Ontology type: schema:ScholarlyArticle
2019-01-07
AUTHORSZachi I. Attia, Suraj Kapa, Francisco Lopez-Jimenez, Paul M. McKie, Dorothy J. Ladewig, Gaurav Satam, Patricia A. Pellikka, Maurice Enriquez-Sarano, Peter A. Noseworthy, Thomas M. Munger, Samuel J. Asirvatham, Christopher G. Scott, Rickey E. Carter, Paul A. Friedman
ABSTRACTAsymptomatic left ventricular dysfunction (ALVD) is present in 3–6% of the general population, is associated with reduced quality of life and longevity, and is treatable when found1–4. An inexpensive, noninvasive screening tool for ALVD in the doctor’s office is not available. We tested the hypothesis that application of artificial intelligence (AI) to the electrocardiogram (ECG), a routine method of measuring the heart’s electrical activity, could identify ALVD. Using paired 12-lead ECG and echocardiogram data, including the left ventricular ejection fraction (a measure of contractile function), from 44,959 patients at the Mayo Clinic, we trained a convolutional neural network to identify patients with ventricular dysfunction, defined as ejection fraction ≤35%, using the ECG data alone. When tested on an independent set of 52,870 patients, the network model yielded values for the area under the curve, sensitivity, specificity, and accuracy of 0.93, 86.3%, 85.7%, and 85.7%, respectively. In patients without ventricular dysfunction, those with a positive AI screen were at 4 times the risk (hazard ratio, 4.1; 95% confidence interval, 3.3 to 5.0) of developing future ventricular dysfunction compared with those with a negative screen. Application of AI to the ECG—a ubiquitous, low-cost test—permits the ECG to serve as a powerful screening tool in asymptomatic individuals to identify ALVD. More... »
PAGES70-74
http://scigraph.springernature.com/pub.10.1038/s41591-018-0240-2
DOIhttp://dx.doi.org/10.1038/s41591-018-0240-2
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1109946035
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/30617318
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Medical and Health Sciences",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Adult",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Aged",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Aged, 80 and over",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Artificial Intelligence",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Electrocardiography",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Female",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Heart",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Humans",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Male",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Mass Screening",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Middle Aged",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Myocardial Contraction",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Neural Networks, Computer",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "ROC Curve",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Sensitivity and Specificity",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Stroke Volume",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA",
"id": "http://www.grid.ac/institutes/grid.66875.3a",
"name": [
"Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA"
],
"type": "Organization"
},
"familyName": "Attia",
"givenName": "Zachi I.",
"id": "sg:person.01331232365.20",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331232365.20"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA",
"id": "http://www.grid.ac/institutes/grid.66875.3a",
"name": [
"Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA"
],
"type": "Organization"
},
"familyName": "Kapa",
"givenName": "Suraj",
"id": "sg:person.01162530703.62",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162530703.62"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA",
"id": "http://www.grid.ac/institutes/grid.66875.3a",
"name": [
"Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA"
],
"type": "Organization"
},
"familyName": "Lopez-Jimenez",
"givenName": "Francisco",
"id": "sg:person.01173564523.81",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173564523.81"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA",
"id": "http://www.grid.ac/institutes/grid.66875.3a",
"name": [
"Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA"
],
"type": "Organization"
},
"familyName": "McKie",
"givenName": "Paul M.",
"id": "sg:person.01271304603.22",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01271304603.22"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Business Development, Mayo Clinic, Rochester, MN, USA",
"id": "http://www.grid.ac/institutes/grid.66875.3a",
"name": [
"Business Development, Mayo Clinic, Rochester, MN, USA"
],
"type": "Organization"
},
"familyName": "Ladewig",
"givenName": "Dorothy J.",
"id": "sg:person.01264514422.84",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264514422.84"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Business Development, Mayo Clinic, Rochester, MN, USA",
"id": "http://www.grid.ac/institutes/grid.66875.3a",
"name": [
"Business Development, Mayo Clinic, Rochester, MN, USA"
],
"type": "Organization"
},
"familyName": "Satam",
"givenName": "Gaurav",
"id": "sg:person.016465604103.62",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016465604103.62"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA",
"id": "http://www.grid.ac/institutes/grid.66875.3a",
"name": [
"Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA"
],
"type": "Organization"
},
"familyName": "Pellikka",
"givenName": "Patricia A.",
"id": "sg:person.0670023602.94",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670023602.94"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA",
"id": "http://www.grid.ac/institutes/grid.66875.3a",
"name": [
"Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA"
],
"type": "Organization"
},
"familyName": "Enriquez-Sarano",
"givenName": "Maurice",
"id": "sg:person.01153147340.95",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153147340.95"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA",
"id": "http://www.grid.ac/institutes/grid.66875.3a",
"name": [
"Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA"
],
"type": "Organization"
},
"familyName": "Noseworthy",
"givenName": "Peter A.",
"id": "sg:person.01142470302.40",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142470302.40"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA",
"id": "http://www.grid.ac/institutes/grid.66875.3a",
"name": [
"Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA"
],
"type": "Organization"
},
"familyName": "Munger",
"givenName": "Thomas M.",
"id": "sg:person.01127700312.12",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127700312.12"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA",
"id": "http://www.grid.ac/institutes/grid.66875.3a",
"name": [
"Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA"
],
"type": "Organization"
},
"familyName": "Asirvatham",
"givenName": "Samuel J.",
"id": "sg:person.01065240220.54",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065240220.54"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Health Sciences Research, Mayo Clinic, Rochester, MN, USA",
"id": "http://www.grid.ac/institutes/grid.66875.3a",
"name": [
"Health Sciences Research, Mayo Clinic, Rochester, MN, USA"
],
"type": "Organization"
},
"familyName": "Scott",
"givenName": "Christopher G.",
"id": "sg:person.014066071017.69",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014066071017.69"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA",
"id": "http://www.grid.ac/institutes/grid.417467.7",
"name": [
"Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA"
],
"type": "Organization"
},
"familyName": "Carter",
"givenName": "Rickey E.",
"id": "sg:person.01075000300.08",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075000300.08"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA",
"id": "http://www.grid.ac/institutes/grid.66875.3a",
"name": [
"Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA"
],
"type": "Organization"
},
"familyName": "Friedman",
"givenName": "Paul A.",
"id": "sg:person.01341602577.45",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341602577.45"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s10120-017-0731-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1085750630",
"https://doi.org/10.1007/s10120-017-0731-8"
],
"type": "CreativeWork"
}
],
"datePublished": "2019-01-07",
"datePublishedReg": "2019-01-07",
"description": "Asymptomatic left ventricular dysfunction (ALVD) is present in 3\u20136% of the general population, is associated with reduced quality of life and longevity, and is treatable when found1\u20134. An inexpensive, noninvasive screening tool for ALVD in the doctor\u2019s office is not available. We tested the hypothesis that application of artificial intelligence (AI) to the electrocardiogram (ECG), a routine method of measuring the heart\u2019s electrical activity, could identify ALVD. Using paired 12-lead ECG and echocardiogram data, including the left ventricular ejection fraction (a measure of contractile function), from 44,959 patients at the Mayo Clinic, we trained a convolutional neural network to identify patients with ventricular dysfunction, defined as ejection fraction \u226435%, using the ECG data alone. When tested on an independent set of 52,870 patients, the network model yielded values for the area under the curve, sensitivity, specificity, and accuracy of 0.93, 86.3%, 85.7%, and 85.7%, respectively. In patients without ventricular dysfunction, those with a positive AI screen were at 4 times the risk (hazard ratio, 4.1; 95% confidence interval, 3.3 to 5.0) of developing future ventricular dysfunction compared with those with a negative screen. Application of AI to the ECG\u2014a ubiquitous, low-cost test\u2014permits the ECG to serve as a powerful screening tool in asymptomatic individuals to identify ALVD.",
"genre": "article",
"id": "sg:pub.10.1038/s41591-018-0240-2",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1113716",
"issn": [
"1078-8956",
"1546-170X"
],
"name": "Nature Medicine",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "25"
}
],
"keywords": [
"asymptomatic left ventricular dysfunction",
"ventricular dysfunction",
"ejection fraction",
"left ventricular ejection fraction",
"screening tool",
"left ventricular dysfunction",
"ventricular ejection fraction",
"electrical activity",
"cardiac contractile dysfunction",
"noninvasive screening tool",
"artificial intelligence",
"contractile dysfunction",
"asymptomatic individuals",
"Mayo Clinic",
"general population",
"reduced quality",
"echocardiogram data",
"negative screen",
"dysfunction",
"patients",
"application of AI",
"doctor's office",
"electrocardiogram",
"convolutional neural network",
"powerful screening tool",
"neural network",
"heart electrical activity",
"routine method",
"network model",
"ECG data",
"clinic",
"risk",
"independent set",
"population",
"specificity",
"individuals",
"screen",
"intelligence",
"data",
"tool",
"network",
"activity",
"applications",
"life",
"fraction",
"sensitivity",
"office",
"hypothesis",
"longevity",
"accuracy",
"set",
"quality",
"time",
"curves",
"area",
"values",
"model",
"method"
],
"name": "Screening for cardiac contractile dysfunction using an artificial intelligence\u2013enabled electrocardiogram",
"pagination": "70-74",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1109946035"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1038/s41591-018-0240-2"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"30617318"
]
}
],
"sameAs": [
"https://doi.org/10.1038/s41591-018-0240-2",
"https://app.dimensions.ai/details/publication/pub.1109946035"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T22:21",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_809.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1038/s41591-018-0240-2"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41591-018-0240-2'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41591-018-0240-2'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41591-018-0240-2'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41591-018-0240-2'
This table displays all metadata directly associated to this object as RDF triples.
282 TRIPLES
22 PREDICATES
100 URIs
92 LITERALS
23 BLANK NODES