Antigen discovery and specification of immunodominance hierarchies for MHCII-restricted epitopes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-10-22

AUTHORS

Daniel B. Graham, Chengwei Luo, Daniel J. O’Connell, Ariel Lefkovith, Eric M. Brown, Moran Yassour, Mukund Varma, Jennifer G. Abelin, Kara L. Conway, Guadalupe J. Jasso, Caline G. Matar, Steven A. Carr, Ramnik J. Xavier

ABSTRACT

Identifying immunodominant T cell epitopes remains a significant challenge in the context of infectious disease, autoimmunity, and immuno-oncology. To address the challenge of antigen discovery, we developed a quantitative proteomic approach that enabled unbiased identification of major histocompatibility complex class II (MHCII)–associated peptide epitopes and biochemical features of antigenicity. On the basis of these data, we trained a deep neural network model for genome-scale predictions of immunodominant MHCII-restricted epitopes. We named this model bacteria originated T cell antigen (BOTA) predictor. In validation studies, BOTA accurately predicted novel CD4 T cell epitopes derived from the model pathogen Listeria monocytogenes and the commensal microorganism Muribaculum intestinale. To conclusively define immunodominant T cell epitopes predicted by BOTA, we developed a high-throughput approach to screen DNA-encoded peptide–MHCII libraries for functional recognition by T cell receptors identified from single-cell RNA sequencing. Collectively, these studies provide a framework for defining the immunodominance landscape across a broad range of immune pathologies. More... »

PAGES

1762-1772

References to SciGraph publications

  • 2016-07-07. Genomic characterization of the uncultured Bacteroidales family S24-7 inhabiting the guts of homeothermic animals in MICROBIOME
  • 2015-07-27. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning in NATURE BIOTECHNOLOGY
  • 2012-03-08. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2014-11-30. Altered microbiota associated with abnormal humoral immune responses to commensal organisms in enthesitis-related arthritis in ARTHRITIS RESEARCH & THERAPY
  • 1992-08. Predominant naturally processed peptides bound to HLA-DR1 are derived from MHC-related molecules and are heterogeneous in size in NATURE
  • 1994-03. Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide in NATURE
  • 2015-01-05. High-density mapping of the MHC identifies a shared role for HLA-DRB1*01:03 in inflammatory bowel diseases and heterozygous advantage in ulcerative colitis in NATURE GENETICS
  • 2015-07-01. Lenalidomide induces ubiquitination and degradation of CK1α in del(5q) MDS in NATURE
  • 2008-10. The Immunological Genome Project: networks of gene expression in immune cells in NATURE IMMUNOLOGY
  • 2007-08-02. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips in NATURE PROTOCOLS
  • 2017-08-21. Human genetic variation and the gut microbiome in disease in NATURE REVIEWS GENETICS
  • 1991-10. Sequence analysis of peptides bound to MHC class II molecules in NATURE
  • 1985-09. Binding of immunogenic peptides to Ia histocompatibility molecules in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41591-018-0203-7

    DOI

    http://dx.doi.org/10.1038/s41591-018-0203-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1107689545

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30349087


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1107", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Immunology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Amino Acid Sequence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Antigen Presentation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "CD4-Positive T-Lymphocytes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Epitopes, T-Lymphocyte", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "High-Throughput Nucleotide Sequencing", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Histocompatibility Antigens Class II", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Immunodominant Epitopes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Listeria monocytogenes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Proteomics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Receptors, Antigen, T-Cell", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Single-Cell Analysis", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.116068.8", 
              "name": [
                "Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA", 
                "Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA", 
                "Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA", 
                "Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Graham", 
            "givenName": "Daniel B.", 
            "id": "sg:person.01123503121.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123503121.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA", 
                "Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA", 
                "Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Luo", 
            "givenName": "Chengwei", 
            "id": "sg:person.01145107031.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145107031.36"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.66859.34", 
              "name": [
                "Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "O\u2019Connell", 
            "givenName": "Daniel J.", 
            "id": "sg:person.0757673254.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757673254.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.66859.34", 
              "name": [
                "Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lefkovith", 
            "givenName": "Ariel", 
            "id": "sg:person.01270732254.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270732254.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.66859.34", 
              "name": [
                "Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Brown", 
            "givenName": "Eric M.", 
            "id": "sg:person.01040701270.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040701270.67"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.66859.34", 
              "name": [
                "Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yassour", 
            "givenName": "Moran", 
            "id": "sg:person.0674565765.91", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674565765.91"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.66859.34", 
              "name": [
                "Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Varma", 
            "givenName": "Mukund", 
            "id": "sg:person.015511542471.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015511542471.67"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.66859.34", 
              "name": [
                "Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Abelin", 
            "givenName": "Jennifer G.", 
            "id": "sg:person.01357142261.68", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357142261.68"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA", 
                "Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Conway", 
            "givenName": "Kara L.", 
            "id": "sg:person.0640311610.92", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640311610.92"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Immunology Program, Harvard Medical School, Boston, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA", 
                "Immunology Program, Harvard Medical School, Boston, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jasso", 
            "givenName": "Guadalupe J.", 
            "id": "sg:person.0616770167.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616770167.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.66859.34", 
              "name": [
                "Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Matar", 
            "givenName": "Caline G.", 
            "id": "sg:person.01306252274.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306252274.83"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.66859.34", 
              "name": [
                "Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Carr", 
            "givenName": "Steven A.", 
            "id": "sg:person.014471312737.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014471312737.55"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA", 
                "Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA", 
                "Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA", 
                "Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA", 
                "Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xavier", 
            "givenName": "Ramnik J.", 
            "id": "sg:person.0717130066.82", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717130066.82"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/317359a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036357345", 
              "https://doi.org/10.1038/317359a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/353622a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008143034", 
              "https://doi.org/10.1038/353622a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14610", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038212794", 
              "https://doi.org/10.1038/nature14610"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/358764a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022407102", 
              "https://doi.org/10.1038/358764a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2012.8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038992953", 
              "https://doi.org/10.1038/ismej.2012.8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2007.261", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048442956", 
              "https://doi.org/10.1038/nprot.2007.261"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3300", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045313781", 
              "https://doi.org/10.1038/nbt.3300"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13075-014-0486-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025938392", 
              "https://doi.org/10.1186/s13075-014-0486-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/368215a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000873113", 
              "https://doi.org/10.1038/368215a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ni1008-1091", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024946259", 
              "https://doi.org/10.1038/ni1008-1091"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3176", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050115915", 
              "https://doi.org/10.1038/ng.3176"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg.2017.63", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091280737", 
              "https://doi.org/10.1038/nrg.2017.63"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40168-016-0181-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050507891", 
              "https://doi.org/10.1186/s40168-016-0181-2"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-10-22", 
        "datePublishedReg": "2018-10-22", 
        "description": "Identifying immunodominant T cell epitopes remains a significant challenge in the context of infectious disease, autoimmunity, and immuno-oncology. To address the challenge of antigen discovery, we developed a quantitative proteomic approach that enabled unbiased identification of major histocompatibility complex class II (MHCII)\u2013associated peptide epitopes and biochemical features of antigenicity. On the basis of these data, we trained a deep neural network model for genome-scale predictions of immunodominant MHCII-restricted epitopes. We named this model bacteria originated T cell antigen (BOTA) predictor. In validation studies, BOTA accurately predicted novel CD4 T cell epitopes derived from the model pathogen Listeria monocytogenes and the commensal microorganism Muribaculum intestinale. To conclusively define immunodominant T cell epitopes predicted by BOTA, we developed a high-throughput approach to screen DNA-encoded peptide\u2013MHCII libraries for functional recognition by T cell receptors identified from single-cell RNA sequencing. Collectively, these studies provide a framework for defining the immunodominance landscape across a broad range of immune pathologies.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41591-018-0203-7", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2439002", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2500444", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2500797", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3493714", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6618860", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1113716", 
            "issn": [
              "1078-8956", 
              "1546-170X"
            ], 
            "name": "Nature Medicine", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "11", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "24"
          }
        ], 
        "keywords": [
          "T cell epitopes", 
          "immunodominant T cell epitopes", 
          "cell epitopes", 
          "single-cell RNA sequencing", 
          "genome-scale prediction", 
          "quantitative proteomics approach", 
          "antigen discovery", 
          "pathogen Listeria monocytogenes", 
          "major histocompatibility complex class II", 
          "CD4 T cell epitopes", 
          "histocompatibility complex class II", 
          "high-throughput approach", 
          "proteomic approach", 
          "RNA sequencing", 
          "T cell receptor", 
          "unbiased identification", 
          "Muribaculum intestinale", 
          "immunodominance hierarchy", 
          "immune pathology", 
          "model bacteria", 
          "functional recognition", 
          "class II", 
          "infectious diseases", 
          "cell receptor", 
          "peptide epitopes", 
          "biochemical features", 
          "epitopes", 
          "validation study", 
          "Listeria monocytogenes", 
          "discovery", 
          "sequencing", 
          "autoimmunity", 
          "MHCII", 
          "bacteria", 
          "disease", 
          "pathology", 
          "receptors", 
          "broad range", 
          "BoTA", 
          "antigenicity", 
          "predictors", 
          "intestinale", 
          "study", 
          "landscape", 
          "identification", 
          "library", 
          "monocytogenes", 
          "significant challenge", 
          "challenges", 
          "basis", 
          "data", 
          "recognition", 
          "features", 
          "approach", 
          "range", 
          "prediction", 
          "model", 
          "hierarchy", 
          "specification", 
          "context", 
          "network model", 
          "deep neural network model", 
          "framework", 
          "neural network model"
        ], 
        "name": "Antigen discovery and specification of immunodominance hierarchies for MHCII-restricted epitopes", 
        "pagination": "1762-1772", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1107689545"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41591-018-0203-7"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30349087"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41591-018-0203-7", 
          "https://app.dimensions.ai/details/publication/pub.1107689545"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:03", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_791.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41591-018-0203-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41591-018-0203-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41591-018-0203-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41591-018-0203-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41591-018-0203-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    334 TRIPLES      21 PREDICATES      114 URIs      93 LITERALS      19 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41591-018-0203-7 schema:about N26d7a87a84504944baa1e6755a166c93
    2 N28c24c8bd803400fa1f07cd0b0750594
    3 N2a95b87ab93145abaf456dea7b9fc38d
    4 N2be82203a12b488b9efc111f34af7752
    5 N4e7c64daf7da41b5a1b90c2277855d06
    6 N659cf132726c4d6881b1f955b32643e2
    7 N6d2674e6cf3846b5b1197a3dfdf62c48
    8 N7a3fbc3713064435bfb45bfea66029ef
    9 N8e84d2b627fc4b3e89ca8d149de880cf
    10 Nd93b3516f9b543148e84f6d021aa7084
    11 Nefa9d070dede4d458d6845271eafe36f
    12 Nf8669de334344718b9c1b3b70897914d
    13 anzsrc-for:11
    14 anzsrc-for:1107
    15 schema:author N577eab083d9349f590675d8bd8ecc7a4
    16 schema:citation sg:pub.10.1038/317359a0
    17 sg:pub.10.1038/353622a0
    18 sg:pub.10.1038/358764a0
    19 sg:pub.10.1038/368215a0
    20 sg:pub.10.1038/ismej.2012.8
    21 sg:pub.10.1038/nature14610
    22 sg:pub.10.1038/nbt.3300
    23 sg:pub.10.1038/ng.3176
    24 sg:pub.10.1038/ni1008-1091
    25 sg:pub.10.1038/nprot.2007.261
    26 sg:pub.10.1038/nrg.2017.63
    27 sg:pub.10.1186/s13075-014-0486-0
    28 sg:pub.10.1186/s40168-016-0181-2
    29 schema:datePublished 2018-10-22
    30 schema:datePublishedReg 2018-10-22
    31 schema:description Identifying immunodominant T cell epitopes remains a significant challenge in the context of infectious disease, autoimmunity, and immuno-oncology. To address the challenge of antigen discovery, we developed a quantitative proteomic approach that enabled unbiased identification of major histocompatibility complex class II (MHCII)–associated peptide epitopes and biochemical features of antigenicity. On the basis of these data, we trained a deep neural network model for genome-scale predictions of immunodominant MHCII-restricted epitopes. We named this model bacteria originated T cell antigen (BOTA) predictor. In validation studies, BOTA accurately predicted novel CD4 T cell epitopes derived from the model pathogen Listeria monocytogenes and the commensal microorganism Muribaculum intestinale. To conclusively define immunodominant T cell epitopes predicted by BOTA, we developed a high-throughput approach to screen DNA-encoded peptide–MHCII libraries for functional recognition by T cell receptors identified from single-cell RNA sequencing. Collectively, these studies provide a framework for defining the immunodominance landscape across a broad range of immune pathologies.
    32 schema:genre article
    33 schema:isAccessibleForFree true
    34 schema:isPartOf N80b8397bd15b4b6384470f7eb5502609
    35 Na3064601869d4d6e8b2468d52d6b2100
    36 sg:journal.1113716
    37 schema:keywords BoTA
    38 CD4 T cell epitopes
    39 Listeria monocytogenes
    40 MHCII
    41 Muribaculum intestinale
    42 RNA sequencing
    43 T cell epitopes
    44 T cell receptor
    45 antigen discovery
    46 antigenicity
    47 approach
    48 autoimmunity
    49 bacteria
    50 basis
    51 biochemical features
    52 broad range
    53 cell epitopes
    54 cell receptor
    55 challenges
    56 class II
    57 context
    58 data
    59 deep neural network model
    60 discovery
    61 disease
    62 epitopes
    63 features
    64 framework
    65 functional recognition
    66 genome-scale prediction
    67 hierarchy
    68 high-throughput approach
    69 histocompatibility complex class II
    70 identification
    71 immune pathology
    72 immunodominance hierarchy
    73 immunodominant T cell epitopes
    74 infectious diseases
    75 intestinale
    76 landscape
    77 library
    78 major histocompatibility complex class II
    79 model
    80 model bacteria
    81 monocytogenes
    82 network model
    83 neural network model
    84 pathogen Listeria monocytogenes
    85 pathology
    86 peptide epitopes
    87 prediction
    88 predictors
    89 proteomic approach
    90 quantitative proteomics approach
    91 range
    92 receptors
    93 recognition
    94 sequencing
    95 significant challenge
    96 single-cell RNA sequencing
    97 specification
    98 study
    99 unbiased identification
    100 validation study
    101 schema:name Antigen discovery and specification of immunodominance hierarchies for MHCII-restricted epitopes
    102 schema:pagination 1762-1772
    103 schema:productId N8486616786b54e58830c9a10f9417f07
    104 Na765ef7d305948faad367e2b5530187a
    105 Nb9a907623c89465182f5a7130dcde783
    106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107689545
    107 https://doi.org/10.1038/s41591-018-0203-7
    108 schema:sdDatePublished 2022-09-02T16:03
    109 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    110 schema:sdPublisher Ndb83490ac210409faa2380be6f7f98f5
    111 schema:url https://doi.org/10.1038/s41591-018-0203-7
    112 sgo:license sg:explorer/license/
    113 sgo:sdDataset articles
    114 rdf:type schema:ScholarlyArticle
    115 N0ba60b1e9cb14ec08c535b2b9b70880d rdf:first sg:person.0674565765.91
    116 rdf:rest N0cf7c6fbbcec4f8eb93faff4544966da
    117 N0cf7c6fbbcec4f8eb93faff4544966da rdf:first sg:person.015511542471.67
    118 rdf:rest N3f75bcfe46574339937b8181eb83a766
    119 N1a4cf0af75924de2a92dbd9c08aa3325 rdf:first sg:person.0757673254.21
    120 rdf:rest N3c0b4d06df7e4c0e993fa2a7b5b5d23c
    121 N1c5bf62f96e34201945263bd8112c458 rdf:first sg:person.01145107031.36
    122 rdf:rest N1a4cf0af75924de2a92dbd9c08aa3325
    123 N26d7a87a84504944baa1e6755a166c93 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    124 schema:name Listeria monocytogenes
    125 rdf:type schema:DefinedTerm
    126 N28c24c8bd803400fa1f07cd0b0750594 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    127 schema:name Antigen Presentation
    128 rdf:type schema:DefinedTerm
    129 N2a95b87ab93145abaf456dea7b9fc38d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    130 schema:name Single-Cell Analysis
    131 rdf:type schema:DefinedTerm
    132 N2be82203a12b488b9efc111f34af7752 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    133 schema:name Histocompatibility Antigens Class II
    134 rdf:type schema:DefinedTerm
    135 N3c0b4d06df7e4c0e993fa2a7b5b5d23c rdf:first sg:person.01270732254.23
    136 rdf:rest N8ec2c06da09d48068968389223b379a9
    137 N3f75bcfe46574339937b8181eb83a766 rdf:first sg:person.01357142261.68
    138 rdf:rest N957643893a764474a5cd18bc2bee06e2
    139 N4e7c64daf7da41b5a1b90c2277855d06 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    140 schema:name Epitopes, T-Lymphocyte
    141 rdf:type schema:DefinedTerm
    142 N577eab083d9349f590675d8bd8ecc7a4 rdf:first sg:person.01123503121.96
    143 rdf:rest N1c5bf62f96e34201945263bd8112c458
    144 N659cf132726c4d6881b1f955b32643e2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    145 schema:name Proteomics
    146 rdf:type schema:DefinedTerm
    147 N6d2674e6cf3846b5b1197a3dfdf62c48 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    148 schema:name Humans
    149 rdf:type schema:DefinedTerm
    150 N7a3fbc3713064435bfb45bfea66029ef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name Receptors, Antigen, T-Cell
    152 rdf:type schema:DefinedTerm
    153 N80b8397bd15b4b6384470f7eb5502609 schema:volumeNumber 24
    154 rdf:type schema:PublicationVolume
    155 N8486616786b54e58830c9a10f9417f07 schema:name pubmed_id
    156 schema:value 30349087
    157 rdf:type schema:PropertyValue
    158 N8e84d2b627fc4b3e89ca8d149de880cf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    159 schema:name Immunodominant Epitopes
    160 rdf:type schema:DefinedTerm
    161 N8ec2c06da09d48068968389223b379a9 rdf:first sg:person.01040701270.67
    162 rdf:rest N0ba60b1e9cb14ec08c535b2b9b70880d
    163 N905290f270084d1390ca44e0edc3a481 rdf:first sg:person.01306252274.83
    164 rdf:rest Ne6a987613ebb443ba13feec1cc3e6779
    165 N957643893a764474a5cd18bc2bee06e2 rdf:first sg:person.0640311610.92
    166 rdf:rest Nf2efbeb49ba946ceabbcb3c1b8fbd6b6
    167 Na3064601869d4d6e8b2468d52d6b2100 schema:issueNumber 11
    168 rdf:type schema:PublicationIssue
    169 Na765ef7d305948faad367e2b5530187a schema:name doi
    170 schema:value 10.1038/s41591-018-0203-7
    171 rdf:type schema:PropertyValue
    172 Nb9a907623c89465182f5a7130dcde783 schema:name dimensions_id
    173 schema:value pub.1107689545
    174 rdf:type schema:PropertyValue
    175 Nc4ba7fcc78724d20a008f4c685788824 rdf:first sg:person.0717130066.82
    176 rdf:rest rdf:nil
    177 Nd93b3516f9b543148e84f6d021aa7084 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    178 schema:name Amino Acid Sequence
    179 rdf:type schema:DefinedTerm
    180 Ndb83490ac210409faa2380be6f7f98f5 schema:name Springer Nature - SN SciGraph project
    181 rdf:type schema:Organization
    182 Ne6a987613ebb443ba13feec1cc3e6779 rdf:first sg:person.014471312737.55
    183 rdf:rest Nc4ba7fcc78724d20a008f4c685788824
    184 Nefa9d070dede4d458d6845271eafe36f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    185 schema:name High-Throughput Nucleotide Sequencing
    186 rdf:type schema:DefinedTerm
    187 Nf2efbeb49ba946ceabbcb3c1b8fbd6b6 rdf:first sg:person.0616770167.58
    188 rdf:rest N905290f270084d1390ca44e0edc3a481
    189 Nf8669de334344718b9c1b3b70897914d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    190 schema:name CD4-Positive T-Lymphocytes
    191 rdf:type schema:DefinedTerm
    192 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    193 schema:name Medical and Health Sciences
    194 rdf:type schema:DefinedTerm
    195 anzsrc-for:1107 schema:inDefinedTermSet anzsrc-for:
    196 schema:name Immunology
    197 rdf:type schema:DefinedTerm
    198 sg:grant.2439002 http://pending.schema.org/fundedItem sg:pub.10.1038/s41591-018-0203-7
    199 rdf:type schema:MonetaryGrant
    200 sg:grant.2500444 http://pending.schema.org/fundedItem sg:pub.10.1038/s41591-018-0203-7
    201 rdf:type schema:MonetaryGrant
    202 sg:grant.2500797 http://pending.schema.org/fundedItem sg:pub.10.1038/s41591-018-0203-7
    203 rdf:type schema:MonetaryGrant
    204 sg:grant.3493714 http://pending.schema.org/fundedItem sg:pub.10.1038/s41591-018-0203-7
    205 rdf:type schema:MonetaryGrant
    206 sg:grant.6618860 http://pending.schema.org/fundedItem sg:pub.10.1038/s41591-018-0203-7
    207 rdf:type schema:MonetaryGrant
    208 sg:journal.1113716 schema:issn 1078-8956
    209 1546-170X
    210 schema:name Nature Medicine
    211 schema:publisher Springer Nature
    212 rdf:type schema:Periodical
    213 sg:person.01040701270.67 schema:affiliation grid-institutes:grid.66859.34
    214 schema:familyName Brown
    215 schema:givenName Eric M.
    216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040701270.67
    217 rdf:type schema:Person
    218 sg:person.01123503121.96 schema:affiliation grid-institutes:grid.116068.8
    219 schema:familyName Graham
    220 schema:givenName Daniel B.
    221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123503121.96
    222 rdf:type schema:Person
    223 sg:person.01145107031.36 schema:affiliation grid-institutes:grid.38142.3c
    224 schema:familyName Luo
    225 schema:givenName Chengwei
    226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145107031.36
    227 rdf:type schema:Person
    228 sg:person.01270732254.23 schema:affiliation grid-institutes:grid.66859.34
    229 schema:familyName Lefkovith
    230 schema:givenName Ariel
    231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270732254.23
    232 rdf:type schema:Person
    233 sg:person.01306252274.83 schema:affiliation grid-institutes:grid.66859.34
    234 schema:familyName Matar
    235 schema:givenName Caline G.
    236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306252274.83
    237 rdf:type schema:Person
    238 sg:person.01357142261.68 schema:affiliation grid-institutes:grid.66859.34
    239 schema:familyName Abelin
    240 schema:givenName Jennifer G.
    241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357142261.68
    242 rdf:type schema:Person
    243 sg:person.014471312737.55 schema:affiliation grid-institutes:grid.66859.34
    244 schema:familyName Carr
    245 schema:givenName Steven A.
    246 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014471312737.55
    247 rdf:type schema:Person
    248 sg:person.015511542471.67 schema:affiliation grid-institutes:grid.66859.34
    249 schema:familyName Varma
    250 schema:givenName Mukund
    251 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015511542471.67
    252 rdf:type schema:Person
    253 sg:person.0616770167.58 schema:affiliation grid-institutes:grid.38142.3c
    254 schema:familyName Jasso
    255 schema:givenName Guadalupe J.
    256 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616770167.58
    257 rdf:type schema:Person
    258 sg:person.0640311610.92 schema:affiliation grid-institutes:grid.38142.3c
    259 schema:familyName Conway
    260 schema:givenName Kara L.
    261 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640311610.92
    262 rdf:type schema:Person
    263 sg:person.0674565765.91 schema:affiliation grid-institutes:grid.66859.34
    264 schema:familyName Yassour
    265 schema:givenName Moran
    266 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674565765.91
    267 rdf:type schema:Person
    268 sg:person.0717130066.82 schema:affiliation grid-institutes:grid.38142.3c
    269 schema:familyName Xavier
    270 schema:givenName Ramnik J.
    271 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717130066.82
    272 rdf:type schema:Person
    273 sg:person.0757673254.21 schema:affiliation grid-institutes:grid.66859.34
    274 schema:familyName O’Connell
    275 schema:givenName Daniel J.
    276 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757673254.21
    277 rdf:type schema:Person
    278 sg:pub.10.1038/317359a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036357345
    279 https://doi.org/10.1038/317359a0
    280 rdf:type schema:CreativeWork
    281 sg:pub.10.1038/353622a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008143034
    282 https://doi.org/10.1038/353622a0
    283 rdf:type schema:CreativeWork
    284 sg:pub.10.1038/358764a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022407102
    285 https://doi.org/10.1038/358764a0
    286 rdf:type schema:CreativeWork
    287 sg:pub.10.1038/368215a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000873113
    288 https://doi.org/10.1038/368215a0
    289 rdf:type schema:CreativeWork
    290 sg:pub.10.1038/ismej.2012.8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038992953
    291 https://doi.org/10.1038/ismej.2012.8
    292 rdf:type schema:CreativeWork
    293 sg:pub.10.1038/nature14610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038212794
    294 https://doi.org/10.1038/nature14610
    295 rdf:type schema:CreativeWork
    296 sg:pub.10.1038/nbt.3300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045313781
    297 https://doi.org/10.1038/nbt.3300
    298 rdf:type schema:CreativeWork
    299 sg:pub.10.1038/ng.3176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050115915
    300 https://doi.org/10.1038/ng.3176
    301 rdf:type schema:CreativeWork
    302 sg:pub.10.1038/ni1008-1091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024946259
    303 https://doi.org/10.1038/ni1008-1091
    304 rdf:type schema:CreativeWork
    305 sg:pub.10.1038/nprot.2007.261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048442956
    306 https://doi.org/10.1038/nprot.2007.261
    307 rdf:type schema:CreativeWork
    308 sg:pub.10.1038/nrg.2017.63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091280737
    309 https://doi.org/10.1038/nrg.2017.63
    310 rdf:type schema:CreativeWork
    311 sg:pub.10.1186/s13075-014-0486-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025938392
    312 https://doi.org/10.1186/s13075-014-0486-0
    313 rdf:type schema:CreativeWork
    314 sg:pub.10.1186/s40168-016-0181-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050507891
    315 https://doi.org/10.1186/s40168-016-0181-2
    316 rdf:type schema:CreativeWork
    317 grid-institutes:grid.116068.8 schema:alternateName Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA
    318 schema:name Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
    319 Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA
    320 Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
    321 Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
    322 rdf:type schema:Organization
    323 grid-institutes:grid.38142.3c schema:alternateName Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
    324 Immunology Program, Harvard Medical School, Boston, MA, USA
    325 schema:name Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
    326 Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
    327 Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA
    328 Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
    329 Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
    330 Immunology Program, Harvard Medical School, Boston, MA, USA
    331 rdf:type schema:Organization
    332 grid-institutes:grid.66859.34 schema:alternateName Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
    333 schema:name Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
    334 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...