Solidifying framework nucleic acids with silica View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-07-03

AUTHORS

Xinxin Jing, Fei Zhang, Muchen Pan, Xinpei Dai, Jiang Li, Lihua Wang, Xiaoguo Liu, Hao Yan, Chunhai Fan

ABSTRACT

Soft matter can serve as a template to guide the growth of inorganic components with well-controlled structural features. However, the limited design space of conventional organic and biomolecular templates restricts the complexity and accuracy of templated growth. In past decades, the blossoming of structural DNA nanotechnology has provided us with a large reservoir of delicate-framework nucleic acids with design precision down to a single base. Here, we describe a DNA origami silicification (DOS) approach for generating complex silica composite nanomaterials. By utilizing modified silica sol–gel chemistry, pre-hydrolyzed silica precursor clusters can be uniformly coated onto the surface of DNA frameworks; thus, user-defined DNA–silica hybrid materials with ~3-nm precision can be achieved. More importantly, this method is applicable to various 1D, 2D and 3D DNA frameworks that range from 10 to >1,000 nm. Compared to pure DNA scaffolds, a tenfold increase in the Young’s modulus (E modulus) of these composites was observed, owing to their soft inner core and solid silica shell. We further demonstrate the use of solidified DNA frameworks to create 3D metal plasmonic devices. This protocol provides a platform for synthesizing inorganic materials with unprecedented complexity and tailored structural properties. The whole protocol takes ~10 d to complete. More... »

PAGES

2416-2436

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41596-019-0184-0

DOI

http://dx.doi.org/10.1038/s41596-019-0184-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1117707128

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/31270509


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Macromolecular and Materials Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Elastic Modulus", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nanotechnology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nucleic Acids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phase Transition", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Silicon Dioxide", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.415869.7", 
          "name": [
            "Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China", 
            "School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jing", 
        "givenName": "Xinxin", 
        "id": "sg:person.07400205354.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07400205354.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Molecular Sciences, Arizona State University, Tempe, AZ, USA", 
          "id": "http://www.grid.ac/institutes/grid.215654.1", 
          "name": [
            "Center for Molecular Design and Biomimetics, Biodesign Institute, Tempe, AZ, USA", 
            "School of Molecular Sciences, Arizona State University, Tempe, AZ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Fei", 
        "id": "sg:person.01227175741.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227175741.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pan", 
        "givenName": "Muchen", 
        "id": "sg:person.010175565754.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010175565754.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dai", 
        "givenName": "Xinpei", 
        "id": "sg:person.014612574121.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014612574121.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Jiang", 
        "id": "sg:person.01253443600.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253443600.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.22069.3f", 
          "name": [
            "Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China", 
            "Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Lihua", 
        "id": "sg:person.015273400357.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015273400357.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.415869.7", 
          "name": [
            "School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Xiaoguo", 
        "id": "sg:person.01160306136.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160306136.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Molecular Sciences, Arizona State University, Tempe, AZ, USA", 
          "id": "http://www.grid.ac/institutes/grid.215654.1", 
          "name": [
            "Center for Molecular Design and Biomimetics, Biodesign Institute, Tempe, AZ, USA", 
            "School of Molecular Sciences, Arizona State University, Tempe, AZ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yan", 
        "givenName": "Hao", 
        "id": "sg:person.0727257441.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727257441.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.415869.7", 
          "name": [
            "Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China", 
            "School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fan", 
        "givenName": "Chunhai", 
        "id": "sg:person.0764427152.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764427152.44"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nnano.2009.311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033021176", 
          "https://doi.org/10.1038/nnano.2009.311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms15654", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085724734", 
          "https://doi.org/10.1038/ncomms15654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04586", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028635122", 
          "https://doi.org/10.1038/nature04586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature24651", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099607698", 
          "https://doi.org/10.1038/nature24651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013163341", 
          "https://doi.org/10.1038/nature08274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11434-006-2223-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037979992", 
          "https://doi.org/10.1007/s11434-006-2223-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017255538", 
          "https://doi.org/10.1038/nature10889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2014.070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026836856", 
          "https://doi.org/10.1038/nprot.2014.070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031438542", 
          "https://doi.org/10.1038/nature05570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001638291", 
          "https://doi.org/10.1038/nmat1022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41586-018-0332-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105584563", 
          "https://doi.org/10.1038/s41586-018-0332-7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-07-03", 
    "datePublishedReg": "2019-07-03", 
    "description": "Soft matter can serve as a template to guide the growth of inorganic components with well-controlled structural features. However, the limited design space of conventional organic and biomolecular templates restricts the complexity and accuracy of templated growth. In past decades, the blossoming of structural DNA nanotechnology has provided us with a large reservoir of delicate-framework nucleic acids with design precision down to a single base. Here, we describe a DNA origami silicification (DOS) approach for generating complex silica composite nanomaterials. By utilizing modified silica sol\u2013gel chemistry, pre-hydrolyzed silica precursor clusters can be uniformly coated onto the surface of DNA frameworks; thus, user-defined DNA\u2013silica hybrid materials with ~3-nm precision can be achieved. More importantly, this method is applicable to various 1D, 2D and 3D DNA frameworks that range from 10 to >1,000 nm. Compared to pure DNA scaffolds, a tenfold increase in the Young\u2019s modulus (E modulus) of these composites was observed, owing to their soft inner core and solid silica shell. We further demonstrate the use of solidified DNA frameworks to create 3D metal plasmonic devices. This protocol provides a platform for synthesizing inorganic materials with unprecedented complexity and tailored structural properties. The whole protocol takes ~10 d to complete.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41596-019-0184-0", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8144716", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8154336", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8146476", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8156736", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1037502", 
        "issn": [
          "1754-2189", 
          "1750-2799"
        ], 
        "name": "Nature Protocols", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "keywords": [
      "DNA framework", 
      "silica sol-gel chemistry", 
      "sol-gel chemistry", 
      "structural DNA nanotechnology", 
      "nucleic acids", 
      "solid silica shell", 
      "biomolecular templates", 
      "hybrid materials", 
      "framework nucleic acids", 
      "composite nanomaterials", 
      "inorganic materials", 
      "silica shell", 
      "DNA nanotechnology", 
      "DNA scaffold", 
      "templated growth", 
      "soft matter", 
      "inorganic components", 
      "precursor clusters", 
      "plasmonic devices", 
      "structural properties", 
      "structural features", 
      "soft inner core", 
      "limited design space", 
      "template", 
      "chemistry", 
      "acid", 
      "nanomaterials", 
      "inner core", 
      "nanotechnology", 
      "single base", 
      "silica", 
      "materials", 
      "whole protocol", 
      "unprecedented complexity", 
      "scaffolds", 
      "protocol", 
      "shell", 
      "surface", 
      "Young's modulus", 
      "properties", 
      "devices", 
      "composites", 
      "tenfold increase", 
      "platform", 
      "modulus", 
      "design space", 
      "core", 
      "past decade", 
      "design precision", 
      "precision", 
      "clusters", 
      "complexity", 
      "growth", 
      "method", 
      "base", 
      "matter", 
      "components", 
      "framework", 
      "large reservoir", 
      "increase", 
      "use", 
      "approach", 
      "decades", 
      "reservoir", 
      "features", 
      "blossoming", 
      "accuracy", 
      "space"
    ], 
    "name": "Solidifying framework nucleic acids with silica", 
    "pagination": "2416-2436", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1117707128"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41596-019-0184-0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "31270509"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41596-019-0184-0", 
      "https://app.dimensions.ai/details/publication/pub.1117707128"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T17:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_813.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41596-019-0184-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41596-019-0184-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41596-019-0184-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41596-019-0184-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41596-019-0184-0'


 

This table displays all metadata directly associated to this object as RDF triples.

273 TRIPLES      21 PREDICATES      110 URIs      90 LITERALS      12 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41596-019-0184-0 schema:about N096dc46d5b27446e889052b2722f9ffc
2 N14bf5fcb11b24f68a2021ec4c6756693
3 N55bb645c2d714ba8a69b6c18cd84fde1
4 N8733e28304e644dab5f4cec9a371ffda
5 N94cac4463309460daa0edfc14e8c0076
6 anzsrc-for:03
7 anzsrc-for:0303
8 anzsrc-for:0306
9 schema:author Na9ed2bf27f2543acbd74795a9363add2
10 schema:citation sg:pub.10.1007/s11434-006-2223-9
11 sg:pub.10.1038/nature04586
12 sg:pub.10.1038/nature05570
13 sg:pub.10.1038/nature08274
14 sg:pub.10.1038/nature10889
15 sg:pub.10.1038/nature24651
16 sg:pub.10.1038/ncomms15654
17 sg:pub.10.1038/nmat1022
18 sg:pub.10.1038/nnano.2009.311
19 sg:pub.10.1038/nprot.2014.070
20 sg:pub.10.1038/s41586-018-0332-7
21 schema:datePublished 2019-07-03
22 schema:datePublishedReg 2019-07-03
23 schema:description Soft matter can serve as a template to guide the growth of inorganic components with well-controlled structural features. However, the limited design space of conventional organic and biomolecular templates restricts the complexity and accuracy of templated growth. In past decades, the blossoming of structural DNA nanotechnology has provided us with a large reservoir of delicate-framework nucleic acids with design precision down to a single base. Here, we describe a DNA origami silicification (DOS) approach for generating complex silica composite nanomaterials. By utilizing modified silica sol–gel chemistry, pre-hydrolyzed silica precursor clusters can be uniformly coated onto the surface of DNA frameworks; thus, user-defined DNA–silica hybrid materials with ~3-nm precision can be achieved. More importantly, this method is applicable to various 1D, 2D and 3D DNA frameworks that range from 10 to >1,000 nm. Compared to pure DNA scaffolds, a tenfold increase in the Young’s modulus (E modulus) of these composites was observed, owing to their soft inner core and solid silica shell. We further demonstrate the use of solidified DNA frameworks to create 3D metal plasmonic devices. This protocol provides a platform for synthesizing inorganic materials with unprecedented complexity and tailored structural properties. The whole protocol takes ~10 d to complete.
24 schema:genre article
25 schema:isAccessibleForFree false
26 schema:isPartOf N12af3e99db26495e80ab8fe647a444d4
27 N430a6dafe35649fcbe259289a934d9c0
28 sg:journal.1037502
29 schema:keywords DNA framework
30 DNA nanotechnology
31 DNA scaffold
32 Young's modulus
33 accuracy
34 acid
35 approach
36 base
37 biomolecular templates
38 blossoming
39 chemistry
40 clusters
41 complexity
42 components
43 composite nanomaterials
44 composites
45 core
46 decades
47 design precision
48 design space
49 devices
50 features
51 framework
52 framework nucleic acids
53 growth
54 hybrid materials
55 increase
56 inner core
57 inorganic components
58 inorganic materials
59 large reservoir
60 limited design space
61 materials
62 matter
63 method
64 modulus
65 nanomaterials
66 nanotechnology
67 nucleic acids
68 past decade
69 plasmonic devices
70 platform
71 precision
72 precursor clusters
73 properties
74 protocol
75 reservoir
76 scaffolds
77 shell
78 silica
79 silica shell
80 silica sol-gel chemistry
81 single base
82 soft inner core
83 soft matter
84 sol-gel chemistry
85 solid silica shell
86 space
87 structural DNA nanotechnology
88 structural features
89 structural properties
90 surface
91 template
92 templated growth
93 tenfold increase
94 unprecedented complexity
95 use
96 whole protocol
97 schema:name Solidifying framework nucleic acids with silica
98 schema:pagination 2416-2436
99 schema:productId N229fd891bb4549a5bd25a53cb397e7a2
100 N6a6c3917f9c24d80ad0e452360c21780
101 Ncf63e88fccc444a2bc809e36a2dbcdb2
102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1117707128
103 https://doi.org/10.1038/s41596-019-0184-0
104 schema:sdDatePublished 2022-08-04T17:06
105 schema:sdLicense https://scigraph.springernature.com/explorer/license/
106 schema:sdPublisher Nad29224c84174bb083e5acaa0dd11778
107 schema:url https://doi.org/10.1038/s41596-019-0184-0
108 sgo:license sg:explorer/license/
109 sgo:sdDataset articles
110 rdf:type schema:ScholarlyArticle
111 N096dc46d5b27446e889052b2722f9ffc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Silicon Dioxide
113 rdf:type schema:DefinedTerm
114 N10d0c6effc5e4228ae19c115de5740fb rdf:first sg:person.0727257441.61
115 rdf:rest N479505d9b62243dc9df129553d2d9e65
116 N12af3e99db26495e80ab8fe647a444d4 schema:issueNumber 8
117 rdf:type schema:PublicationIssue
118 N14bf5fcb11b24f68a2021ec4c6756693 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Nucleic Acids
120 rdf:type schema:DefinedTerm
121 N229fd891bb4549a5bd25a53cb397e7a2 schema:name dimensions_id
122 schema:value pub.1117707128
123 rdf:type schema:PropertyValue
124 N24311bb92efd4df3b39220eea5f16d65 rdf:first sg:person.01227175741.13
125 rdf:rest N647377cf1c284ddbae6833cf5df052b1
126 N3194f503c9d9495a8c3a047bb6ed4305 rdf:first sg:person.014612574121.42
127 rdf:rest Nefb3bf1001804e8c95989d4c79571c64
128 N430a6dafe35649fcbe259289a934d9c0 schema:volumeNumber 14
129 rdf:type schema:PublicationVolume
130 N479505d9b62243dc9df129553d2d9e65 rdf:first sg:person.0764427152.44
131 rdf:rest rdf:nil
132 N55bb645c2d714ba8a69b6c18cd84fde1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Phase Transition
134 rdf:type schema:DefinedTerm
135 N647377cf1c284ddbae6833cf5df052b1 rdf:first sg:person.010175565754.29
136 rdf:rest N3194f503c9d9495a8c3a047bb6ed4305
137 N6a6c3917f9c24d80ad0e452360c21780 schema:name pubmed_id
138 schema:value 31270509
139 rdf:type schema:PropertyValue
140 N6c7314cbe7f34b0ea3e4bf1ea1c39791 rdf:first sg:person.015273400357.25
141 rdf:rest N7f8c03399e824fe88d759c64121c7200
142 N7f8c03399e824fe88d759c64121c7200 rdf:first sg:person.01160306136.68
143 rdf:rest N10d0c6effc5e4228ae19c115de5740fb
144 N8733e28304e644dab5f4cec9a371ffda schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Elastic Modulus
146 rdf:type schema:DefinedTerm
147 N94cac4463309460daa0edfc14e8c0076 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Nanotechnology
149 rdf:type schema:DefinedTerm
150 Na9ed2bf27f2543acbd74795a9363add2 rdf:first sg:person.07400205354.42
151 rdf:rest N24311bb92efd4df3b39220eea5f16d65
152 Nad29224c84174bb083e5acaa0dd11778 schema:name Springer Nature - SN SciGraph project
153 rdf:type schema:Organization
154 Ncf63e88fccc444a2bc809e36a2dbcdb2 schema:name doi
155 schema:value 10.1038/s41596-019-0184-0
156 rdf:type schema:PropertyValue
157 Nefb3bf1001804e8c95989d4c79571c64 rdf:first sg:person.01253443600.29
158 rdf:rest N6c7314cbe7f34b0ea3e4bf1ea1c39791
159 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
160 schema:name Chemical Sciences
161 rdf:type schema:DefinedTerm
162 anzsrc-for:0303 schema:inDefinedTermSet anzsrc-for:
163 schema:name Macromolecular and Materials Chemistry
164 rdf:type schema:DefinedTerm
165 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
166 schema:name Physical Chemistry (incl. Structural)
167 rdf:type schema:DefinedTerm
168 sg:grant.8144716 http://pending.schema.org/fundedItem sg:pub.10.1038/s41596-019-0184-0
169 rdf:type schema:MonetaryGrant
170 sg:grant.8146476 http://pending.schema.org/fundedItem sg:pub.10.1038/s41596-019-0184-0
171 rdf:type schema:MonetaryGrant
172 sg:grant.8154336 http://pending.schema.org/fundedItem sg:pub.10.1038/s41596-019-0184-0
173 rdf:type schema:MonetaryGrant
174 sg:grant.8156736 http://pending.schema.org/fundedItem sg:pub.10.1038/s41596-019-0184-0
175 rdf:type schema:MonetaryGrant
176 sg:journal.1037502 schema:issn 1750-2799
177 1754-2189
178 schema:name Nature Protocols
179 schema:publisher Springer Nature
180 rdf:type schema:Periodical
181 sg:person.010175565754.29 schema:affiliation grid-institutes:None
182 schema:familyName Pan
183 schema:givenName Muchen
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010175565754.29
185 rdf:type schema:Person
186 sg:person.01160306136.68 schema:affiliation grid-institutes:grid.415869.7
187 schema:familyName Liu
188 schema:givenName Xiaoguo
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160306136.68
190 rdf:type schema:Person
191 sg:person.01227175741.13 schema:affiliation grid-institutes:grid.215654.1
192 schema:familyName Zhang
193 schema:givenName Fei
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227175741.13
195 rdf:type schema:Person
196 sg:person.01253443600.29 schema:affiliation grid-institutes:None
197 schema:familyName Li
198 schema:givenName Jiang
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253443600.29
200 rdf:type schema:Person
201 sg:person.014612574121.42 schema:affiliation grid-institutes:None
202 schema:familyName Dai
203 schema:givenName Xinpei
204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014612574121.42
205 rdf:type schema:Person
206 sg:person.015273400357.25 schema:affiliation grid-institutes:grid.22069.3f
207 schema:familyName Wang
208 schema:givenName Lihua
209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015273400357.25
210 rdf:type schema:Person
211 sg:person.0727257441.61 schema:affiliation grid-institutes:grid.215654.1
212 schema:familyName Yan
213 schema:givenName Hao
214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727257441.61
215 rdf:type schema:Person
216 sg:person.07400205354.42 schema:affiliation grid-institutes:grid.415869.7
217 schema:familyName Jing
218 schema:givenName Xinxin
219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07400205354.42
220 rdf:type schema:Person
221 sg:person.0764427152.44 schema:affiliation grid-institutes:grid.415869.7
222 schema:familyName Fan
223 schema:givenName Chunhai
224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764427152.44
225 rdf:type schema:Person
226 sg:pub.10.1007/s11434-006-2223-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037979992
227 https://doi.org/10.1007/s11434-006-2223-9
228 rdf:type schema:CreativeWork
229 sg:pub.10.1038/nature04586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028635122
230 https://doi.org/10.1038/nature04586
231 rdf:type schema:CreativeWork
232 sg:pub.10.1038/nature05570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031438542
233 https://doi.org/10.1038/nature05570
234 rdf:type schema:CreativeWork
235 sg:pub.10.1038/nature08274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013163341
236 https://doi.org/10.1038/nature08274
237 rdf:type schema:CreativeWork
238 sg:pub.10.1038/nature10889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017255538
239 https://doi.org/10.1038/nature10889
240 rdf:type schema:CreativeWork
241 sg:pub.10.1038/nature24651 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099607698
242 https://doi.org/10.1038/nature24651
243 rdf:type schema:CreativeWork
244 sg:pub.10.1038/ncomms15654 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085724734
245 https://doi.org/10.1038/ncomms15654
246 rdf:type schema:CreativeWork
247 sg:pub.10.1038/nmat1022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001638291
248 https://doi.org/10.1038/nmat1022
249 rdf:type schema:CreativeWork
250 sg:pub.10.1038/nnano.2009.311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033021176
251 https://doi.org/10.1038/nnano.2009.311
252 rdf:type schema:CreativeWork
253 sg:pub.10.1038/nprot.2014.070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026836856
254 https://doi.org/10.1038/nprot.2014.070
255 rdf:type schema:CreativeWork
256 sg:pub.10.1038/s41586-018-0332-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105584563
257 https://doi.org/10.1038/s41586-018-0332-7
258 rdf:type schema:CreativeWork
259 grid-institutes:None schema:alternateName Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
260 schema:name Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
261 rdf:type schema:Organization
262 grid-institutes:grid.215654.1 schema:alternateName School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
263 schema:name Center for Molecular Design and Biomimetics, Biodesign Institute, Tempe, AZ, USA
264 School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
265 rdf:type schema:Organization
266 grid-institutes:grid.22069.3f schema:alternateName Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
267 schema:name Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
268 Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
269 rdf:type schema:Organization
270 grid-institutes:grid.415869.7 schema:alternateName School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
271 schema:name Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
272 School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
273 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...