Structure-guided covalent stabilization of coronavirus spike glycoprotein trimers in the closed conformation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-08-04

AUTHORS

Matthew McCallum, Alexandra C. Walls, John E. Bowen, Davide Corti, David Veesler

ABSTRACT

SARS-CoV-2 is the causative agent of the COVID-19 pandemic, with 10 million infections and more than 500,000 fatalities by June 2020. To initiate infection, the SARS-CoV-2 spike (S) glycoprotein promotes attachment to the host cell surface and fusion of the viral and host membranes. Prefusion SARS-CoV-2 S is the main target of neutralizing antibodies and the focus of vaccine design. However, its limited stability and conformational dynamics are limiting factors for developing countermeasures against this virus. We report here the design of a construct corresponding to the prefusion SARS-CoV-2 S ectodomain trimer, covalently stabilized by a disulfide bond in the closed conformation. Structural and antigenicity analyses show we successfully shut S in the closed state without otherwise altering its architecture. We demonstrate that this strategy is applicable to other β-coronaviruses, such as SARS-CoV and MERS-CoV, and might become an important tool for structural biology, serology, vaccine design and immunology studies. More... »

PAGES

942-949

References to SciGraph publications

  • 2019-09-30. An antibody against the F glycoprotein inhibits Nipah and Hendra virus infections in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 2019-10-07. Real-time cryo-electron microscopy data preprocessing with Warp in NATURE METHODS
  • 2015-08-17. EMRinger: side chain–directed model and map validation for 3D cryo-electron microscopy in NATURE METHODS
  • 2008-07-03. Viral membrane fusion in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 2014-10-08. Structure and immune recognition of trimeric pre-fusion HIV-1 Env in NATURE
  • 2003-11. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus in NATURE
  • 2020-02-03. A pneumonia outbreak associated with a new coronavirus of probable bat origin in NATURE
  • 2017-04-10. Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains in NATURE COMMUNICATIONS
  • 2013-07-07. Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 in NATURE
  • 2020-03-30. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor in NATURE
  • 2020-02-24. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses in NATURE MICROBIOLOGY
  • 2019-12-02. Structures of MERS-CoV spike glycoprotein in complex with sialoside attachment receptors in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 2020-05-18. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody in NATURE
  • 2015-02-23. Atomic-accuracy models from 4.5-Å cryo-electron microscopy data with density-guided iterative local refinement in NATURE METHODS
  • 2012-07-29. Prevention of overfitting in cryo-EM structure determination in NATURE METHODS
  • 1994-09. Structure of influenza haemagglutinin at the pH of membrane fusion in NATURE
  • 2017-02-06. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination in NATURE METHODS
  • 2013-03-13. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC in NATURE
  • 2016-12-23. Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding in CELL RESEARCH
  • 2016-02-08. Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer in NATURE
  • 2016-03-02. Pre-fusion structure of a human coronavirus spike protein in NATURE
  • 2018-10-24. Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis in SCIENTIFIC REPORTS
  • 2013-12-01. Disulfide by Design 2.0: a web-based tool for disulfide engineering in proteins in BMC BIOINFORMATICS
  • 2019-06-03. Structural basis for human coronavirus attachment to sialic acid receptors in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 2020-03-30. Structural basis of receptor recognition by SARS-CoV-2 in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41594-020-0483-8

    DOI

    http://dx.doi.org/10.1038/s41594-020-0483-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1129849939

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/32753755


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1108", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Antibodies, Monoclonal", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Antibodies, Neutralizing", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Betacoronavirus", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cryoelectron Microscopy", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Disulfides", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Electrophoresis, Polyacrylamide Gel", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Enzyme-Linked Immunosorbent Assay", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Molecular", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mutation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Protein Conformation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Protein Domains", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Protein Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Protein Multimerization", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Protein Stability", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "SARS-CoV-2", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Spike Glycoprotein, Coronavirus", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Biochemistry, University of Washington, Seattle, WA, USA", 
              "id": "http://www.grid.ac/institutes/grid.34477.33", 
              "name": [
                "Department of Biochemistry, University of Washington, Seattle, WA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "McCallum", 
            "givenName": "Matthew", 
            "id": "sg:person.013301577247.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013301577247.86"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biochemistry, University of Washington, Seattle, WA, USA", 
              "id": "http://www.grid.ac/institutes/grid.34477.33", 
              "name": [
                "Department of Biochemistry, University of Washington, Seattle, WA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Walls", 
            "givenName": "Alexandra C.", 
            "id": "sg:person.0600455253.59", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600455253.59"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biochemistry, University of Washington, Seattle, WA, USA", 
              "id": "http://www.grid.ac/institutes/grid.34477.33", 
              "name": [
                "Department of Biochemistry, University of Washington, Seattle, WA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bowen", 
            "givenName": "John E.", 
            "id": "sg:person.010217024773.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010217024773.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Humabs Biomed SA, a Subsidiary of Vir Biotechnology, Bellinzona, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.498378.9", 
              "name": [
                "Humabs Biomed SA, a Subsidiary of Vir Biotechnology, Bellinzona, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Corti", 
            "givenName": "Davide", 
            "id": "sg:person.01340264536.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340264536.63"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biochemistry, University of Washington, Seattle, WA, USA", 
              "id": "http://www.grid.ac/institutes/grid.34477.33", 
              "name": [
                "Department of Biochemistry, University of Washington, Seattle, WA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Veesler", 
            "givenName": "David", 
            "id": "sg:person.01002414777.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002414777.95"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nmeth.4169", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083686092", 
              "https://doi.org/10.1038/nmeth.4169"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050516195", 
              "https://doi.org/10.1038/nature12005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-020-2349-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1127684942", 
              "https://doi.org/10.1038/s41586-020-2349-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-14-346", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016546117", 
              "https://doi.org/10.1186/1471-2105-14-346"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/cr.2016.152", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016221800", 
              "https://doi.org/10.1038/cr.2016.152"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-020-2180-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1125975734", 
              "https://doi.org/10.1038/s41586-020-2180-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41594-019-0334-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1123050653", 
              "https://doi.org/10.1038/s41594-019-0334-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature13808", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051961963", 
              "https://doi.org/10.1038/nature13808"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41592-019-0580-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1121550754", 
              "https://doi.org/10.1038/s41592-019-0580-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.3541", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004871597", 
              "https://doi.org/10.1038/nmeth.3541"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsmb.1456", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026188926", 
              "https://doi.org/10.1038/nsmb.1456"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2115", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041024070", 
              "https://doi.org/10.1038/nmeth.2115"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-020-2179-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1125975630", 
              "https://doi.org/10.1038/s41586-020-2179-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-018-34171-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107713260", 
              "https://doi.org/10.1038/s41598-018-34171-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature16988", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050236601", 
              "https://doi.org/10.1038/nature16988"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02145", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040468747", 
              "https://doi.org/10.1038/nature02145"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature17200", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014536983", 
              "https://doi.org/10.1038/nature17200"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41594-019-0233-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1116577957", 
              "https://doi.org/10.1038/s41594-019-0233-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/371037a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046282624", 
              "https://doi.org/10.1038/371037a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41594-019-0308-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1121383201", 
              "https://doi.org/10.1038/s41594-019-0308-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.3286", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015110469", 
              "https://doi.org/10.1038/nmeth.3286"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-020-2012-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124545162", 
              "https://doi.org/10.1038/s41586-020-2012-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41564-020-0688-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1125089278", 
              "https://doi.org/10.1038/s41564-020-0688-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12328", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051316131", 
              "https://doi.org/10.1038/nature12328"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms15092", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084767975", 
              "https://doi.org/10.1038/ncomms15092"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2020-08-04", 
        "datePublishedReg": "2020-08-04", 
        "description": "SARS-CoV-2 is the causative agent of the COVID-19 pandemic, with 10\u2009million infections and more than 500,000 fatalities by June 2020. To initiate infection, the SARS-CoV-2 spike (S) glycoprotein promotes attachment to the host cell surface and fusion of the viral and host membranes. Prefusion SARS-CoV-2 S is the main target of neutralizing antibodies and the focus of vaccine design. However, its limited stability and conformational dynamics are limiting factors for developing countermeasures against this virus. We report here the design of a construct corresponding to the prefusion SARS-CoV-2 S ectodomain trimer, covalently stabilized by a disulfide bond in the closed conformation. Structural and antigenicity analyses show we successfully shut S in the closed state without otherwise altering its architecture. We demonstrate that this strategy is applicable to other \u03b2-coronaviruses, such as SARS-CoV and MERS-CoV, and might become an important tool for structural biology, serology, vaccine design and immunology studies.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41594-020-0483-8", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.5503638", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6803473", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6582256", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7169995", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1295033", 
            "issn": [
              "1545-9993", 
              "2331-365X"
            ], 
            "name": "Nature Structural & Molecular Biology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "10", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "27"
          }
        ], 
        "keywords": [
          "SARS-CoV-2 S", 
          "vaccine design", 
          "SARS-CoV-2 spike glycoprotein", 
          "SARS-CoV-2", 
          "MERS-CoV", 
          "\u03b2-coronavirus", 
          "SARS-CoV", 
          "glycoprotein trimer", 
          "immunology studies", 
          "spike glycoprotein", 
          "causative agent", 
          "host cell surface", 
          "COVID-19 pandemic", 
          "antigenicity analysis", 
          "infection", 
          "cell surface", 
          "serology", 
          "main target", 
          "antibodies", 
          "viral", 
          "virus", 
          "coronavirus", 
          "fatalities", 
          "host membrane", 
          "pandemic", 
          "glycoprotein", 
          "agents", 
          "important tool", 
          "target", 
          "factors", 
          "study", 
          "membrane", 
          "closed state", 
          "fusion", 
          "strategies", 
          "biology", 
          "analysis", 
          "attachment", 
          "focus", 
          "constructs", 
          "stabilization", 
          "tool", 
          "design", 
          "disulfide bonds", 
          "limited stability", 
          "countermeasures", 
          "state", 
          "trimer", 
          "closed conformation", 
          "structural biology", 
          "surface", 
          "conformation", 
          "stability", 
          "covalent stabilization", 
          "dynamics", 
          "architecture", 
          "bonds", 
          "conformational dynamics"
        ], 
        "name": "Structure-guided covalent stabilization of coronavirus spike glycoprotein trimers in the closed conformation", 
        "pagination": "942-949", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1129849939"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41594-020-0483-8"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "32753755"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41594-020-0483-8", 
          "https://app.dimensions.ai/details/publication/pub.1129849939"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-06-01T22:23", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_851.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41594-020-0483-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41594-020-0483-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41594-020-0483-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41594-020-0483-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41594-020-0483-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    327 TRIPLES      22 PREDICATES      126 URIs      93 LITERALS      24 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41594-020-0483-8 schema:about N0e633480d9b44b5c8273371690184bd0
    2 N1064e63b501c438d95cabfb33ec8b0fe
    3 N124acad0c471485b9f988f461eb28863
    4 N1978c4b3c3e64a9ca58f38335be5e7a4
    5 N1f7c87fdb4e442ad8df3a887b1395e40
    6 N282eadb13fd34d1a908db637e339428f
    7 N39fda65d481e433aad887ab4c990086c
    8 N4202115a0ef94f36890b2495f155828f
    9 N4d6f4c898a4343ebb920676aeb7c5084
    10 N5a9480989ed44a8388dbca3d4d98c48f
    11 N6c546e9c360e4aa2b715969d22894168
    12 N855206037c4d49ca98aa88379e270acd
    13 Na175b5da04a44dc493eb5a08325d022d
    14 Nb78b6cf4727e4c80af8a3f6ed9a634c1
    15 Nc9b9a346bdbd4080a2f82476ca7df452
    16 Nddeaa8ceb83a472086f594b3e64890d0
    17 Nf9ed96aa07054d5883cddf147142d486
    18 anzsrc-for:11
    19 anzsrc-for:1108
    20 schema:author N49e6fed4eb714faea7e7b301387ca2f4
    21 schema:citation sg:pub.10.1038/371037a0
    22 sg:pub.10.1038/cr.2016.152
    23 sg:pub.10.1038/nature02145
    24 sg:pub.10.1038/nature12005
    25 sg:pub.10.1038/nature12328
    26 sg:pub.10.1038/nature13808
    27 sg:pub.10.1038/nature16988
    28 sg:pub.10.1038/nature17200
    29 sg:pub.10.1038/ncomms15092
    30 sg:pub.10.1038/nmeth.2115
    31 sg:pub.10.1038/nmeth.3286
    32 sg:pub.10.1038/nmeth.3541
    33 sg:pub.10.1038/nmeth.4169
    34 sg:pub.10.1038/nsmb.1456
    35 sg:pub.10.1038/s41564-020-0688-y
    36 sg:pub.10.1038/s41586-020-2012-7
    37 sg:pub.10.1038/s41586-020-2179-y
    38 sg:pub.10.1038/s41586-020-2180-5
    39 sg:pub.10.1038/s41586-020-2349-y
    40 sg:pub.10.1038/s41592-019-0580-y
    41 sg:pub.10.1038/s41594-019-0233-y
    42 sg:pub.10.1038/s41594-019-0308-9
    43 sg:pub.10.1038/s41594-019-0334-7
    44 sg:pub.10.1038/s41598-018-34171-7
    45 sg:pub.10.1186/1471-2105-14-346
    46 schema:datePublished 2020-08-04
    47 schema:datePublishedReg 2020-08-04
    48 schema:description SARS-CoV-2 is the causative agent of the COVID-19 pandemic, with 10 million infections and more than 500,000 fatalities by June 2020. To initiate infection, the SARS-CoV-2 spike (S) glycoprotein promotes attachment to the host cell surface and fusion of the viral and host membranes. Prefusion SARS-CoV-2 S is the main target of neutralizing antibodies and the focus of vaccine design. However, its limited stability and conformational dynamics are limiting factors for developing countermeasures against this virus. We report here the design of a construct corresponding to the prefusion SARS-CoV-2 S ectodomain trimer, covalently stabilized by a disulfide bond in the closed conformation. Structural and antigenicity analyses show we successfully shut S in the closed state without otherwise altering its architecture. We demonstrate that this strategy is applicable to other β-coronaviruses, such as SARS-CoV and MERS-CoV, and might become an important tool for structural biology, serology, vaccine design and immunology studies.
    49 schema:genre article
    50 schema:inLanguage en
    51 schema:isAccessibleForFree true
    52 schema:isPartOf Na3c1bce9e9a645c0b26185a999d04882
    53 Nee546fd4b1dd4d688540aaf37ad993a6
    54 sg:journal.1295033
    55 schema:keywords COVID-19 pandemic
    56 MERS-CoV
    57 SARS-CoV
    58 SARS-CoV-2
    59 SARS-CoV-2 S
    60 SARS-CoV-2 spike glycoprotein
    61 agents
    62 analysis
    63 antibodies
    64 antigenicity analysis
    65 architecture
    66 attachment
    67 biology
    68 bonds
    69 causative agent
    70 cell surface
    71 closed conformation
    72 closed state
    73 conformation
    74 conformational dynamics
    75 constructs
    76 coronavirus
    77 countermeasures
    78 covalent stabilization
    79 design
    80 disulfide bonds
    81 dynamics
    82 factors
    83 fatalities
    84 focus
    85 fusion
    86 glycoprotein
    87 glycoprotein trimer
    88 host cell surface
    89 host membrane
    90 immunology studies
    91 important tool
    92 infection
    93 limited stability
    94 main target
    95 membrane
    96 pandemic
    97 serology
    98 spike glycoprotein
    99 stability
    100 stabilization
    101 state
    102 strategies
    103 structural biology
    104 study
    105 surface
    106 target
    107 tool
    108 trimer
    109 vaccine design
    110 viral
    111 virus
    112 β-coronavirus
    113 schema:name Structure-guided covalent stabilization of coronavirus spike glycoprotein trimers in the closed conformation
    114 schema:pagination 942-949
    115 schema:productId N1771d210231a46a8a5604a9e4604c7a3
    116 N3a51dda0d30541669bde6b716c574522
    117 N6838f6944e484733827b4094845f3fe5
    118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1129849939
    119 https://doi.org/10.1038/s41594-020-0483-8
    120 schema:sdDatePublished 2022-06-01T22:23
    121 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    122 schema:sdPublisher N41b97a13cc4d46bdb7332b45fb0049c8
    123 schema:url https://doi.org/10.1038/s41594-020-0483-8
    124 sgo:license sg:explorer/license/
    125 sgo:sdDataset articles
    126 rdf:type schema:ScholarlyArticle
    127 N0e633480d9b44b5c8273371690184bd0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    128 schema:name SARS-CoV-2
    129 rdf:type schema:DefinedTerm
    130 N1064e63b501c438d95cabfb33ec8b0fe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Disulfides
    132 rdf:type schema:DefinedTerm
    133 N124acad0c471485b9f988f461eb28863 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Cryoelectron Microscopy
    135 rdf:type schema:DefinedTerm
    136 N1771d210231a46a8a5604a9e4604c7a3 schema:name pubmed_id
    137 schema:value 32753755
    138 rdf:type schema:PropertyValue
    139 N1978c4b3c3e64a9ca58f38335be5e7a4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    140 schema:name Antibodies, Neutralizing
    141 rdf:type schema:DefinedTerm
    142 N1f7c87fdb4e442ad8df3a887b1395e40 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    143 schema:name Protein Multimerization
    144 rdf:type schema:DefinedTerm
    145 N282eadb13fd34d1a908db637e339428f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    146 schema:name Betacoronavirus
    147 rdf:type schema:DefinedTerm
    148 N39fda65d481e433aad887ab4c990086c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    149 schema:name Spike Glycoprotein, Coronavirus
    150 rdf:type schema:DefinedTerm
    151 N3a51dda0d30541669bde6b716c574522 schema:name dimensions_id
    152 schema:value pub.1129849939
    153 rdf:type schema:PropertyValue
    154 N3aaa553c68e445e7a90495b9d03bc958 rdf:first sg:person.01340264536.63
    155 rdf:rest Ne54db08689f54a4b892248dcab762140
    156 N41b97a13cc4d46bdb7332b45fb0049c8 schema:name Springer Nature - SN SciGraph project
    157 rdf:type schema:Organization
    158 N4202115a0ef94f36890b2495f155828f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    159 schema:name Enzyme-Linked Immunosorbent Assay
    160 rdf:type schema:DefinedTerm
    161 N49e6fed4eb714faea7e7b301387ca2f4 rdf:first sg:person.013301577247.86
    162 rdf:rest N5ea4a8f65f9b444998e0bb2e081657cc
    163 N4d6f4c898a4343ebb920676aeb7c5084 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    164 schema:name Mutation
    165 rdf:type schema:DefinedTerm
    166 N5a9480989ed44a8388dbca3d4d98c48f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    167 schema:name Models, Molecular
    168 rdf:type schema:DefinedTerm
    169 N5ea4a8f65f9b444998e0bb2e081657cc rdf:first sg:person.0600455253.59
    170 rdf:rest Na30ebc9ad4ce4cac98b08ae976caff73
    171 N6838f6944e484733827b4094845f3fe5 schema:name doi
    172 schema:value 10.1038/s41594-020-0483-8
    173 rdf:type schema:PropertyValue
    174 N6c546e9c360e4aa2b715969d22894168 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    175 schema:name Antibodies, Monoclonal
    176 rdf:type schema:DefinedTerm
    177 N855206037c4d49ca98aa88379e270acd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    178 schema:name Protein Domains
    179 rdf:type schema:DefinedTerm
    180 Na175b5da04a44dc493eb5a08325d022d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    181 schema:name Humans
    182 rdf:type schema:DefinedTerm
    183 Na30ebc9ad4ce4cac98b08ae976caff73 rdf:first sg:person.010217024773.08
    184 rdf:rest N3aaa553c68e445e7a90495b9d03bc958
    185 Na3c1bce9e9a645c0b26185a999d04882 schema:issueNumber 10
    186 rdf:type schema:PublicationIssue
    187 Nb78b6cf4727e4c80af8a3f6ed9a634c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    188 schema:name Protein Engineering
    189 rdf:type schema:DefinedTerm
    190 Nc9b9a346bdbd4080a2f82476ca7df452 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    191 schema:name Electrophoresis, Polyacrylamide Gel
    192 rdf:type schema:DefinedTerm
    193 Nddeaa8ceb83a472086f594b3e64890d0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    194 schema:name Protein Conformation
    195 rdf:type schema:DefinedTerm
    196 Ne54db08689f54a4b892248dcab762140 rdf:first sg:person.01002414777.95
    197 rdf:rest rdf:nil
    198 Nee546fd4b1dd4d688540aaf37ad993a6 schema:volumeNumber 27
    199 rdf:type schema:PublicationVolume
    200 Nf9ed96aa07054d5883cddf147142d486 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    201 schema:name Protein Stability
    202 rdf:type schema:DefinedTerm
    203 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    204 schema:name Medical and Health Sciences
    205 rdf:type schema:DefinedTerm
    206 anzsrc-for:1108 schema:inDefinedTermSet anzsrc-for:
    207 schema:name Medical Microbiology
    208 rdf:type schema:DefinedTerm
    209 sg:grant.5503638 http://pending.schema.org/fundedItem sg:pub.10.1038/s41594-020-0483-8
    210 rdf:type schema:MonetaryGrant
    211 sg:grant.6582256 http://pending.schema.org/fundedItem sg:pub.10.1038/s41594-020-0483-8
    212 rdf:type schema:MonetaryGrant
    213 sg:grant.6803473 http://pending.schema.org/fundedItem sg:pub.10.1038/s41594-020-0483-8
    214 rdf:type schema:MonetaryGrant
    215 sg:grant.7169995 http://pending.schema.org/fundedItem sg:pub.10.1038/s41594-020-0483-8
    216 rdf:type schema:MonetaryGrant
    217 sg:journal.1295033 schema:issn 1545-9993
    218 2331-365X
    219 schema:name Nature Structural & Molecular Biology
    220 schema:publisher Springer Nature
    221 rdf:type schema:Periodical
    222 sg:person.01002414777.95 schema:affiliation grid-institutes:grid.34477.33
    223 schema:familyName Veesler
    224 schema:givenName David
    225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002414777.95
    226 rdf:type schema:Person
    227 sg:person.010217024773.08 schema:affiliation grid-institutes:grid.34477.33
    228 schema:familyName Bowen
    229 schema:givenName John E.
    230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010217024773.08
    231 rdf:type schema:Person
    232 sg:person.013301577247.86 schema:affiliation grid-institutes:grid.34477.33
    233 schema:familyName McCallum
    234 schema:givenName Matthew
    235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013301577247.86
    236 rdf:type schema:Person
    237 sg:person.01340264536.63 schema:affiliation grid-institutes:grid.498378.9
    238 schema:familyName Corti
    239 schema:givenName Davide
    240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340264536.63
    241 rdf:type schema:Person
    242 sg:person.0600455253.59 schema:affiliation grid-institutes:grid.34477.33
    243 schema:familyName Walls
    244 schema:givenName Alexandra C.
    245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600455253.59
    246 rdf:type schema:Person
    247 sg:pub.10.1038/371037a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046282624
    248 https://doi.org/10.1038/371037a0
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1038/cr.2016.152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016221800
    251 https://doi.org/10.1038/cr.2016.152
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1038/nature02145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040468747
    254 https://doi.org/10.1038/nature02145
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1038/nature12005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050516195
    257 https://doi.org/10.1038/nature12005
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1038/nature12328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051316131
    260 https://doi.org/10.1038/nature12328
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1038/nature13808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051961963
    263 https://doi.org/10.1038/nature13808
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1038/nature16988 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050236601
    266 https://doi.org/10.1038/nature16988
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1038/nature17200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014536983
    269 https://doi.org/10.1038/nature17200
    270 rdf:type schema:CreativeWork
    271 sg:pub.10.1038/ncomms15092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084767975
    272 https://doi.org/10.1038/ncomms15092
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1038/nmeth.2115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041024070
    275 https://doi.org/10.1038/nmeth.2115
    276 rdf:type schema:CreativeWork
    277 sg:pub.10.1038/nmeth.3286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015110469
    278 https://doi.org/10.1038/nmeth.3286
    279 rdf:type schema:CreativeWork
    280 sg:pub.10.1038/nmeth.3541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004871597
    281 https://doi.org/10.1038/nmeth.3541
    282 rdf:type schema:CreativeWork
    283 sg:pub.10.1038/nmeth.4169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083686092
    284 https://doi.org/10.1038/nmeth.4169
    285 rdf:type schema:CreativeWork
    286 sg:pub.10.1038/nsmb.1456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026188926
    287 https://doi.org/10.1038/nsmb.1456
    288 rdf:type schema:CreativeWork
    289 sg:pub.10.1038/s41564-020-0688-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1125089278
    290 https://doi.org/10.1038/s41564-020-0688-y
    291 rdf:type schema:CreativeWork
    292 sg:pub.10.1038/s41586-020-2012-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124545162
    293 https://doi.org/10.1038/s41586-020-2012-7
    294 rdf:type schema:CreativeWork
    295 sg:pub.10.1038/s41586-020-2179-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1125975630
    296 https://doi.org/10.1038/s41586-020-2179-y
    297 rdf:type schema:CreativeWork
    298 sg:pub.10.1038/s41586-020-2180-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125975734
    299 https://doi.org/10.1038/s41586-020-2180-5
    300 rdf:type schema:CreativeWork
    301 sg:pub.10.1038/s41586-020-2349-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1127684942
    302 https://doi.org/10.1038/s41586-020-2349-y
    303 rdf:type schema:CreativeWork
    304 sg:pub.10.1038/s41592-019-0580-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1121550754
    305 https://doi.org/10.1038/s41592-019-0580-y
    306 rdf:type schema:CreativeWork
    307 sg:pub.10.1038/s41594-019-0233-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1116577957
    308 https://doi.org/10.1038/s41594-019-0233-y
    309 rdf:type schema:CreativeWork
    310 sg:pub.10.1038/s41594-019-0308-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1121383201
    311 https://doi.org/10.1038/s41594-019-0308-9
    312 rdf:type schema:CreativeWork
    313 sg:pub.10.1038/s41594-019-0334-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123050653
    314 https://doi.org/10.1038/s41594-019-0334-7
    315 rdf:type schema:CreativeWork
    316 sg:pub.10.1038/s41598-018-34171-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107713260
    317 https://doi.org/10.1038/s41598-018-34171-7
    318 rdf:type schema:CreativeWork
    319 sg:pub.10.1186/1471-2105-14-346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016546117
    320 https://doi.org/10.1186/1471-2105-14-346
    321 rdf:type schema:CreativeWork
    322 grid-institutes:grid.34477.33 schema:alternateName Department of Biochemistry, University of Washington, Seattle, WA, USA
    323 schema:name Department of Biochemistry, University of Washington, Seattle, WA, USA
    324 rdf:type schema:Organization
    325 grid-institutes:grid.498378.9 schema:alternateName Humabs Biomed SA, a Subsidiary of Vir Biotechnology, Bellinzona, Switzerland
    326 schema:name Humabs Biomed SA, a Subsidiary of Vir Biotechnology, Bellinzona, Switzerland
    327 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...