Real-time cryo-electron microscopy data preprocessing with Warp View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-10-07

AUTHORS

Dimitry Tegunov, Patrick Cramer

ABSTRACT

The acquisition of cryo-electron microscopy (cryo-EM) data from biological specimens must be tightly coupled to data preprocessing to ensure the best data quality and microscope usage. Here we describe Warp, a software that automates all preprocessing steps of cryo-EM data acquisition and enables real-time evaluation. Warp corrects micrographs for global and local motion, estimates the local defocus and monitors key parameters for each recorded micrograph or tomographic tilt series in real time. The software further includes deep-learning-based models for accurate particle picking and image denoising. The output from Warp can be fed into established programs for particle classification and 3D-map refinement. Our benchmarks show improvement in the nominal resolution, which went from 3.9 Å to 3.2 Å, of a published cryo-EM data set for influenza virus hemagglutinin. Warp is easy to install from http://github.com/cramerlab/warp and computationally inexpensive, and has an intuitive, streamlined user interface. More... »

PAGES

1146-1152

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41592-019-0580-y

DOI

http://dx.doi.org/10.1038/s41592-019-0580-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1121550754

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/31591575


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Benchmarking", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cryoelectron Microscopy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Deep Learning", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, G\u00f6ttingen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.418140.8", 
          "name": [
            "Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, G\u00f6ttingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tegunov", 
        "givenName": "Dimitry", 
        "id": "sg:person.07417541233.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07417541233.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, G\u00f6ttingen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.418140.8", 
          "name": [
            "Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, G\u00f6ttingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cramer", 
        "givenName": "Patrick", 
        "id": "sg:person.01045113153.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01045113153.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmeth.4347", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090326400", 
          "https://doi.org/10.1038/nmeth.4347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-018-06577-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107363261", 
          "https://doi.org/10.1038/s41467-018-06577-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s42003-019-0437-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1117344346", 
          "https://doi.org/10.1038/s42003-019-0437-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.3806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037497523", 
          "https://doi.org/10.1038/nmeth.3806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1472-6807-9-18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002721912", 
          "https://doi.org/10.1186/1472-6807-9-18"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2016.124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009346635", 
          "https://doi.org/10.1038/nprot.2016.124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.4193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084129286", 
          "https://doi.org/10.1038/nmeth.4193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-24574-4_28", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017774818", 
          "https://doi.org/10.1007/978-3-319-24574-4_28"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.2472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050203089", 
          "https://doi.org/10.1038/nmeth.2472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.4169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083686092", 
          "https://doi.org/10.1038/nmeth.4169"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-10-07", 
    "datePublishedReg": "2019-10-07", 
    "description": "The acquisition of cryo-electron microscopy (cryo-EM) data from biological specimens must be tightly coupled to data preprocessing to ensure the best data quality and microscope usage. Here we describe Warp, a software that automates all preprocessing steps of cryo-EM data acquisition and enables real-time evaluation. Warp corrects micrographs for global and local motion, estimates the local defocus and monitors key parameters for each recorded micrograph or tomographic tilt series in real time. The software further includes deep-learning-based models for accurate particle picking and image denoising. The output from Warp can be fed into established programs for particle classification and 3D-map refinement. Our benchmarks show improvement in the nominal resolution, which went from 3.9\u2009\u00c5 to 3.2\u2009\u00c5, of a published cryo-EM data set for influenza virus hemagglutinin. Warp is easy to install from http://github.com/cramerlab/warp and computationally inexpensive, and has an intuitive, streamlined user interface.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41592-019-0580-y", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5493708", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1033763", 
        "issn": [
          "1548-7091", 
          "1548-7105"
        ], 
        "name": "Nature Methods", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "keywords": [
      "cryo-EM data acquisition", 
      "cryo-electron microscopy data", 
      "user interface", 
      "particle picking", 
      "local defocus", 
      "image denoising", 
      "good data quality", 
      "real time", 
      "real-time evaluation", 
      "data acquisition", 
      "data quality", 
      "software", 
      "tomographic tilt series", 
      "cryo-EM data", 
      "microscopy data", 
      "warp", 
      "particle classification", 
      "tilt series", 
      "local motion", 
      "denoising", 
      "benchmarks", 
      "classification", 
      "acquisition", 
      "usage", 
      "data", 
      "picking", 
      "interface", 
      "output", 
      "defocus", 
      "quality", 
      "step", 
      "model", 
      "refinement", 
      "key parameters", 
      "evaluation", 
      "improvement", 
      "motion", 
      "time", 
      "program", 
      "biological specimens", 
      "resolution", 
      "parameters", 
      "series", 
      "nominal resolution", 
      "micrographs", 
      "influenza virus hemagglutinin", 
      "specimens", 
      "virus hemagglutinin", 
      "hemagglutinin"
    ], 
    "name": "Real-time cryo-electron microscopy data preprocessing with Warp", 
    "pagination": "1146-1152", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1121550754"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41592-019-0580-y"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "31591575"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41592-019-0580-y", 
      "https://app.dimensions.ai/details/publication/pub.1121550754"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_793.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41592-019-0580-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41592-019-0580-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41592-019-0580-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41592-019-0580-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41592-019-0580-y'


 

This table displays all metadata directly associated to this object as RDF triples.

184 TRIPLES      22 PREDICATES      91 URIs      72 LITERALS      12 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41592-019-0580-y schema:about N0db2452ad9624166be126131b6a4a5bc
2 N216ca0197b074aa18c5063c0f4504411
3 N8861f94be5cc4f1bb122ced4d2e851ed
4 Ncd3539ed23b34bda8aae0d6ae6c3c9c6
5 Nd00d814a9b6e4157954afc575d082adc
6 anzsrc-for:06
7 anzsrc-for:10
8 anzsrc-for:11
9 schema:author N104aa95f7b7f44c29d45920078949d0e
10 schema:citation sg:pub.10.1007/978-3-319-24574-4_28
11 sg:pub.10.1038/nmeth.2472
12 sg:pub.10.1038/nmeth.3806
13 sg:pub.10.1038/nmeth.4169
14 sg:pub.10.1038/nmeth.4193
15 sg:pub.10.1038/nmeth.4347
16 sg:pub.10.1038/nprot.2016.124
17 sg:pub.10.1038/s41467-018-06577-4
18 sg:pub.10.1038/s42003-019-0437-z
19 sg:pub.10.1186/1472-6807-9-18
20 schema:datePublished 2019-10-07
21 schema:datePublishedReg 2019-10-07
22 schema:description The acquisition of cryo-electron microscopy (cryo-EM) data from biological specimens must be tightly coupled to data preprocessing to ensure the best data quality and microscope usage. Here we describe Warp, a software that automates all preprocessing steps of cryo-EM data acquisition and enables real-time evaluation. Warp corrects micrographs for global and local motion, estimates the local defocus and monitors key parameters for each recorded micrograph or tomographic tilt series in real time. The software further includes deep-learning-based models for accurate particle picking and image denoising. The output from Warp can be fed into established programs for particle classification and 3D-map refinement. Our benchmarks show improvement in the nominal resolution, which went from 3.9 Å to 3.2 Å, of a published cryo-EM data set for influenza virus hemagglutinin. Warp is easy to install from http://github.com/cramerlab/warp and computationally inexpensive, and has an intuitive, streamlined user interface.
23 schema:genre article
24 schema:inLanguage en
25 schema:isAccessibleForFree true
26 schema:isPartOf Nba36d6803c564a5f9699f019cea2cdb1
27 Ne4ba2ac497ef4f58966e87101a38bed6
28 sg:journal.1033763
29 schema:keywords acquisition
30 benchmarks
31 biological specimens
32 classification
33 cryo-EM data
34 cryo-EM data acquisition
35 cryo-electron microscopy data
36 data
37 data acquisition
38 data quality
39 defocus
40 denoising
41 evaluation
42 good data quality
43 hemagglutinin
44 image denoising
45 improvement
46 influenza virus hemagglutinin
47 interface
48 key parameters
49 local defocus
50 local motion
51 micrographs
52 microscopy data
53 model
54 motion
55 nominal resolution
56 output
57 parameters
58 particle classification
59 particle picking
60 picking
61 program
62 quality
63 real time
64 real-time evaluation
65 refinement
66 resolution
67 series
68 software
69 specimens
70 step
71 tilt series
72 time
73 tomographic tilt series
74 usage
75 user interface
76 virus hemagglutinin
77 warp
78 schema:name Real-time cryo-electron microscopy data preprocessing with Warp
79 schema:pagination 1146-1152
80 schema:productId N2a982a2b8d58486e819ea1ea1acabd73
81 N6497e4e6cae34486bdcb0e6a73e4f272
82 Na2a486005ab34bb9ab7f377fe1080d4b
83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1121550754
84 https://doi.org/10.1038/s41592-019-0580-y
85 schema:sdDatePublished 2022-05-20T07:35
86 schema:sdLicense https://scigraph.springernature.com/explorer/license/
87 schema:sdPublisher N10ff11b7770147e7a3aceae742991945
88 schema:url https://doi.org/10.1038/s41592-019-0580-y
89 sgo:license sg:explorer/license/
90 sgo:sdDataset articles
91 rdf:type schema:ScholarlyArticle
92 N0db2452ad9624166be126131b6a4a5bc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Deep Learning
94 rdf:type schema:DefinedTerm
95 N104aa95f7b7f44c29d45920078949d0e rdf:first sg:person.07417541233.11
96 rdf:rest N46ad64fde00a4dfbac75af08c621f4d8
97 N10ff11b7770147e7a3aceae742991945 schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 N216ca0197b074aa18c5063c0f4504411 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Software
101 rdf:type schema:DefinedTerm
102 N2a982a2b8d58486e819ea1ea1acabd73 schema:name doi
103 schema:value 10.1038/s41592-019-0580-y
104 rdf:type schema:PropertyValue
105 N46ad64fde00a4dfbac75af08c621f4d8 rdf:first sg:person.01045113153.17
106 rdf:rest rdf:nil
107 N6497e4e6cae34486bdcb0e6a73e4f272 schema:name dimensions_id
108 schema:value pub.1121550754
109 rdf:type schema:PropertyValue
110 N8861f94be5cc4f1bb122ced4d2e851ed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Image Processing, Computer-Assisted
112 rdf:type schema:DefinedTerm
113 Na2a486005ab34bb9ab7f377fe1080d4b schema:name pubmed_id
114 schema:value 31591575
115 rdf:type schema:PropertyValue
116 Nba36d6803c564a5f9699f019cea2cdb1 schema:issueNumber 11
117 rdf:type schema:PublicationIssue
118 Ncd3539ed23b34bda8aae0d6ae6c3c9c6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Cryoelectron Microscopy
120 rdf:type schema:DefinedTerm
121 Nd00d814a9b6e4157954afc575d082adc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Benchmarking
123 rdf:type schema:DefinedTerm
124 Ne4ba2ac497ef4f58966e87101a38bed6 schema:volumeNumber 16
125 rdf:type schema:PublicationVolume
126 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
127 schema:name Biological Sciences
128 rdf:type schema:DefinedTerm
129 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
130 schema:name Technology
131 rdf:type schema:DefinedTerm
132 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
133 schema:name Medical and Health Sciences
134 rdf:type schema:DefinedTerm
135 sg:grant.5493708 http://pending.schema.org/fundedItem sg:pub.10.1038/s41592-019-0580-y
136 rdf:type schema:MonetaryGrant
137 sg:journal.1033763 schema:issn 1548-7091
138 1548-7105
139 schema:name Nature Methods
140 schema:publisher Springer Nature
141 rdf:type schema:Periodical
142 sg:person.01045113153.17 schema:affiliation grid-institutes:grid.418140.8
143 schema:familyName Cramer
144 schema:givenName Patrick
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01045113153.17
146 rdf:type schema:Person
147 sg:person.07417541233.11 schema:affiliation grid-institutes:grid.418140.8
148 schema:familyName Tegunov
149 schema:givenName Dimitry
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07417541233.11
151 rdf:type schema:Person
152 sg:pub.10.1007/978-3-319-24574-4_28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017774818
153 https://doi.org/10.1007/978-3-319-24574-4_28
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/nmeth.2472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050203089
156 https://doi.org/10.1038/nmeth.2472
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/nmeth.3806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037497523
159 https://doi.org/10.1038/nmeth.3806
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/nmeth.4169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083686092
162 https://doi.org/10.1038/nmeth.4169
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/nmeth.4193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084129286
165 https://doi.org/10.1038/nmeth.4193
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/nmeth.4347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090326400
168 https://doi.org/10.1038/nmeth.4347
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/nprot.2016.124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009346635
171 https://doi.org/10.1038/nprot.2016.124
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/s41467-018-06577-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107363261
174 https://doi.org/10.1038/s41467-018-06577-4
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/s42003-019-0437-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1117344346
177 https://doi.org/10.1038/s42003-019-0437-z
178 rdf:type schema:CreativeWork
179 sg:pub.10.1186/1472-6807-9-18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002721912
180 https://doi.org/10.1186/1472-6807-9-18
181 rdf:type schema:CreativeWork
182 grid-institutes:grid.418140.8 schema:alternateName Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany
183 schema:name Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany
184 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...