Ontology type: schema:ScholarlyArticle Open Access: True
2019-10-07
AUTHORSDimitry Tegunov, Patrick Cramer
ABSTRACTThe acquisition of cryo-electron microscopy (cryo-EM) data from biological specimens must be tightly coupled to data preprocessing to ensure the best data quality and microscope usage. Here we describe Warp, a software that automates all preprocessing steps of cryo-EM data acquisition and enables real-time evaluation. Warp corrects micrographs for global and local motion, estimates the local defocus and monitors key parameters for each recorded micrograph or tomographic tilt series in real time. The software further includes deep-learning-based models for accurate particle picking and image denoising. The output from Warp can be fed into established programs for particle classification and 3D-map refinement. Our benchmarks show improvement in the nominal resolution, which went from 3.9 Å to 3.2 Å, of a published cryo-EM data set for influenza virus hemagglutinin. Warp is easy to install from http://github.com/cramerlab/warp and computationally inexpensive, and has an intuitive, streamlined user interface. More... »
PAGES1146-1152
http://scigraph.springernature.com/pub.10.1038/s41592-019-0580-y
DOIhttp://dx.doi.org/10.1038/s41592-019-0580-y
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1121550754
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/31591575
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biological Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Technology",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Medical and Health Sciences",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Benchmarking",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Cryoelectron Microscopy",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Deep Learning",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Image Processing, Computer-Assisted",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Software",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, G\u00f6ttingen, Germany",
"id": "http://www.grid.ac/institutes/grid.418140.8",
"name": [
"Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, G\u00f6ttingen, Germany"
],
"type": "Organization"
},
"familyName": "Tegunov",
"givenName": "Dimitry",
"id": "sg:person.07417541233.11",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07417541233.11"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, G\u00f6ttingen, Germany",
"id": "http://www.grid.ac/institutes/grid.418140.8",
"name": [
"Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, G\u00f6ttingen, Germany"
],
"type": "Organization"
},
"familyName": "Cramer",
"givenName": "Patrick",
"id": "sg:person.01045113153.17",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01045113153.17"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1038/nmeth.4347",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1090326400",
"https://doi.org/10.1038/nmeth.4347"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41467-018-06577-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1107363261",
"https://doi.org/10.1038/s41467-018-06577-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s42003-019-0437-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1117344346",
"https://doi.org/10.1038/s42003-019-0437-z"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nmeth.3806",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037497523",
"https://doi.org/10.1038/nmeth.3806"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/1472-6807-9-18",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002721912",
"https://doi.org/10.1186/1472-6807-9-18"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nprot.2016.124",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009346635",
"https://doi.org/10.1038/nprot.2016.124"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nmeth.4193",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1084129286",
"https://doi.org/10.1038/nmeth.4193"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-24574-4_28",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017774818",
"https://doi.org/10.1007/978-3-319-24574-4_28"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nmeth.2472",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050203089",
"https://doi.org/10.1038/nmeth.2472"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nmeth.4169",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1083686092",
"https://doi.org/10.1038/nmeth.4169"
],
"type": "CreativeWork"
}
],
"datePublished": "2019-10-07",
"datePublishedReg": "2019-10-07",
"description": "The acquisition of cryo-electron microscopy (cryo-EM) data from biological specimens must be tightly coupled to data preprocessing to ensure the best data quality and microscope usage. Here we describe Warp, a software that automates all preprocessing steps of cryo-EM data acquisition and enables real-time evaluation. Warp corrects micrographs for global and local motion, estimates the local defocus and monitors key parameters for each recorded micrograph or tomographic tilt series in real time. The software further includes deep-learning-based models for accurate particle picking and image denoising. The output from Warp can be fed into established programs for particle classification and 3D-map refinement. Our benchmarks show improvement in the nominal resolution, which went from 3.9\u2009\u00c5 to 3.2\u2009\u00c5, of a published cryo-EM data set for influenza virus hemagglutinin. Warp is easy to install from http://github.com/cramerlab/warp and computationally inexpensive, and has an intuitive, streamlined user interface.",
"genre": "article",
"id": "sg:pub.10.1038/s41592-019-0580-y",
"inLanguage": "en",
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.5493708",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1033763",
"issn": [
"1548-7091",
"1548-7105"
],
"name": "Nature Methods",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "11",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "16"
}
],
"keywords": [
"cryo-EM data acquisition",
"cryo-electron microscopy data",
"user interface",
"particle picking",
"local defocus",
"image denoising",
"good data quality",
"real time",
"real-time evaluation",
"data acquisition",
"data quality",
"software",
"tomographic tilt series",
"cryo-EM data",
"microscopy data",
"warp",
"particle classification",
"tilt series",
"local motion",
"denoising",
"benchmarks",
"classification",
"acquisition",
"usage",
"data",
"picking",
"interface",
"output",
"defocus",
"quality",
"step",
"model",
"refinement",
"key parameters",
"evaluation",
"improvement",
"motion",
"time",
"program",
"biological specimens",
"resolution",
"parameters",
"series",
"nominal resolution",
"micrographs",
"influenza virus hemagglutinin",
"specimens",
"virus hemagglutinin",
"hemagglutinin"
],
"name": "Real-time cryo-electron microscopy data preprocessing with Warp",
"pagination": "1146-1152",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1121550754"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1038/s41592-019-0580-y"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"31591575"
]
}
],
"sameAs": [
"https://doi.org/10.1038/s41592-019-0580-y",
"https://app.dimensions.ai/details/publication/pub.1121550754"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:35",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_793.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1038/s41592-019-0580-y"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41592-019-0580-y'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41592-019-0580-y'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41592-019-0580-y'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41592-019-0580-y'
This table displays all metadata directly associated to this object as RDF triples.
184 TRIPLES
22 PREDICATES
91 URIs
72 LITERALS
12 BLANK NODES