High-throughput identification of dominant negative polypeptides in yeast. View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04-08

AUTHORS

Michael W Dorrity, Christine Queitsch, Stanley Fields

ABSTRACT

Dominant negative polypeptides can inhibit protein function by binding to a wild-type subunit or by titrating a ligand. Here we use high-throughput sequencing of libraries composed of fragments of yeast genes to identify polypeptides that act in a dominant negative manner, in that they are depleted during cell growth. The method can uncover numerous inhibitory polypeptides for a protein and thereby define small inhibitory regions, even pinpointing individual residues with critical functional roles. More... »

Journal

TITLE

Nature Methods

ISSUE

N/A

VOLUME

N/A

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41592-019-0368-0

DOI

http://dx.doi.org/10.1038/s41592-019-0368-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113300830

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30962621


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Genome Sciences, University of Washington, Seattle, WA, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dorrity", 
        "givenName": "Michael W", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Genome Sciences, University of Washington, Seattle, WA, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Queitsch", 
        "givenName": "Christine", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Genome Sciences, University of Washington, Seattle, WA, USA. fields@uw.edu.", 
            "Department of Medicine, University of Washington, Seattle, WA, USA. fields@uw.edu."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fields", 
        "givenName": "Stanley", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ajhg.2008.12.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000775559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2008.12.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000775559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/329219a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005321784", 
          "https://doi.org/10.1038/329219a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi900623r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005357311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi900623r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005357311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2004-5-9-r72", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010126502", 
          "https://doi.org/10.1186/gb-2004-5-9-r72"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471250953.bi1112s47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012622622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s004380050415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013576528", 
          "https://doi.org/10.1007/s004380050415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s004380050415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013576528", 
          "https://doi.org/10.1007/s004380050415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.89.23.11589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016031939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1009999107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016325749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/yea.1843", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017561149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nsmb.3149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019303632", 
          "https://doi.org/10.1038/nsmb.3149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj20102034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021189954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj20102034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021189954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymeth.2004.08.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022181902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymeth.2004.08.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022181902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1091/mbc.e04-04-0306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029502452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.051013498", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038026836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/emboj/16.21.6466", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039811327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.93.25.14452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053166631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.8421783", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062655517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/j.1460-2075.1993.tb06194.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082727445"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04-08", 
    "datePublishedReg": "2019-04-08", 
    "description": "Dominant negative polypeptides can inhibit protein function by binding to a wild-type subunit or by titrating a ligand. Here we use high-throughput sequencing of libraries composed of fragments of yeast genes to identify polypeptides that act in a dominant negative manner, in that they are depleted during cell growth. The method can uncover numerous inhibitory polypeptides for a protein and thereby define small inhibitory regions, even pinpointing individual residues with critical functional roles.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41592-019-0368-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1033763", 
        "issn": [
          "1548-7091", 
          "1548-7105"
        ], 
        "name": "Nature Methods", 
        "type": "Periodical"
      }
    ], 
    "name": "High-throughput identification of dominant negative polypeptides in yeast.", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41592-019-0368-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113300830"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101215604"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30962621"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41592-019-0368-0", 
      "https://app.dimensions.ai/details/publication/pub.1113300830"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T08:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000374_0000000374/records_119713_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/s41592-019-0368-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41592-019-0368-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41592-019-0368-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41592-019-0368-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41592-019-0368-0'


 

This table displays all metadata directly associated to this object as RDF triples.

129 TRIPLES      20 PREDICATES      42 URIs      16 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41592-019-0368-0 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author Na84399344858494eb48ca6ff647348e3
4 schema:citation sg:pub.10.1007/s004380050415
5 sg:pub.10.1038/329219a0
6 sg:pub.10.1038/nsmb.3149
7 sg:pub.10.1186/gb-2004-5-9-r72
8 https://doi.org/10.1002/0471250953.bi1112s47
9 https://doi.org/10.1002/j.1460-2075.1993.tb06194.x
10 https://doi.org/10.1002/yea.1843
11 https://doi.org/10.1016/j.ajhg.2008.12.010
12 https://doi.org/10.1016/j.ymeth.2004.08.010
13 https://doi.org/10.1021/bi900623r
14 https://doi.org/10.1042/bj20102034
15 https://doi.org/10.1073/pnas.051013498
16 https://doi.org/10.1073/pnas.1009999107
17 https://doi.org/10.1073/pnas.89.23.11589
18 https://doi.org/10.1073/pnas.93.25.14452
19 https://doi.org/10.1091/mbc.e04-04-0306
20 https://doi.org/10.1093/emboj/16.21.6466
21 https://doi.org/10.1126/science.8421783
22 schema:datePublished 2019-04-08
23 schema:datePublishedReg 2019-04-08
24 schema:description Dominant negative polypeptides can inhibit protein function by binding to a wild-type subunit or by titrating a ligand. Here we use high-throughput sequencing of libraries composed of fragments of yeast genes to identify polypeptides that act in a dominant negative manner, in that they are depleted during cell growth. The method can uncover numerous inhibitory polypeptides for a protein and thereby define small inhibitory regions, even pinpointing individual residues with critical functional roles.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf sg:journal.1033763
29 schema:name High-throughput identification of dominant negative polypeptides in yeast.
30 schema:productId N003816ad66ab421ba1c9b8b681b90601
31 N8dffbaa091c94e419c20dc998632b174
32 Ndadf3b191ef24a1688a192086be1b7a3
33 Nefbbcdd380f64279adc08361b338521b
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113300830
35 https://doi.org/10.1038/s41592-019-0368-0
36 schema:sdDatePublished 2019-04-15T08:47
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher Ne27bc4995c9f49eca52e56224730a9b4
39 schema:url http://www.nature.com/articles/s41592-019-0368-0
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N003816ad66ab421ba1c9b8b681b90601 schema:name doi
44 schema:value 10.1038/s41592-019-0368-0
45 rdf:type schema:PropertyValue
46 N55d25da7f7b041d78762eae2ac57983e rdf:first N93518447ce0740cd93be407b15888135
47 rdf:rest Nc21ad8d9aba54578aacbb2b6542f1fda
48 N65aec4ed0a544d1fba13719459eb8177 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
49 schema:familyName Dorrity
50 schema:givenName Michael W
51 rdf:type schema:Person
52 N8dffbaa091c94e419c20dc998632b174 schema:name nlm_unique_id
53 schema:value 101215604
54 rdf:type schema:PropertyValue
55 N93518447ce0740cd93be407b15888135 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
56 schema:familyName Queitsch
57 schema:givenName Christine
58 rdf:type schema:Person
59 Na84399344858494eb48ca6ff647348e3 rdf:first N65aec4ed0a544d1fba13719459eb8177
60 rdf:rest N55d25da7f7b041d78762eae2ac57983e
61 Nc21ad8d9aba54578aacbb2b6542f1fda rdf:first Nf77783a650674286b3a144f2a1cacbcb
62 rdf:rest rdf:nil
63 Ndadf3b191ef24a1688a192086be1b7a3 schema:name dimensions_id
64 schema:value pub.1113300830
65 rdf:type schema:PropertyValue
66 Ne27bc4995c9f49eca52e56224730a9b4 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 Nefbbcdd380f64279adc08361b338521b schema:name pubmed_id
69 schema:value 30962621
70 rdf:type schema:PropertyValue
71 Nf77783a650674286b3a144f2a1cacbcb schema:affiliation https://www.grid.ac/institutes/grid.34477.33
72 schema:familyName Fields
73 schema:givenName Stanley
74 rdf:type schema:Person
75 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
76 schema:name Biological Sciences
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
79 schema:name Biochemistry and Cell Biology
80 rdf:type schema:DefinedTerm
81 sg:journal.1033763 schema:issn 1548-7091
82 1548-7105
83 schema:name Nature Methods
84 rdf:type schema:Periodical
85 sg:pub.10.1007/s004380050415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013576528
86 https://doi.org/10.1007/s004380050415
87 rdf:type schema:CreativeWork
88 sg:pub.10.1038/329219a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005321784
89 https://doi.org/10.1038/329219a0
90 rdf:type schema:CreativeWork
91 sg:pub.10.1038/nsmb.3149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019303632
92 https://doi.org/10.1038/nsmb.3149
93 rdf:type schema:CreativeWork
94 sg:pub.10.1186/gb-2004-5-9-r72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010126502
95 https://doi.org/10.1186/gb-2004-5-9-r72
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1002/0471250953.bi1112s47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012622622
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1002/j.1460-2075.1993.tb06194.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1082727445
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1002/yea.1843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017561149
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/j.ajhg.2008.12.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000775559
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/j.ymeth.2004.08.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022181902
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1021/bi900623r schema:sameAs https://app.dimensions.ai/details/publication/pub.1005357311
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1042/bj20102034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021189954
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1073/pnas.051013498 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038026836
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1073/pnas.1009999107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016325749
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1073/pnas.89.23.11589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016031939
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1073/pnas.93.25.14452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053166631
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1091/mbc.e04-04-0306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029502452
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1093/emboj/16.21.6466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039811327
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1126/science.8421783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062655517
124 rdf:type schema:CreativeWork
125 https://www.grid.ac/institutes/grid.34477.33 schema:alternateName University of Washington
126 schema:name Department of Genome Sciences, University of Washington, Seattle, WA, USA.
127 Department of Genome Sciences, University of Washington, Seattle, WA, USA. fields@uw.edu.
128 Department of Medicine, University of Washington, Seattle, WA, USA. fields@uw.edu.
129 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...