Real-time cryo-electron microscopy data preprocessing with Warp View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-10-07

AUTHORS

Dimitry Tegunov, Patrick Cramer

ABSTRACT

The acquisition of cryo-electron microscopy (cryo-EM) data from biological specimens must be tightly coupled to data preprocessing to ensure the best data quality and microscope usage. Here we describe Warp, a software that automates all preprocessing steps of cryo-EM data acquisition and enables real-time evaluation. Warp corrects micrographs for global and local motion, estimates the local defocus and monitors key parameters for each recorded micrograph or tomographic tilt series in real time. The software further includes deep-learning-based models for accurate particle picking and image denoising. The output from Warp can be fed into established programs for particle classification and 3D-map refinement. Our benchmarks show improvement in the nominal resolution, which went from 3.9 Å to 3.2 Å, of a published cryo-EM data set for influenza virus hemagglutinin. Warp is easy to install from http://github.com/cramerlab/warp and computationally inexpensive, and has an intuitive, streamlined user interface. More... »

PAGES

1146-1152

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41592-019-0580-y

DOI

http://dx.doi.org/10.1038/s41592-019-0580-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1121550754

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/31591575


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Benchmarking", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cryoelectron Microscopy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Deep Learning", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, G\u00f6ttingen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.418140.8", 
          "name": [
            "Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, G\u00f6ttingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tegunov", 
        "givenName": "Dimitry", 
        "id": "sg:person.07417541233.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07417541233.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, G\u00f6ttingen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.418140.8", 
          "name": [
            "Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, G\u00f6ttingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cramer", 
        "givenName": "Patrick", 
        "id": "sg:person.01045113153.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01045113153.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmeth.4347", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090326400", 
          "https://doi.org/10.1038/nmeth.4347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-018-06577-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107363261", 
          "https://doi.org/10.1038/s41467-018-06577-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s42003-019-0437-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1117344346", 
          "https://doi.org/10.1038/s42003-019-0437-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.3806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037497523", 
          "https://doi.org/10.1038/nmeth.3806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1472-6807-9-18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002721912", 
          "https://doi.org/10.1186/1472-6807-9-18"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2016.124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009346635", 
          "https://doi.org/10.1038/nprot.2016.124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.4193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084129286", 
          "https://doi.org/10.1038/nmeth.4193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-24574-4_28", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017774818", 
          "https://doi.org/10.1007/978-3-319-24574-4_28"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.2472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050203089", 
          "https://doi.org/10.1038/nmeth.2472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.4169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083686092", 
          "https://doi.org/10.1038/nmeth.4169"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-10-07", 
    "datePublishedReg": "2019-10-07", 
    "description": "The acquisition of cryo-electron microscopy (cryo-EM) data from biological specimens must be tightly coupled to data preprocessing to ensure the best data quality and microscope usage. Here we describe Warp, a software that automates all preprocessing steps of cryo-EM data acquisition and enables real-time evaluation. Warp corrects micrographs for global and local motion, estimates the local defocus and monitors key parameters for each recorded micrograph or tomographic tilt series in real time. The software further includes deep-learning-based models for accurate particle picking and image denoising. The output from Warp can be fed into established programs for particle classification and 3D-map refinement. Our benchmarks show improvement in the nominal resolution, which went from 3.9\u2009\u00c5 to 3.2\u2009\u00c5, of a published cryo-EM data set for influenza virus hemagglutinin. Warp is easy to install from http://github.com/cramerlab/warp and computationally inexpensive, and has an intuitive, streamlined user interface.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41592-019-0580-y", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5493708", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1033763", 
        "issn": [
          "1548-7091", 
          "1548-7105"
        ], 
        "name": "Nature Methods", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "keywords": [
      "cryo-EM data acquisition", 
      "cryo-electron microscopy data", 
      "user interface", 
      "particle picking", 
      "local defocus", 
      "image denoising", 
      "good data quality", 
      "real time", 
      "real-time evaluation", 
      "data acquisition", 
      "data quality", 
      "software", 
      "tomographic tilt series", 
      "cryo-EM data", 
      "microscopy data", 
      "warp", 
      "particle classification", 
      "tilt series", 
      "local motion", 
      "denoising", 
      "benchmarks", 
      "classification", 
      "acquisition", 
      "usage", 
      "data", 
      "picking", 
      "interface", 
      "output", 
      "defocus", 
      "quality", 
      "step", 
      "model", 
      "refinement", 
      "key parameters", 
      "evaluation", 
      "improvement", 
      "motion", 
      "time", 
      "program", 
      "biological specimens", 
      "resolution", 
      "parameters", 
      "series", 
      "nominal resolution", 
      "micrographs", 
      "influenza virus hemagglutinin", 
      "specimens", 
      "virus hemagglutinin", 
      "hemagglutinin"
    ], 
    "name": "Real-time cryo-electron microscopy data preprocessing with Warp", 
    "pagination": "1146-1152", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1121550754"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41592-019-0580-y"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "31591575"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41592-019-0580-y", 
      "https://app.dimensions.ai/details/publication/pub.1121550754"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_793.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41592-019-0580-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41592-019-0580-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41592-019-0580-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41592-019-0580-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41592-019-0580-y'


 

This table displays all metadata directly associated to this object as RDF triples.

184 TRIPLES      22 PREDICATES      91 URIs      72 LITERALS      12 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41592-019-0580-y schema:about N39202e5c15d14a66b1fe2da76b0b51ce
2 N4ead0a47408847bfbd379313b860bde7
3 N509bb094c3564e879fa8506679069098
4 N7ca36dd0d899465788440b0da31ae98d
5 Nbcc40ef0adbf4c3788d1c68e7ed10a9b
6 anzsrc-for:06
7 anzsrc-for:10
8 anzsrc-for:11
9 schema:author Neb0567a7acb047efb8b49925fead37c4
10 schema:citation sg:pub.10.1007/978-3-319-24574-4_28
11 sg:pub.10.1038/nmeth.2472
12 sg:pub.10.1038/nmeth.3806
13 sg:pub.10.1038/nmeth.4169
14 sg:pub.10.1038/nmeth.4193
15 sg:pub.10.1038/nmeth.4347
16 sg:pub.10.1038/nprot.2016.124
17 sg:pub.10.1038/s41467-018-06577-4
18 sg:pub.10.1038/s42003-019-0437-z
19 sg:pub.10.1186/1472-6807-9-18
20 schema:datePublished 2019-10-07
21 schema:datePublishedReg 2019-10-07
22 schema:description The acquisition of cryo-electron microscopy (cryo-EM) data from biological specimens must be tightly coupled to data preprocessing to ensure the best data quality and microscope usage. Here we describe Warp, a software that automates all preprocessing steps of cryo-EM data acquisition and enables real-time evaluation. Warp corrects micrographs for global and local motion, estimates the local defocus and monitors key parameters for each recorded micrograph or tomographic tilt series in real time. The software further includes deep-learning-based models for accurate particle picking and image denoising. The output from Warp can be fed into established programs for particle classification and 3D-map refinement. Our benchmarks show improvement in the nominal resolution, which went from 3.9 Å to 3.2 Å, of a published cryo-EM data set for influenza virus hemagglutinin. Warp is easy to install from http://github.com/cramerlab/warp and computationally inexpensive, and has an intuitive, streamlined user interface.
23 schema:genre article
24 schema:inLanguage en
25 schema:isAccessibleForFree true
26 schema:isPartOf Nce4e4c5f8d30469394df6f2fca9c3716
27 Nec96d49100274325bc182fff9f0e4e05
28 sg:journal.1033763
29 schema:keywords acquisition
30 benchmarks
31 biological specimens
32 classification
33 cryo-EM data
34 cryo-EM data acquisition
35 cryo-electron microscopy data
36 data
37 data acquisition
38 data quality
39 defocus
40 denoising
41 evaluation
42 good data quality
43 hemagglutinin
44 image denoising
45 improvement
46 influenza virus hemagglutinin
47 interface
48 key parameters
49 local defocus
50 local motion
51 micrographs
52 microscopy data
53 model
54 motion
55 nominal resolution
56 output
57 parameters
58 particle classification
59 particle picking
60 picking
61 program
62 quality
63 real time
64 real-time evaluation
65 refinement
66 resolution
67 series
68 software
69 specimens
70 step
71 tilt series
72 time
73 tomographic tilt series
74 usage
75 user interface
76 virus hemagglutinin
77 warp
78 schema:name Real-time cryo-electron microscopy data preprocessing with Warp
79 schema:pagination 1146-1152
80 schema:productId N72ed65652a694f82b850be1561b7417c
81 N9f2f8d9f725a469083aeb2b31b511559
82 Nb1aab95b8edb42a0a29d92148431a9f4
83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1121550754
84 https://doi.org/10.1038/s41592-019-0580-y
85 schema:sdDatePublished 2022-05-20T07:35
86 schema:sdLicense https://scigraph.springernature.com/explorer/license/
87 schema:sdPublisher N00bfdcc99f5a4224b5e0bfdb832c3ec5
88 schema:url https://doi.org/10.1038/s41592-019-0580-y
89 sgo:license sg:explorer/license/
90 sgo:sdDataset articles
91 rdf:type schema:ScholarlyArticle
92 N00bfdcc99f5a4224b5e0bfdb832c3ec5 schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 N39202e5c15d14a66b1fe2da76b0b51ce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Benchmarking
96 rdf:type schema:DefinedTerm
97 N4ead0a47408847bfbd379313b860bde7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Image Processing, Computer-Assisted
99 rdf:type schema:DefinedTerm
100 N509bb094c3564e879fa8506679069098 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Cryoelectron Microscopy
102 rdf:type schema:DefinedTerm
103 N5492fddce77544cf9603d34936f41ec5 rdf:first sg:person.01045113153.17
104 rdf:rest rdf:nil
105 N72ed65652a694f82b850be1561b7417c schema:name dimensions_id
106 schema:value pub.1121550754
107 rdf:type schema:PropertyValue
108 N7ca36dd0d899465788440b0da31ae98d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Deep Learning
110 rdf:type schema:DefinedTerm
111 N9f2f8d9f725a469083aeb2b31b511559 schema:name pubmed_id
112 schema:value 31591575
113 rdf:type schema:PropertyValue
114 Nb1aab95b8edb42a0a29d92148431a9f4 schema:name doi
115 schema:value 10.1038/s41592-019-0580-y
116 rdf:type schema:PropertyValue
117 Nbcc40ef0adbf4c3788d1c68e7ed10a9b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Software
119 rdf:type schema:DefinedTerm
120 Nce4e4c5f8d30469394df6f2fca9c3716 schema:volumeNumber 16
121 rdf:type schema:PublicationVolume
122 Neb0567a7acb047efb8b49925fead37c4 rdf:first sg:person.07417541233.11
123 rdf:rest N5492fddce77544cf9603d34936f41ec5
124 Nec96d49100274325bc182fff9f0e4e05 schema:issueNumber 11
125 rdf:type schema:PublicationIssue
126 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
127 schema:name Biological Sciences
128 rdf:type schema:DefinedTerm
129 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
130 schema:name Technology
131 rdf:type schema:DefinedTerm
132 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
133 schema:name Medical and Health Sciences
134 rdf:type schema:DefinedTerm
135 sg:grant.5493708 http://pending.schema.org/fundedItem sg:pub.10.1038/s41592-019-0580-y
136 rdf:type schema:MonetaryGrant
137 sg:journal.1033763 schema:issn 1548-7091
138 1548-7105
139 schema:name Nature Methods
140 schema:publisher Springer Nature
141 rdf:type schema:Periodical
142 sg:person.01045113153.17 schema:affiliation grid-institutes:grid.418140.8
143 schema:familyName Cramer
144 schema:givenName Patrick
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01045113153.17
146 rdf:type schema:Person
147 sg:person.07417541233.11 schema:affiliation grid-institutes:grid.418140.8
148 schema:familyName Tegunov
149 schema:givenName Dimitry
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07417541233.11
151 rdf:type schema:Person
152 sg:pub.10.1007/978-3-319-24574-4_28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017774818
153 https://doi.org/10.1007/978-3-319-24574-4_28
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/nmeth.2472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050203089
156 https://doi.org/10.1038/nmeth.2472
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/nmeth.3806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037497523
159 https://doi.org/10.1038/nmeth.3806
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/nmeth.4169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083686092
162 https://doi.org/10.1038/nmeth.4169
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/nmeth.4193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084129286
165 https://doi.org/10.1038/nmeth.4193
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/nmeth.4347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090326400
168 https://doi.org/10.1038/nmeth.4347
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/nprot.2016.124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009346635
171 https://doi.org/10.1038/nprot.2016.124
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/s41467-018-06577-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107363261
174 https://doi.org/10.1038/s41467-018-06577-4
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/s42003-019-0437-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1117344346
177 https://doi.org/10.1038/s42003-019-0437-z
178 rdf:type schema:CreativeWork
179 sg:pub.10.1186/1472-6807-9-18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002721912
180 https://doi.org/10.1186/1472-6807-9-18
181 rdf:type schema:CreativeWork
182 grid-institutes:grid.418140.8 schema:alternateName Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany
183 schema:name Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany
184 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...