In vivo profiling of metastatic double knockouts through CRISPR-Cpf1 screens. View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04-08

AUTHORS

Ryan D Chow, Guangchuan Wang, Lupeng Ye, Adan Codina, Hyunu Ray Kim, Li Shen, Matthew B Dong, Youssef Errami, Sidi Chen

ABSTRACT

Systematic investigation of the genetic interactions that influence metastatic potential has been challenging. Here we developed massively parallel CRISPR-Cpf1/Cas12a crRNA array profiling (MCAP), an approach for combinatorial interrogation of double knockouts in vivo. We designed an MCAP library of 11,934 arrays targeting 325 pairwise combinations of genes implicated in metastasis. By assessing the metastatic potential of the double knockouts in mice, we unveiled a quantitative landscape of genetic interactions that drive metastasis. More... »

References to SciGraph publications

  • 2017-02. In vivo high-throughput profiling of CRISPR–Cpf1 activity in NATURE METHODS
  • 2013-02-13. Quantitative genetic-interaction mapping in mammalian cells in NATURE METHODS
  • 2017-12-18. Orthologous CRISPR–Cas9 enzymes for combinatorial genetic screens in NATURE BIOTECHNOLOGY
  • 2017-06. Combinatorial CRISPR-Cas9 screens for de novo mapping of genetic interactions in NATURE METHODS
  • 2015-09. Massively parallel high-order combinatorial genetics in human cells in NATURE BIOTECHNOLOGY
  • 2019-03. Engineered CRISPR–Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing in NATURE BIOTECHNOLOGY
  • 2016-12-05. Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array in NATURE BIOTECHNOLOGY
  • 2018-12. Programmable sequential mutagenesis by inducible Cpf1 crRNA array inversion in NATURE COMMUNICATIONS
  • 2019-02-15. In vivo combinatorial knockout screens using CRISPR-Cpf1 in PROTOCOL EXCHANGE
  • 2018-01-29. Deep learning improves prediction of CRISPR–Cpf1 guide RNA activity in NATURE BIOTECHNOLOGY
  • 2018-01-15. Dual gene activation and knockout screen reveals directional dependencies in genetic networks in NATURE BIOTECHNOLOGY
  • 2009-03. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome in GENOME BIOLOGY
  • 2017-03-20. Synergistic drug combinations for cancer identified in a CRISPR screen for pairwise genetic interactions in NATURE BIOTECHNOLOGY
  • 2017-08. Integrative clinical genomics of metastatic cancer in NATURE
  • Journal

    TITLE

    Nature Methods

    ISSUE

    N/A

    VOLUME

    N/A

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41592-019-0371-5

    DOI

    http://dx.doi.org/10.1038/s41592-019-0371-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1113300831

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30962622


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Yale University", 
              "id": "https://www.grid.ac/institutes/grid.47100.32", 
              "name": [
                "Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.", 
                "System Biology Institute, Integrated Science & Technology Center, Yale University, West Haven, CT, USA.", 
                "Center for Cancer Systems Biology, Integrated Science & Technology Center, West Haven, CT, USA.", 
                "Yale MD-PhD Program, Yale University, New Haven, CT, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chow", 
            "givenName": "Ryan D", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Yale University", 
              "id": "https://www.grid.ac/institutes/grid.47100.32", 
              "name": [
                "Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.", 
                "System Biology Institute, Integrated Science & Technology Center, Yale University, West Haven, CT, USA.", 
                "Center for Cancer Systems Biology, Integrated Science & Technology Center, West Haven, CT, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Guangchuan", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Yale University", 
              "id": "https://www.grid.ac/institutes/grid.47100.32", 
              "name": [
                "Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.", 
                "System Biology Institute, Integrated Science & Technology Center, Yale University, West Haven, CT, USA.", 
                "Center for Cancer Systems Biology, Integrated Science & Technology Center, West Haven, CT, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ye", 
            "givenName": "Lupeng", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Yale University", 
              "id": "https://www.grid.ac/institutes/grid.47100.32", 
              "name": [
                "Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.", 
                "System Biology Institute, Integrated Science & Technology Center, Yale University, West Haven, CT, USA.", 
                "Center for Cancer Systems Biology, Integrated Science & Technology Center, West Haven, CT, USA.", 
                "Yale Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Codina", 
            "givenName": "Adan", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Yale University", 
              "id": "https://www.grid.ac/institutes/grid.47100.32", 
              "name": [
                "Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.", 
                "System Biology Institute, Integrated Science & Technology Center, Yale University, West Haven, CT, USA.", 
                "Center for Cancer Systems Biology, Integrated Science & Technology Center, West Haven, CT, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kim", 
            "givenName": "Hyunu Ray", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Yale University", 
              "id": "https://www.grid.ac/institutes/grid.47100.32", 
              "name": [
                "Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.", 
                "System Biology Institute, Integrated Science & Technology Center, Yale University, West Haven, CT, USA.", 
                "Center for Cancer Systems Biology, Integrated Science & Technology Center, West Haven, CT, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shen", 
            "givenName": "Li", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Yale University", 
              "id": "https://www.grid.ac/institutes/grid.47100.32", 
              "name": [
                "Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.", 
                "System Biology Institute, Integrated Science & Technology Center, Yale University, West Haven, CT, USA.", 
                "Center for Cancer Systems Biology, Integrated Science & Technology Center, West Haven, CT, USA.", 
                "Yale MD-PhD Program, Yale University, New Haven, CT, USA.", 
                "Yale Immunobiology Program, The Anlyan Center for Medical Research & Education, New Haven, CT, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dong", 
            "givenName": "Matthew B", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Yale University", 
              "id": "https://www.grid.ac/institutes/grid.47100.32", 
              "name": [
                "Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.", 
                "System Biology Institute, Integrated Science & Technology Center, Yale University, West Haven, CT, USA.", 
                "Center for Cancer Systems Biology, Integrated Science & Technology Center, West Haven, CT, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Errami", 
            "givenName": "Youssef", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Yale Cancer Center", 
              "id": "https://www.grid.ac/institutes/grid.433818.5", 
              "name": [
                "Department of Genetics, Yale University School of Medicine, New Haven, CT, USA. sidi.chen@yale.edu.", 
                "System Biology Institute, Integrated Science & Technology Center, Yale University, West Haven, CT, USA. sidi.chen@yale.edu.", 
                "Center for Cancer Systems Biology, Integrated Science & Technology Center, West Haven, CT, USA. sidi.chen@yale.edu.", 
                "Yale MD-PhD Program, Yale University, New Haven, CT, USA. sidi.chen@yale.edu.", 
                "Yale Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA. sidi.chen@yale.edu.", 
                "Yale Immunobiology Program, The Anlyan Center for Medical Research & Education, New Haven, CT, USA. sidi.chen@yale.edu.", 
                "Yale Comprehensive Cancer Center, New Haven, CT, USA. sidi.chen@yale.edu.", 
                "Yale Stem Cell Center, New Haven, CT, USA. sidi.chen@yale.edu."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Sidi", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nbt.3326", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001233525", 
              "https://doi.org/10.1038/nbt.3326"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.4104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005959292", 
              "https://doi.org/10.1038/nmeth.4104"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3737", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008378302", 
              "https://doi.org/10.1038/nbt.3737"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2398", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010355761", 
              "https://doi.org/10.1038/nmeth.2398"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btt593", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010435278"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2015.09.038", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015956969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2015.09.038", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015956969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btp352", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023014918"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gad.1848209", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024942648"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijmm.2012.11.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025150057"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1517883113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027078744"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2015.02.038", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031573874"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btp324", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038266369"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.129684.111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038753295"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2009-10-3-r25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049583368", 
              "https://doi.org/10.1186/gb-2009-10-3-r25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.14806/ej.17.1.200", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067372670"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2016.11.037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083758210"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3834", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084128667", 
              "https://doi.org/10.1038/nbt.3834"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.4225", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084129316", 
              "https://doi.org/10.1038/nmeth.4225"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.4225", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084129316", 
              "https://doi.org/10.1038/nmeth.4225"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.molcel.2017.06.030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090835252"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.molcel.2017.06.030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090835252"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature23306", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090945552", 
              "https://doi.org/10.1038/nature23306"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature23306", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090945552", 
              "https://doi.org/10.1038/nature23306"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.4048", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099700847", 
              "https://doi.org/10.1038/nbt.4048"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.4062", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100403167", 
              "https://doi.org/10.1038/nbt.4062"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.4061", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100685552", 
              "https://doi.org/10.1038/nbt.4061"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-04158-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103911295", 
              "https://doi.org/10.1038/s41467-018-04158-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2018.06.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105712547"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2018.06.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105712547"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2018.06.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105712547"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41587-018-0011-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112060911", 
              "https://doi.org/10.1038/s41587-018-0011-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41587-018-0011-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112060911", 
              "https://doi.org/10.1038/s41587-018-0011-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41587-018-0011-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112060911", 
              "https://doi.org/10.1038/s41587-018-0011-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41587-018-0011-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112060911", 
              "https://doi.org/10.1038/s41587-018-0011-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41587-018-0011-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112060911", 
              "https://doi.org/10.1038/s41587-018-0011-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41587-018-0011-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112060911", 
              "https://doi.org/10.1038/s41587-018-0011-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41587-018-0011-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112060911", 
              "https://doi.org/10.1038/s41587-018-0011-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/protex.2019.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112165402", 
              "https://doi.org/10.1038/protex.2019.018"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-04-08", 
        "datePublishedReg": "2019-04-08", 
        "description": "Systematic investigation of the genetic interactions that influence metastatic potential has been challenging. Here we developed massively parallel CRISPR-Cpf1/Cas12a crRNA array profiling (MCAP), an approach for combinatorial interrogation of double knockouts in vivo. We designed an MCAP library of 11,934\u2009arrays targeting 325\u2009pairwise combinations of genes implicated in metastasis. By assessing the metastatic potential of the double knockouts in mice, we unveiled a quantitative landscape of genetic interactions that drive metastasis.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41592-019-0371-5", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1033763", 
            "issn": [
              "1548-7091", 
              "1548-7105"
            ], 
            "name": "Nature Methods", 
            "type": "Periodical"
          }
        ], 
        "name": "In vivo profiling of metastatic double knockouts through CRISPR-Cpf1 screens.", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41592-019-0371-5"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1113300831"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101215604"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30962622"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41592-019-0371-5", 
          "https://app.dimensions.ai/details/publication/pub.1113300831"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-15T08:48", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000374_0000000374/records_119714_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/articles/s41592-019-0371-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41592-019-0371-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41592-019-0371-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41592-019-0371-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41592-019-0371-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    215 TRIPLES      20 PREDICATES      51 URIs      16 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41592-019-0371-5 schema:about anzsrc-for:06
    2 anzsrc-for:0604
    3 schema:author N72a56b2662d84275bc41df68bd676c54
    4 schema:citation sg:pub.10.1038/nature23306
    5 sg:pub.10.1038/nbt.3326
    6 sg:pub.10.1038/nbt.3737
    7 sg:pub.10.1038/nbt.3834
    8 sg:pub.10.1038/nbt.4048
    9 sg:pub.10.1038/nbt.4061
    10 sg:pub.10.1038/nbt.4062
    11 sg:pub.10.1038/nmeth.2398
    12 sg:pub.10.1038/nmeth.4104
    13 sg:pub.10.1038/nmeth.4225
    14 sg:pub.10.1038/protex.2019.018
    15 sg:pub.10.1038/s41467-018-04158-z
    16 sg:pub.10.1038/s41587-018-0011-0
    17 sg:pub.10.1186/gb-2009-10-3-r25
    18 https://doi.org/10.1016/j.cell.2015.02.038
    19 https://doi.org/10.1016/j.cell.2015.09.038
    20 https://doi.org/10.1016/j.cell.2016.11.037
    21 https://doi.org/10.1016/j.cell.2018.06.010
    22 https://doi.org/10.1016/j.ijmm.2012.11.004
    23 https://doi.org/10.1016/j.molcel.2017.06.030
    24 https://doi.org/10.1073/pnas.1517883113
    25 https://doi.org/10.1093/bioinformatics/btp324
    26 https://doi.org/10.1093/bioinformatics/btp352
    27 https://doi.org/10.1093/bioinformatics/btt593
    28 https://doi.org/10.1101/gad.1848209
    29 https://doi.org/10.1101/gr.129684.111
    30 https://doi.org/10.14806/ej.17.1.200
    31 schema:datePublished 2019-04-08
    32 schema:datePublishedReg 2019-04-08
    33 schema:description Systematic investigation of the genetic interactions that influence metastatic potential has been challenging. Here we developed massively parallel CRISPR-Cpf1/Cas12a crRNA array profiling (MCAP), an approach for combinatorial interrogation of double knockouts in vivo. We designed an MCAP library of 11,934 arrays targeting 325 pairwise combinations of genes implicated in metastasis. By assessing the metastatic potential of the double knockouts in mice, we unveiled a quantitative landscape of genetic interactions that drive metastasis.
    34 schema:genre research_article
    35 schema:inLanguage en
    36 schema:isAccessibleForFree false
    37 schema:isPartOf sg:journal.1033763
    38 schema:name In vivo profiling of metastatic double knockouts through CRISPR-Cpf1 screens.
    39 schema:productId N59fb481b5fdd499fb4c86c46ef073a60
    40 N7410df83d7c14c0e830b07ef229baa53
    41 N8dc76f7c9bd944368ae0018dda3acd54
    42 Na6df394abbbf46f29d4b69943265a34a
    43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113300831
    44 https://doi.org/10.1038/s41592-019-0371-5
    45 schema:sdDatePublished 2019-04-15T08:48
    46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    47 schema:sdPublisher N233ebfea108844df854e7ec058c9e290
    48 schema:url http://www.nature.com/articles/s41592-019-0371-5
    49 sgo:license sg:explorer/license/
    50 sgo:sdDataset articles
    51 rdf:type schema:ScholarlyArticle
    52 N060b8b8a503749b99077a5d5ce2abf6e rdf:first N41243fade0114548876c7d06ddea0dd5
    53 rdf:rest N8f05754d49eb4deda0df4fc2e5dd8cbd
    54 N233ebfea108844df854e7ec058c9e290 schema:name Springer Nature - SN SciGraph project
    55 rdf:type schema:Organization
    56 N33e16196c7024014ab1493f4770f49c5 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
    57 schema:familyName Wang
    58 schema:givenName Guangchuan
    59 rdf:type schema:Person
    60 N41243fade0114548876c7d06ddea0dd5 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
    61 schema:familyName Kim
    62 schema:givenName Hyunu Ray
    63 rdf:type schema:Person
    64 N43cb31c4e0b7433cbff96217690476cf rdf:first N810da6dd1fa546fc930213c107bb55a4
    65 rdf:rest N837fa0260d64475590c61be62bb88a81
    66 N4dead03b8d92406394abf833814593b7 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
    67 schema:familyName Ye
    68 schema:givenName Lupeng
    69 rdf:type schema:Person
    70 N564510dd010c44c18da94cd9bc862a94 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
    71 schema:familyName Codina
    72 schema:givenName Adan
    73 rdf:type schema:Person
    74 N59fb481b5fdd499fb4c86c46ef073a60 schema:name pubmed_id
    75 schema:value 30962622
    76 rdf:type schema:PropertyValue
    77 N72582804ef304722a075e1b07215f289 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
    78 schema:familyName Chow
    79 schema:givenName Ryan D
    80 rdf:type schema:Person
    81 N72a56b2662d84275bc41df68bd676c54 rdf:first N72582804ef304722a075e1b07215f289
    82 rdf:rest Nd8e6007e8b9249e98f3871fe97414753
    83 N7410df83d7c14c0e830b07ef229baa53 schema:name nlm_unique_id
    84 schema:value 101215604
    85 rdf:type schema:PropertyValue
    86 N76c3d07e7072435cac10793db8ad6bdf schema:affiliation https://www.grid.ac/institutes/grid.433818.5
    87 schema:familyName Chen
    88 schema:givenName Sidi
    89 rdf:type schema:Person
    90 N810da6dd1fa546fc930213c107bb55a4 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
    91 schema:familyName Errami
    92 schema:givenName Youssef
    93 rdf:type schema:Person
    94 N837fa0260d64475590c61be62bb88a81 rdf:first N76c3d07e7072435cac10793db8ad6bdf
    95 rdf:rest rdf:nil
    96 N8dc76f7c9bd944368ae0018dda3acd54 schema:name dimensions_id
    97 schema:value pub.1113300831
    98 rdf:type schema:PropertyValue
    99 N8f05754d49eb4deda0df4fc2e5dd8cbd rdf:first Ne53b4ee5ffc5431f82ae257fc14c45c2
    100 rdf:rest Ncc925018b0bc455db6a3dd1ccde34451
    101 Na6df394abbbf46f29d4b69943265a34a schema:name doi
    102 schema:value 10.1038/s41592-019-0371-5
    103 rdf:type schema:PropertyValue
    104 Nb8dbba7302b04488a211df08a2c107f5 rdf:first N564510dd010c44c18da94cd9bc862a94
    105 rdf:rest N060b8b8a503749b99077a5d5ce2abf6e
    106 Nc5421dbde409472eb079ee24f2b70816 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
    107 schema:familyName Dong
    108 schema:givenName Matthew B
    109 rdf:type schema:Person
    110 Ncb734cf9775b40a9acd114f19fa73563 rdf:first N4dead03b8d92406394abf833814593b7
    111 rdf:rest Nb8dbba7302b04488a211df08a2c107f5
    112 Ncc925018b0bc455db6a3dd1ccde34451 rdf:first Nc5421dbde409472eb079ee24f2b70816
    113 rdf:rest N43cb31c4e0b7433cbff96217690476cf
    114 Nd8e6007e8b9249e98f3871fe97414753 rdf:first N33e16196c7024014ab1493f4770f49c5
    115 rdf:rest Ncb734cf9775b40a9acd114f19fa73563
    116 Ne53b4ee5ffc5431f82ae257fc14c45c2 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
    117 schema:familyName Shen
    118 schema:givenName Li
    119 rdf:type schema:Person
    120 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    121 schema:name Biological Sciences
    122 rdf:type schema:DefinedTerm
    123 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    124 schema:name Genetics
    125 rdf:type schema:DefinedTerm
    126 sg:journal.1033763 schema:issn 1548-7091
    127 1548-7105
    128 schema:name Nature Methods
    129 rdf:type schema:Periodical
    130 sg:pub.10.1038/nature23306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090945552
    131 https://doi.org/10.1038/nature23306
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1038/nbt.3326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001233525
    134 https://doi.org/10.1038/nbt.3326
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1038/nbt.3737 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008378302
    137 https://doi.org/10.1038/nbt.3737
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1038/nbt.3834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084128667
    140 https://doi.org/10.1038/nbt.3834
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1038/nbt.4048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099700847
    143 https://doi.org/10.1038/nbt.4048
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1038/nbt.4061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100685552
    146 https://doi.org/10.1038/nbt.4061
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1038/nbt.4062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100403167
    149 https://doi.org/10.1038/nbt.4062
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1038/nmeth.2398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010355761
    152 https://doi.org/10.1038/nmeth.2398
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1038/nmeth.4104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005959292
    155 https://doi.org/10.1038/nmeth.4104
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1038/nmeth.4225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084129316
    158 https://doi.org/10.1038/nmeth.4225
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1038/protex.2019.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112165402
    161 https://doi.org/10.1038/protex.2019.018
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1038/s41467-018-04158-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1103911295
    164 https://doi.org/10.1038/s41467-018-04158-z
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1038/s41587-018-0011-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112060911
    167 https://doi.org/10.1038/s41587-018-0011-0
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1186/gb-2009-10-3-r25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049583368
    170 https://doi.org/10.1186/gb-2009-10-3-r25
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1016/j.cell.2015.02.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031573874
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1016/j.cell.2015.09.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015956969
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1016/j.cell.2016.11.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083758210
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1016/j.cell.2018.06.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105712547
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1016/j.ijmm.2012.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025150057
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1016/j.molcel.2017.06.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090835252
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1073/pnas.1517883113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027078744
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1093/bioinformatics/btp324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038266369
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1093/bioinformatics/btp352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023014918
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1093/bioinformatics/btt593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010435278
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1101/gad.1848209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024942648
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1101/gr.129684.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038753295
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.14806/ej.17.1.200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067372670
    197 rdf:type schema:CreativeWork
    198 https://www.grid.ac/institutes/grid.433818.5 schema:alternateName Yale Cancer Center
    199 schema:name Center for Cancer Systems Biology, Integrated Science & Technology Center, West Haven, CT, USA. sidi.chen@yale.edu.
    200 Department of Genetics, Yale University School of Medicine, New Haven, CT, USA. sidi.chen@yale.edu.
    201 System Biology Institute, Integrated Science & Technology Center, Yale University, West Haven, CT, USA. sidi.chen@yale.edu.
    202 Yale Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA. sidi.chen@yale.edu.
    203 Yale Comprehensive Cancer Center, New Haven, CT, USA. sidi.chen@yale.edu.
    204 Yale Immunobiology Program, The Anlyan Center for Medical Research & Education, New Haven, CT, USA. sidi.chen@yale.edu.
    205 Yale MD-PhD Program, Yale University, New Haven, CT, USA. sidi.chen@yale.edu.
    206 Yale Stem Cell Center, New Haven, CT, USA. sidi.chen@yale.edu.
    207 rdf:type schema:Organization
    208 https://www.grid.ac/institutes/grid.47100.32 schema:alternateName Yale University
    209 schema:name Center for Cancer Systems Biology, Integrated Science & Technology Center, West Haven, CT, USA.
    210 Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
    211 System Biology Institute, Integrated Science & Technology Center, Yale University, West Haven, CT, USA.
    212 Yale Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA.
    213 Yale Immunobiology Program, The Anlyan Center for Medical Research & Education, New Haven, CT, USA.
    214 Yale MD-PhD Program, Yale University, New Haven, CT, USA.
    215 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...