 N823bd4e961b24a0e81a5efbf7f820e23 schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 N82ff84f207fc48cc8970ba1556106dc8 schema:name nlm_unique_id
91 schema:value 101640192
92 rdf:type schema:PropertyValue
93 N87f447863cb54850a35eec7bb2374bdd rdf:first N64ac61f5549948eeb0ceaed2b9937dd7
94 rdf:rest N2e2eabd0521f48938df381768263c62e
95 N95d19c5367fa4cc088c3a2c2ab696a71 schema:volumeNumber 6
96 rdf:type schema:PublicationVolume
97 N9e3f85b2525445e6bb5aaf4ebef6a8ab schema:affiliation https://www.grid.ac/institutes/grid.258269.2
98 schema:familyName Ishikawa
99 schema:givenName Kei-Ichi
100 rdf:type schema:Person
101 Nc6fc22820d444cbb99a9dcfc8d6c78c4 schema:name pubmed_id
102 schema:value 30952910
103 rdf:type schema:PropertyValue
104 Nccbb805cf0bc472790157117d79fdf00 schema:name Division of Genomic Medicine, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
105 rdf:type schema:Organization
106 Nd283310406cb4485a1c6540a1184cf8e rdf:first Nebca019b81d2415f8ce2438464f357db
107 rdf:rest N4be1926a50fe4bfca5da4ce37cc3b04d
108 Ne05f7de8b663423f869ccc9f5a382761 rdf:first N59f6bb36a8c84b3aa4d39a748ad570f9
109 rdf:rest Nfc8924e07fcb4e2fb9884efb59112252
110 Nebca019b81d2415f8ce2438464f357db schema:affiliation https://www.grid.ac/institutes/grid.258269.2
111 schema:familyName Saiki
112 schema:givenName Shinji
113 rdf:type schema:Person
114 Nf080f31190ab43efa4e7526268bae931 schema:issueNumber 1
115 rdf:type schema:PublicationIssue
116 Nf860f5b929184463b85c2a45d870a640 schema:affiliation Nccbb805cf0bc472790157117d79fdf00
117 schema:familyName Hashimoto
118 schema:givenName Kosuke
119 rdf:type schema:Person
120 Nfc8924e07fcb4e2fb9884efb59112252 rdf:first N13bc9c7da1b64141932e3b2904b6e977
121 rdf:rest rdf:nil
122 Nfd284a4f9ff6441da4689cbc35f9ddd2 schema:name Division of Genomic Medicine, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
123 rdf:type schema:Organization
124 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
125 schema:name Medical and Health Sciences
126 rdf:type schema:DefinedTerm
127 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
128 schema:name Neurosciences
129 rdf:type schema:DefinedTerm
130 sg:journal.1050678 schema:issn 2052-4463
131 schema:name Scientific Data
132 rdf:type schema:Periodical
133 sg:pub.10.1007/978-1-4939-0805-9_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004176565
134 https://doi.org/10.1007/978-1-4939-0805-9_7
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/33416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007440052
137 https://doi.org/10.1038/33416
138 rdf:type schema:CreativeWork
139 sg:pub.10.1038/42166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029460877
140 https://doi.org/10.1038/42166
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/nature12787 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022158752
143 https://doi.org/10.1038/nature12787
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/nature13182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029370855
146 https://doi.org/10.1038/nature13182
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/ng1789 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001417778
149 https://doi.org/10.1038/ng1789
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/s41598-017-06767-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1090990603
152 https://doi.org/10.1038/s41598-017-06767-y
153 rdf:type schema:CreativeWork
154 sg:pub.10.1186/1471-2105-15-144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023100554
155 https://doi.org/10.1186/1471-2105-15-144
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1001/jamaneurol.2016.0947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042442923
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1002/ana.410270309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039912918
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1002/ana.410440612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005944585
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1002/mds.26424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033876860
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.neurobiolaging.2014.10.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040266176
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.neurobiolaging.2015.10.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036425305
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/s0140-6736(05)17829-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019372906
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/s0140-6736(05)17830-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027565520
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/s0896-6273(03)00568-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003090951
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/s1474-4422(06)70373-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020596663
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/s1474-4422(06)70471-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039529917
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1017/s0317167100031814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040089835
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1093/bioinformatics/bts635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053365587
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1093/bioinformatics/btw354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010049881
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1093/nar/gku1120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009325915
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1101/gr.6831208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012125501
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1126/science.1077209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062447020
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1126/science.1096284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046339118
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1136/jnnp.2003.033530 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024627834
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1212/wnl.17.5.427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004075938
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1212/wnl.57.8.1497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064380248
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1371/journal.pone.0091041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018991335
200 rdf:type schema:CreativeWork
201 https://www.grid.ac/institutes/grid.258269.2 schema:alternateName Juntendo University
202 schema:name Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan.
203 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...