Trans-biobank analysis with 676,000 individuals elucidates the association of polygenic risk scores of complex traits with human lifespan View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-03-23

AUTHORS

Saori Sakaue, Masahiro Kanai, Juha Karjalainen, Masato Akiyama, Mitja Kurki, Nana Matoba, Atsushi Takahashi, Makoto Hirata, Michiaki Kubo, Koichi Matsuda, Yoshinori Murakami, Mark J. Daly, Yoichiro Kamatani, Yukinori Okada

ABSTRACT

While polygenic risk scores (PRSs) are poised to be translated into clinical practice through prediction of inborn health risks1, a strategy to utilize genetics to prioritize modifiable risk factors driving heath outcome is warranted2. To this end, we investigated the association of the genetic susceptibility to complex traits with human lifespan in collaboration with three worldwide biobanks (ntotal = 675,898; BioBank Japan (n = 179,066), UK Biobank (n = 361,194) and FinnGen (n = 135,638)). In contrast to observational studies, in which discerning the cause-and-effect can be difficult, PRSs could help to identify the driver biomarkers affecting human lifespan. A high systolic blood pressure PRS was trans-ethnically associated with a shorter lifespan (hazard ratio = 1.03[1.02–1.04], Pmeta = 3.9 × 10−13) and parental lifespan (hazard ratio = 1.06[1.06–1.07], P = 2.0 × 10−86). The obesity PRS showed distinct effects on lifespan in Japanese and European individuals (Pheterogeneity = 9.5 × 10−8 for BMI). The causal effect of blood pressure and obesity on lifespan was further supported by Mendelian randomization studies. Beyond genotype–phenotype associations, our trans-biobank study offers a new value of PRSs in prioritization of risk factors that could be potential targets of medical treatment to improve population health. More... »

PAGES

542-548

References to SciGraph publications

  • 2018-05-22. The personal and clinical utility of polygenic risk scores in NATURE REVIEWS GENETICS
  • 2018-08-13. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations in NATURE GENETICS
  • 2018-06-11. Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci in NATURE GENETICS
  • 2016-06-06. The Ensembl Variant Effect Predictor in GENOME BIOLOGY
  • 2015-02-02. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies in NATURE GENETICS
  • 2017-01-09. Genetic evidence of assortative mating in humans in NATURE HUMAN BEHAVIOUR
  • 2019-07-25. Analysis of polygenic risk score usage and performance in diverse human populations in NATURE COMMUNICATIONS
  • 2018-10-08. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps in NATURE GENETICS
  • 2018-02-05. Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases in NATURE GENETICS
  • 2019-09-27. Characterizing rare and low-frequency height-associated variants in the Japanese population in NATURE COMMUNICATIONS
  • 2019-03-29. Clinical use of current polygenic risk scores may exacerbate health disparities in NATURE GENETICS
  • 2015-09-28. An atlas of genetic correlations across human diseases and traits in NATURE GENETICS
  • 2003-12-01. Impact of elevated blood pressure on mortality from all causes, cardiovascular diseases, heart disease and stroke among Japanese: 14 year follow-up of randomly selected population from Japanese — Nippon data 80 in JOURNAL OF HUMAN HYPERTENSION
  • 2018-10-10. The UK Biobank resource with deep phenotyping and genomic data in NATURE
  • 2003-09-01. Differences in cardiovascular disease risk factors between Japanese in Japan and Japanese-Americans in Hawaii: the INTERLIPID study in JOURNAL OF HUMAN HYPERTENSION
  • 2017-10-13. Genome-wide meta-analysis associates HLA-DQA1/DRB1 and LPA and lifestyle factors with human longevity in NATURE COMMUNICATIONS
  • Journal

    TITLE

    Nature Medicine

    ISSUE

    4

    VOLUME

    26

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41591-020-0785-8

    DOI

    http://dx.doi.org/10.1038/s41591-020-0785-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1125824357

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/32251405


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Public Health and Health Services", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adult", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Age Factors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biological Specimen Banks", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Diabetes Mellitus, Type 2", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Finland", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Markers", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Predisposition to Disease", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome-Wide Association Study", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Hypertension", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Japan", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Longevity", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Multifactorial Inheritance", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Obesity", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polymorphism, Single Nucleotide", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Risk Factors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "United Kingdom", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan", 
              "id": "http://www.grid.ac/institutes/grid.26999.3d", 
              "name": [
                "Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan", 
                "Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan", 
                "Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sakaue", 
            "givenName": "Saori", 
            "id": "sg:person.0744561472.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744561472.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland", 
              "id": "http://www.grid.ac/institutes/grid.452494.a", 
              "name": [
                "Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan", 
                "Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan", 
                "Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA", 
                "Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA", 
                "Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA", 
                "Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA", 
                "Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kanai", 
            "givenName": "Masahiro", 
            "id": "sg:person.01115770721.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115770721.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland", 
              "id": "http://www.grid.ac/institutes/grid.452494.a", 
              "name": [
                "Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA", 
                "Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA", 
                "Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA", 
                "Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Karjalainen", 
            "givenName": "Juha", 
            "id": "sg:person.0646651114.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646651114.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka, Japan", 
              "id": "http://www.grid.ac/institutes/grid.177174.3", 
              "name": [
                "Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan", 
                "Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Akiyama", 
            "givenName": "Masato", 
            "id": "sg:person.01342123562.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342123562.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland", 
              "id": "http://www.grid.ac/institutes/grid.452494.a", 
              "name": [
                "Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA", 
                "Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA", 
                "Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA", 
                "Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kurki", 
            "givenName": "Mitja", 
            "id": "sg:person.0640603220.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640603220.83"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan", 
              "id": "http://www.grid.ac/institutes/grid.509459.4", 
              "name": [
                "Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Matoba", 
            "givenName": "Nana", 
            "id": "sg:person.013341706221.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013341706221.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Genomic Medicine, Research Institute, National Cerebral and Cardiovascular Center, Suita, Japan", 
              "id": "http://www.grid.ac/institutes/grid.410796.d", 
              "name": [
                "Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan", 
                "Department of Genomic Medicine, Research Institute, National Cerebral and Cardiovascular Center, Suita, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Takahashi", 
            "givenName": "Atsushi", 
            "id": "sg:person.013630452153.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013630452153.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratory of Genome Technology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan", 
              "id": "http://www.grid.ac/institutes/grid.26999.3d", 
              "name": [
                "Laboratory of Genome Technology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hirata", 
            "givenName": "Makoto", 
            "id": "sg:person.011071073217.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011071073217.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "RIKEN Center for Integrative Medical Sciences, Yokohama, Japan", 
              "id": "http://www.grid.ac/institutes/grid.509459.4", 
              "name": [
                "RIKEN Center for Integrative Medical Sciences, Yokohama, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kubo", 
            "givenName": "Michiaki", 
            "id": "sg:person.016323146432.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016323146432.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan", 
              "id": "http://www.grid.ac/institutes/grid.26999.3d", 
              "name": [
                "Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Matsuda", 
            "givenName": "Koichi", 
            "id": "sg:person.012477025162.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012477025162.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Division of Molecular Pathology, Institute of Medical Sciences, The University of Tokyo, Tokyo, Japan", 
              "id": "http://www.grid.ac/institutes/grid.26999.3d", 
              "name": [
                "Division of Molecular Pathology, Institute of Medical Sciences, The University of Tokyo, Tokyo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Murakami", 
            "givenName": "Yoshinori", 
            "id": "sg:person.015750313632.91", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015750313632.91"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland", 
              "id": "http://www.grid.ac/institutes/grid.452494.a", 
              "name": [
                "Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA", 
                "Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA", 
                "Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA", 
                "Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Daly", 
            "givenName": "Mark J.", 
            "id": "sg:person.011517303117.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011517303117.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan", 
              "id": "http://www.grid.ac/institutes/grid.26999.3d", 
              "name": [
                "Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan", 
                "Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kamatani", 
            "givenName": "Yoichiro", 
            "id": "sg:person.0657532321.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657532321.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan", 
              "id": "http://www.grid.ac/institutes/grid.136593.b", 
              "name": [
                "Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan", 
                "Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan", 
                "Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Okada", 
            "givenName": "Yukinori", 
            "id": "sg:person.0657037321.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657037321.56"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/s41588-018-0241-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107353303", 
              "https://doi.org/10.1038/s41588-018-0241-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.jhh.1001602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002649795", 
              "https://doi.org/10.1038/sj.jhh.1001602"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41588-019-0379-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1113054547", 
              "https://doi.org/10.1038/s41588-019-0379-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-019-11112-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1119789235", 
              "https://doi.org/10.1038/s41467-019-11112-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3406", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016405801", 
              "https://doi.org/10.1038/ng.3406"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-018-0579-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107363293", 
              "https://doi.org/10.1038/s41586-018-0579-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-017-00934-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092142153", 
              "https://doi.org/10.1038/s41467-017-00934-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41588-018-0047-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100756001", 
              "https://doi.org/10.1038/s41588-018-0047-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41588-018-0183-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106070346", 
              "https://doi.org/10.1038/s41588-018-0183-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-019-12276-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1121305116", 
              "https://doi.org/10.1038/s41467-019-12276-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41576-018-0018-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104132099", 
              "https://doi.org/10.1038/s41576-018-0018-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41588-018-0142-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104478461", 
              "https://doi.org/10.1038/s41588-018-0142-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.jhh.1001606", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046952410", 
              "https://doi.org/10.1038/sj.jhh.1001606"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-016-0974-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005070991", 
              "https://doi.org/10.1186/s13059-016-0974-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3211", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044444076", 
              "https://doi.org/10.1038/ng.3211"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41562-016-0016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039665656", 
              "https://doi.org/10.1038/s41562-016-0016"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2020-03-23", 
        "datePublishedReg": "2020-03-23", 
        "description": "While polygenic risk scores (PRSs) are poised to be translated into clinical practice through prediction of inborn health risks1, a strategy to utilize genetics to prioritize modifiable risk factors driving heath outcome is warranted2. To this end, we investigated the association of the genetic susceptibility to complex traits with human lifespan in collaboration with three worldwide biobanks (ntotal\u2009=\u2009675,898; BioBank Japan (n\u2009=\u2009179,066), UK Biobank (n\u2009=\u2009361,194) and FinnGen (n\u2009=\u2009135,638)). In contrast to observational studies, in which discerning the cause-and-effect can be difficult, PRSs could help to identify the driver biomarkers affecting human lifespan. A high systolic blood pressure PRS was trans-ethnically associated with a shorter lifespan (hazard ratio\u2009=\u20091.03[1.02\u20131.04], Pmeta\u2009=\u20093.9\u2009\u00d7\u200910\u221213) and parental lifespan (hazard ratio\u2009=\u20091.06[1.06\u20131.07], P\u2009=\u20092.0\u2009\u00d7\u200910\u221286). The obesity PRS showed distinct effects on lifespan in Japanese and European individuals (Pheterogeneity\u2009=\u20099.5\u2009\u00d7\u200910\u22128 for BMI). The causal effect of blood pressure and obesity on lifespan was further supported by Mendelian randomization studies. Beyond genotype\u2013phenotype associations, our trans-biobank study offers a new value of PRSs in prioritization of risk factors that could be potential targets of medical treatment to improve population health.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41591-020-0785-8", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.12845167", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8426095", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.5613136", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.5897259", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6821595", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7746336", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.5861819", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2786773", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.12845097", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1113716", 
            "issn": [
              "1078-8956", 
              "1546-170X"
            ], 
            "name": "Nature Medicine", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "26"
          }
        ], 
        "keywords": [
          "polygenic risk scores", 
          "risk factors", 
          "risk score", 
          "obesity polygenic risk scores", 
          "modifiable risk factors", 
          "Mendelian randomization study", 
          "human lifespan", 
          "blood pressure", 
          "observational study", 
          "medical treatment", 
          "clinical practice", 
          "randomization study", 
          "heath outcomes", 
          "genetic susceptibility", 
          "parental lifespan", 
          "population health", 
          "potential target", 
          "genotype-phenotype associations", 
          "driver biomarkers", 
          "association", 
          "scores", 
          "European individuals", 
          "distinct effects", 
          "obesity", 
          "lifespan", 
          "biomarkers", 
          "study", 
          "outcomes", 
          "factors", 
          "treatment", 
          "effect", 
          "cause", 
          "health", 
          "short lifespan", 
          "Biobank", 
          "causal effect", 
          "susceptibility", 
          "individuals", 
          "target", 
          "contrast", 
          "pressure", 
          "genetics", 
          "practice", 
          "strategies", 
          "end", 
          "analysis", 
          "collaboration", 
          "elucidates", 
          "prioritization", 
          "values", 
          "traits", 
          "trans", 
          "complex traits", 
          "prediction", 
          "new values"
        ], 
        "name": "Trans-biobank analysis with 676,000 individuals elucidates the association of polygenic risk scores of complex traits with human lifespan", 
        "pagination": "542-548", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1125824357"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41591-020-0785-8"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "32251405"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41591-020-0785-8", 
          "https://app.dimensions.ai/details/publication/pub.1125824357"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:04", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_855.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41591-020-0785-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41591-020-0785-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41591-020-0785-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41591-020-0785-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41591-020-0785-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    410 TRIPLES      21 PREDICATES      117 URIs      93 LITERALS      28 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41591-020-0785-8 schema:about N052d8a38987046c59b0939e8231ac5ff
    2 N257a7ec51d784f7ba3d1996df5dcfca8
    3 N34093d04f25d4360a614752c2d603f0a
    4 N360c439ab87849c7965451d4cb67a2e2
    5 N481fd8e05ddd4e64bb98ece08f1fb409
    6 N6b98919b441e48159fbd9aeab5df37eb
    7 N6d472434beb2474487b3286f9a5b1299
    8 N7770847c69544fd28d084c707dfc32ef
    9 N893b2545272a4a49b8476bcabd8cce68
    10 N8c9196e96b734bb58d05e3e9b8398f00
    11 N9162063608f448f89f405adc3d83f7fb
    12 N9f0b0191e71e4aef8ab9a5ec974b795c
    13 Naad670522f324c328773fa89ec8b4256
    14 Nb0808fe9f9a74396aae64df04e3853ba
    15 Nb626e4235e69422894dec1b6c9acb818
    16 Nbefa065f62ed4a17957ce665a534615e
    17 Ndd5c7189fe9e499a9ded28d63e00be24
    18 Ne7c839859bc84430834d1c195833807a
    19 Nf1d1aea5f61c4706bf0f885f5b128427
    20 Nf4a475e6385441b5ad85787a784ef833
    21 Nfee869421f7f46aab5f7e8f3b1ee3350
    22 anzsrc-for:11
    23 anzsrc-for:1117
    24 schema:author Nb33875b76bc14b3bbc976d5f7692994f
    25 schema:citation sg:pub.10.1038/ng.3211
    26 sg:pub.10.1038/ng.3406
    27 sg:pub.10.1038/s41467-017-00934-5
    28 sg:pub.10.1038/s41467-019-11112-0
    29 sg:pub.10.1038/s41467-019-12276-5
    30 sg:pub.10.1038/s41562-016-0016
    31 sg:pub.10.1038/s41576-018-0018-x
    32 sg:pub.10.1038/s41586-018-0579-z
    33 sg:pub.10.1038/s41588-018-0047-6
    34 sg:pub.10.1038/s41588-018-0142-8
    35 sg:pub.10.1038/s41588-018-0183-z
    36 sg:pub.10.1038/s41588-018-0241-6
    37 sg:pub.10.1038/s41588-019-0379-x
    38 sg:pub.10.1038/sj.jhh.1001602
    39 sg:pub.10.1038/sj.jhh.1001606
    40 sg:pub.10.1186/s13059-016-0974-4
    41 schema:datePublished 2020-03-23
    42 schema:datePublishedReg 2020-03-23
    43 schema:description While polygenic risk scores (PRSs) are poised to be translated into clinical practice through prediction of inborn health risks1, a strategy to utilize genetics to prioritize modifiable risk factors driving heath outcome is warranted2. To this end, we investigated the association of the genetic susceptibility to complex traits with human lifespan in collaboration with three worldwide biobanks (ntotal = 675,898; BioBank Japan (n = 179,066), UK Biobank (n = 361,194) and FinnGen (n = 135,638)). In contrast to observational studies, in which discerning the cause-and-effect can be difficult, PRSs could help to identify the driver biomarkers affecting human lifespan. A high systolic blood pressure PRS was trans-ethnically associated with a shorter lifespan (hazard ratio = 1.03[1.02–1.04], Pmeta = 3.9 × 10−13) and parental lifespan (hazard ratio = 1.06[1.06–1.07], P = 2.0 × 10−86). The obesity PRS showed distinct effects on lifespan in Japanese and European individuals (Pheterogeneity = 9.5 × 10−8 for BMI). The causal effect of blood pressure and obesity on lifespan was further supported by Mendelian randomization studies. Beyond genotype–phenotype associations, our trans-biobank study offers a new value of PRSs in prioritization of risk factors that could be potential targets of medical treatment to improve population health.
    44 schema:genre article
    45 schema:isAccessibleForFree true
    46 schema:isPartOf N0e9c7c0903d1498d9357e9c47fdaecd4
    47 N18f6ac969ff24a9bb6954a6a9639e85f
    48 sg:journal.1113716
    49 schema:keywords Biobank
    50 European individuals
    51 Mendelian randomization study
    52 analysis
    53 association
    54 biomarkers
    55 blood pressure
    56 causal effect
    57 cause
    58 clinical practice
    59 collaboration
    60 complex traits
    61 contrast
    62 distinct effects
    63 driver biomarkers
    64 effect
    65 elucidates
    66 end
    67 factors
    68 genetic susceptibility
    69 genetics
    70 genotype-phenotype associations
    71 health
    72 heath outcomes
    73 human lifespan
    74 individuals
    75 lifespan
    76 medical treatment
    77 modifiable risk factors
    78 new values
    79 obesity
    80 obesity polygenic risk scores
    81 observational study
    82 outcomes
    83 parental lifespan
    84 polygenic risk scores
    85 population health
    86 potential target
    87 practice
    88 prediction
    89 pressure
    90 prioritization
    91 randomization study
    92 risk factors
    93 risk score
    94 scores
    95 short lifespan
    96 strategies
    97 study
    98 susceptibility
    99 target
    100 traits
    101 trans
    102 treatment
    103 values
    104 schema:name Trans-biobank analysis with 676,000 individuals elucidates the association of polygenic risk scores of complex traits with human lifespan
    105 schema:pagination 542-548
    106 schema:productId N0529c9d6661a4790b6c4d44b9d88491e
    107 N08bc812274f14ebba209ba52831f95de
    108 N7a5a3ac3ebb84414bd8d20809c5ef372
    109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125824357
    110 https://doi.org/10.1038/s41591-020-0785-8
    111 schema:sdDatePublished 2022-09-02T16:04
    112 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    113 schema:sdPublisher N634da2355d334f8dba7bab1372693e89
    114 schema:url https://doi.org/10.1038/s41591-020-0785-8
    115 sgo:license sg:explorer/license/
    116 sgo:sdDataset articles
    117 rdf:type schema:ScholarlyArticle
    118 N04835e110b9b4ce0853c48615712b9f0 rdf:first sg:person.011071073217.15
    119 rdf:rest N67d267c488e94e118d741fc9051ca95e
    120 N0529c9d6661a4790b6c4d44b9d88491e schema:name dimensions_id
    121 schema:value pub.1125824357
    122 rdf:type schema:PropertyValue
    123 N052d8a38987046c59b0939e8231ac5ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    124 schema:name Polymorphism, Single Nucleotide
    125 rdf:type schema:DefinedTerm
    126 N08bc812274f14ebba209ba52831f95de schema:name pubmed_id
    127 schema:value 32251405
    128 rdf:type schema:PropertyValue
    129 N0e9c7c0903d1498d9357e9c47fdaecd4 schema:issueNumber 4
    130 rdf:type schema:PublicationIssue
    131 N18f6ac969ff24a9bb6954a6a9639e85f schema:volumeNumber 26
    132 rdf:type schema:PublicationVolume
    133 N257a7ec51d784f7ba3d1996df5dcfca8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Aged
    135 rdf:type schema:DefinedTerm
    136 N2b53227dee8e4c67a79c1ac03b847531 rdf:first sg:person.0646651114.37
    137 rdf:rest N4bae91367d3842b4ad1dc10834c48f01
    138 N34093d04f25d4360a614752c2d603f0a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    139 schema:name Obesity
    140 rdf:type schema:DefinedTerm
    141 N360c439ab87849c7965451d4cb67a2e2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    142 schema:name Adult
    143 rdf:type schema:DefinedTerm
    144 N378f49301c414b1a855986d97bce88b2 rdf:first sg:person.0657532321.26
    145 rdf:rest Nac94245aee5e4e4f9fd8db81cac92b1f
    146 N379d34a7b29c4dc7a1ade46339cba3ed rdf:first sg:person.013630452153.24
    147 rdf:rest N04835e110b9b4ce0853c48615712b9f0
    148 N3890a7c7ee984bc6a07b008c31599897 rdf:first sg:person.013341706221.01
    149 rdf:rest N379d34a7b29c4dc7a1ade46339cba3ed
    150 N481fd8e05ddd4e64bb98ece08f1fb409 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name Longevity
    152 rdf:type schema:DefinedTerm
    153 N4a00c62c43e24457bc2f24358868d5e0 rdf:first sg:person.011517303117.07
    154 rdf:rest N378f49301c414b1a855986d97bce88b2
    155 N4bae91367d3842b4ad1dc10834c48f01 rdf:first sg:person.01342123562.37
    156 rdf:rest Nce0075d405e84b058339eed9eb46c2c8
    157 N634da2355d334f8dba7bab1372693e89 schema:name Springer Nature - SN SciGraph project
    158 rdf:type schema:Organization
    159 N67d267c488e94e118d741fc9051ca95e rdf:first sg:person.016323146432.35
    160 rdf:rest Ne76df965667b408186b29ac00c78a4eb
    161 N6b98919b441e48159fbd9aeab5df37eb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    162 schema:name Diabetes Mellitus, Type 2
    163 rdf:type schema:DefinedTerm
    164 N6d472434beb2474487b3286f9a5b1299 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    165 schema:name Risk Factors
    166 rdf:type schema:DefinedTerm
    167 N7770847c69544fd28d084c707dfc32ef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    168 schema:name Humans
    169 rdf:type schema:DefinedTerm
    170 N7a5a3ac3ebb84414bd8d20809c5ef372 schema:name doi
    171 schema:value 10.1038/s41591-020-0785-8
    172 rdf:type schema:PropertyValue
    173 N893b2545272a4a49b8476bcabd8cce68 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    174 schema:name Genetic Markers
    175 rdf:type schema:DefinedTerm
    176 N8c9196e96b734bb58d05e3e9b8398f00 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    177 schema:name Genome-Wide Association Study
    178 rdf:type schema:DefinedTerm
    179 N9162063608f448f89f405adc3d83f7fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    180 schema:name Middle Aged
    181 rdf:type schema:DefinedTerm
    182 N9eead90930454066ad4ed855ce928e5b rdf:first sg:person.015750313632.91
    183 rdf:rest N4a00c62c43e24457bc2f24358868d5e0
    184 N9f0b0191e71e4aef8ab9a5ec974b795c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    185 schema:name Biological Specimen Banks
    186 rdf:type schema:DefinedTerm
    187 Naad670522f324c328773fa89ec8b4256 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    188 schema:name Multifactorial Inheritance
    189 rdf:type schema:DefinedTerm
    190 Nac94245aee5e4e4f9fd8db81cac92b1f rdf:first sg:person.0657037321.56
    191 rdf:rest rdf:nil
    192 Nb0808fe9f9a74396aae64df04e3853ba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    193 schema:name Female
    194 rdf:type schema:DefinedTerm
    195 Nb33875b76bc14b3bbc976d5f7692994f rdf:first sg:person.0744561472.16
    196 rdf:rest Nba6222ae205540d09111952c5752c087
    197 Nb626e4235e69422894dec1b6c9acb818 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    198 schema:name Finland
    199 rdf:type schema:DefinedTerm
    200 Nba6222ae205540d09111952c5752c087 rdf:first sg:person.01115770721.26
    201 rdf:rest N2b53227dee8e4c67a79c1ac03b847531
    202 Nbefa065f62ed4a17957ce665a534615e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    203 schema:name United Kingdom
    204 rdf:type schema:DefinedTerm
    205 Nce0075d405e84b058339eed9eb46c2c8 rdf:first sg:person.0640603220.83
    206 rdf:rest N3890a7c7ee984bc6a07b008c31599897
    207 Ndd5c7189fe9e499a9ded28d63e00be24 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    208 schema:name Japan
    209 rdf:type schema:DefinedTerm
    210 Ne76df965667b408186b29ac00c78a4eb rdf:first sg:person.012477025162.02
    211 rdf:rest N9eead90930454066ad4ed855ce928e5b
    212 Ne7c839859bc84430834d1c195833807a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    213 schema:name Male
    214 rdf:type schema:DefinedTerm
    215 Nf1d1aea5f61c4706bf0f885f5b128427 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    216 schema:name Hypertension
    217 rdf:type schema:DefinedTerm
    218 Nf4a475e6385441b5ad85787a784ef833 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    219 schema:name Age Factors
    220 rdf:type schema:DefinedTerm
    221 Nfee869421f7f46aab5f7e8f3b1ee3350 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    222 schema:name Genetic Predisposition to Disease
    223 rdf:type schema:DefinedTerm
    224 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    225 schema:name Medical and Health Sciences
    226 rdf:type schema:DefinedTerm
    227 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
    228 schema:name Public Health and Health Services
    229 rdf:type schema:DefinedTerm
    230 sg:grant.12845097 http://pending.schema.org/fundedItem sg:pub.10.1038/s41591-020-0785-8
    231 rdf:type schema:MonetaryGrant
    232 sg:grant.12845167 http://pending.schema.org/fundedItem sg:pub.10.1038/s41591-020-0785-8
    233 rdf:type schema:MonetaryGrant
    234 sg:grant.2786773 http://pending.schema.org/fundedItem sg:pub.10.1038/s41591-020-0785-8
    235 rdf:type schema:MonetaryGrant
    236 sg:grant.5613136 http://pending.schema.org/fundedItem sg:pub.10.1038/s41591-020-0785-8
    237 rdf:type schema:MonetaryGrant
    238 sg:grant.5861819 http://pending.schema.org/fundedItem sg:pub.10.1038/s41591-020-0785-8
    239 rdf:type schema:MonetaryGrant
    240 sg:grant.5897259 http://pending.schema.org/fundedItem sg:pub.10.1038/s41591-020-0785-8
    241 rdf:type schema:MonetaryGrant
    242 sg:grant.6821595 http://pending.schema.org/fundedItem sg:pub.10.1038/s41591-020-0785-8
    243 rdf:type schema:MonetaryGrant
    244 sg:grant.7746336 http://pending.schema.org/fundedItem sg:pub.10.1038/s41591-020-0785-8
    245 rdf:type schema:MonetaryGrant
    246 sg:grant.8426095 http://pending.schema.org/fundedItem sg:pub.10.1038/s41591-020-0785-8
    247 rdf:type schema:MonetaryGrant
    248 sg:journal.1113716 schema:issn 1078-8956
    249 1546-170X
    250 schema:name Nature Medicine
    251 schema:publisher Springer Nature
    252 rdf:type schema:Periodical
    253 sg:person.011071073217.15 schema:affiliation grid-institutes:grid.26999.3d
    254 schema:familyName Hirata
    255 schema:givenName Makoto
    256 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011071073217.15
    257 rdf:type schema:Person
    258 sg:person.01115770721.26 schema:affiliation grid-institutes:grid.452494.a
    259 schema:familyName Kanai
    260 schema:givenName Masahiro
    261 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115770721.26
    262 rdf:type schema:Person
    263 sg:person.011517303117.07 schema:affiliation grid-institutes:grid.452494.a
    264 schema:familyName Daly
    265 schema:givenName Mark J.
    266 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011517303117.07
    267 rdf:type schema:Person
    268 sg:person.012477025162.02 schema:affiliation grid-institutes:grid.26999.3d
    269 schema:familyName Matsuda
    270 schema:givenName Koichi
    271 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012477025162.02
    272 rdf:type schema:Person
    273 sg:person.013341706221.01 schema:affiliation grid-institutes:grid.509459.4
    274 schema:familyName Matoba
    275 schema:givenName Nana
    276 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013341706221.01
    277 rdf:type schema:Person
    278 sg:person.01342123562.37 schema:affiliation grid-institutes:grid.177174.3
    279 schema:familyName Akiyama
    280 schema:givenName Masato
    281 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342123562.37
    282 rdf:type schema:Person
    283 sg:person.013630452153.24 schema:affiliation grid-institutes:grid.410796.d
    284 schema:familyName Takahashi
    285 schema:givenName Atsushi
    286 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013630452153.24
    287 rdf:type schema:Person
    288 sg:person.015750313632.91 schema:affiliation grid-institutes:grid.26999.3d
    289 schema:familyName Murakami
    290 schema:givenName Yoshinori
    291 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015750313632.91
    292 rdf:type schema:Person
    293 sg:person.016323146432.35 schema:affiliation grid-institutes:grid.509459.4
    294 schema:familyName Kubo
    295 schema:givenName Michiaki
    296 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016323146432.35
    297 rdf:type schema:Person
    298 sg:person.0640603220.83 schema:affiliation grid-institutes:grid.452494.a
    299 schema:familyName Kurki
    300 schema:givenName Mitja
    301 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640603220.83
    302 rdf:type schema:Person
    303 sg:person.0646651114.37 schema:affiliation grid-institutes:grid.452494.a
    304 schema:familyName Karjalainen
    305 schema:givenName Juha
    306 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646651114.37
    307 rdf:type schema:Person
    308 sg:person.0657037321.56 schema:affiliation grid-institutes:grid.136593.b
    309 schema:familyName Okada
    310 schema:givenName Yukinori
    311 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657037321.56
    312 rdf:type schema:Person
    313 sg:person.0657532321.26 schema:affiliation grid-institutes:grid.26999.3d
    314 schema:familyName Kamatani
    315 schema:givenName Yoichiro
    316 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657532321.26
    317 rdf:type schema:Person
    318 sg:person.0744561472.16 schema:affiliation grid-institutes:grid.26999.3d
    319 schema:familyName Sakaue
    320 schema:givenName Saori
    321 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744561472.16
    322 rdf:type schema:Person
    323 sg:pub.10.1038/ng.3211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044444076
    324 https://doi.org/10.1038/ng.3211
    325 rdf:type schema:CreativeWork
    326 sg:pub.10.1038/ng.3406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016405801
    327 https://doi.org/10.1038/ng.3406
    328 rdf:type schema:CreativeWork
    329 sg:pub.10.1038/s41467-017-00934-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092142153
    330 https://doi.org/10.1038/s41467-017-00934-5
    331 rdf:type schema:CreativeWork
    332 sg:pub.10.1038/s41467-019-11112-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1119789235
    333 https://doi.org/10.1038/s41467-019-11112-0
    334 rdf:type schema:CreativeWork
    335 sg:pub.10.1038/s41467-019-12276-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1121305116
    336 https://doi.org/10.1038/s41467-019-12276-5
    337 rdf:type schema:CreativeWork
    338 sg:pub.10.1038/s41562-016-0016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039665656
    339 https://doi.org/10.1038/s41562-016-0016
    340 rdf:type schema:CreativeWork
    341 sg:pub.10.1038/s41576-018-0018-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1104132099
    342 https://doi.org/10.1038/s41576-018-0018-x
    343 rdf:type schema:CreativeWork
    344 sg:pub.10.1038/s41586-018-0579-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1107363293
    345 https://doi.org/10.1038/s41586-018-0579-z
    346 rdf:type schema:CreativeWork
    347 sg:pub.10.1038/s41588-018-0047-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100756001
    348 https://doi.org/10.1038/s41588-018-0047-6
    349 rdf:type schema:CreativeWork
    350 sg:pub.10.1038/s41588-018-0142-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104478461
    351 https://doi.org/10.1038/s41588-018-0142-8
    352 rdf:type schema:CreativeWork
    353 sg:pub.10.1038/s41588-018-0183-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1106070346
    354 https://doi.org/10.1038/s41588-018-0183-z
    355 rdf:type schema:CreativeWork
    356 sg:pub.10.1038/s41588-018-0241-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107353303
    357 https://doi.org/10.1038/s41588-018-0241-6
    358 rdf:type schema:CreativeWork
    359 sg:pub.10.1038/s41588-019-0379-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1113054547
    360 https://doi.org/10.1038/s41588-019-0379-x
    361 rdf:type schema:CreativeWork
    362 sg:pub.10.1038/sj.jhh.1001602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002649795
    363 https://doi.org/10.1038/sj.jhh.1001602
    364 rdf:type schema:CreativeWork
    365 sg:pub.10.1038/sj.jhh.1001606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046952410
    366 https://doi.org/10.1038/sj.jhh.1001606
    367 rdf:type schema:CreativeWork
    368 sg:pub.10.1186/s13059-016-0974-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005070991
    369 https://doi.org/10.1186/s13059-016-0974-4
    370 rdf:type schema:CreativeWork
    371 grid-institutes:grid.136593.b schema:alternateName Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
    372 schema:name Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
    373 Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
    374 Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
    375 rdf:type schema:Organization
    376 grid-institutes:grid.177174.3 schema:alternateName Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka, Japan
    377 schema:name Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka, Japan
    378 Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
    379 rdf:type schema:Organization
    380 grid-institutes:grid.26999.3d schema:alternateName Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
    381 Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
    382 Division of Molecular Pathology, Institute of Medical Sciences, The University of Tokyo, Tokyo, Japan
    383 Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
    384 Laboratory of Genome Technology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
    385 schema:name Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
    386 Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
    387 Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
    388 Division of Molecular Pathology, Institute of Medical Sciences, The University of Tokyo, Tokyo, Japan
    389 Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
    390 Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
    391 Laboratory of Genome Technology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
    392 rdf:type schema:Organization
    393 grid-institutes:grid.410796.d schema:alternateName Department of Genomic Medicine, Research Institute, National Cerebral and Cardiovascular Center, Suita, Japan
    394 schema:name Department of Genomic Medicine, Research Institute, National Cerebral and Cardiovascular Center, Suita, Japan
    395 Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
    396 rdf:type schema:Organization
    397 grid-institutes:grid.452494.a schema:alternateName Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
    398 schema:name Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
    399 Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
    400 Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
    401 Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
    402 Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
    403 Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
    404 Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
    405 rdf:type schema:Organization
    406 grid-institutes:grid.509459.4 schema:alternateName Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
    407 RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
    408 schema:name Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
    409 RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
    410 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...