Regional variation limits applications of healthy gut microbiome reference ranges and disease models View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-08-27

AUTHORS

Yan He, Wei Wu, Hui-Min Zheng, Pan Li, Daniel McDonald, Hua-Fang Sheng, Mu-Xuan Chen, Zi-Hui Chen, Gui-Yuan Ji, Zhong-Dai-Xi Zheng, Prabhakar Mujagond, Xiao-Jiao Chen, Zu-Hua Rong, Peng Chen, Li-Yi Lyu, Xian Wang, Chong-Bin Wu, Nan Yu, Yan-Jun Xu, Jia Yin, Jeroen Raes, Rob Knight, Wen-Jun Ma, Hong-Wei Zhou

ABSTRACT

Dysbiosis, departure of the gut microbiome from a healthy state, has been suggested to be a powerful biomarker of disease incidence and progression1–3. Diagnostic applications have been proposed for inflammatory bowel disease diagnosis and prognosis4, colorectal cancer prescreening5 and therapeutic choices in melanoma6. Noninvasive sampling could facilitate large-scale public health applications, including early diagnosis and risk assessment in metabolic7 and cardiovascular diseases8. To understand the generalizability of microbiota-based diagnostic models of metabolic disease, we characterized the gut microbiota of 7,009 individuals from 14 districts within 1 province in China. Among phenotypes, host location showed the strongest associations with microbiota variations. Microbiota-based metabolic disease models developed in one location failed when used elsewhere, suggesting that such models cannot be extrapolated. Interpolated models performed much better, especially in diseases with obvious microbiota-related characteristics. Interpolation efficiency decreased as geographic scale increased, indicating a need to build localized baseline and disease models to predict metabolic risks. More... »

PAGES

1532-1535

References to SciGraph publications

  • 2010-04-11. QIIME allows analysis of high-throughput community sequencing data in NATURE METHODS
  • 2009-10-29. BARCRAWL and BARTAB: software tools for the design and implementation of barcoded primers for highly multiplexed DNA sequencing in BMC BIOINFORMATICS
  • 2012-04-16. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment in GENOME BIOLOGY
  • 2011-12-01. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2017-10-02. Towards standards for human fecal sample processing in metagenomic studies in NATURE BIOTECHNOLOGY
  • 2015-12-02. Disentangling the effects of type 2 diabetes and metformin on the human gut microbiota in NATURE
  • 2018-01-18. Comparative analyses of fecal microbiota in Chinese isolated Yao population, minority Zhuang and rural Han by 16sRNA sequencing in SCIENTIFIC REPORTS
  • 2016-07-06. Microbiome-wide association studies link dynamic microbial consortia to disease in NATURE
  • 2017-09-15. Recent urbanization in China is correlated with a Westernized microbiome encoding increased virulence and antibiotic resistance genes in MICROBIOME
  • 2018-04-01. Current understanding of the human microbiome in NATURE MEDICINE
  • 2012-05-09. Human gut microbiome viewed across age and geography in NATURE
  • 2013-09-17. Functional genomic analyses of the gut microbiota for CRC screening in NATURE REVIEWS GASTROENTEROLOGY & HEPATOLOGY
  • 2015-05-20. Stability of operational taxonomic units: an important but neglected property for analyzing microbial diversity in MICROBIOME
  • 2015-11-04. Context and the human microbiome in MICROBIOME
  • Journal

    TITLE

    Nature Medicine

    ISSUE

    10

    VOLUME

    24

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41591-018-0164-x

    DOI

    http://dx.doi.org/10.1038/s41591-018-0164-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1106199536

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30150716


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Public Health and Health Services", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "China", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gastrointestinal Microbiome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Host-Pathogen Interactions", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Metabolic Diseases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phylogeography", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Prognosis", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China", 
              "id": "http://www.grid.ac/institutes/grid.284723.8", 
              "name": [
                "Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "He", 
            "givenName": "Yan", 
            "id": "sg:person.01057646527.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057646527.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China", 
              "id": "http://www.grid.ac/institutes/grid.508326.a", 
              "name": [
                "Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou, China", 
                "Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wu", 
            "givenName": "Wei", 
            "id": "sg:person.0772733144.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772733144.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou, China", 
              "id": "http://www.grid.ac/institutes/grid.284723.8", 
              "name": [
                "Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China", 
                "Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zheng", 
            "givenName": "Hui-Min", 
            "id": "sg:person.011557431334.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011557431334.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou, China", 
              "id": "http://www.grid.ac/institutes/grid.284723.8", 
              "name": [
                "Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China", 
                "Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Pan", 
            "id": "sg:person.012355011734.64", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012355011734.64"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Pediatrics, University of California San Diego, La Jolla, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.266100.3", 
              "name": [
                "Department of Pediatrics, University of California San Diego, La Jolla, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "McDonald", 
            "givenName": "Daniel", 
            "id": "sg:person.01324411177.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324411177.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China", 
              "id": "http://www.grid.ac/institutes/grid.284723.8", 
              "name": [
                "Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sheng", 
            "givenName": "Hua-Fang", 
            "id": "sg:person.0676122006.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0676122006.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China", 
              "id": "http://www.grid.ac/institutes/grid.284723.8", 
              "name": [
                "Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Mu-Xuan", 
            "id": "sg:person.015234033713.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015234033713.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China", 
              "id": "http://www.grid.ac/institutes/grid.508326.a", 
              "name": [
                "Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Zi-Hui", 
            "id": "sg:person.01250472621.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250472621.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China", 
              "id": "http://www.grid.ac/institutes/grid.508326.a", 
              "name": [
                "Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ji", 
            "givenName": "Gui-Yuan", 
            "id": "sg:person.01155735211.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155735211.40"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou, China", 
              "id": "http://www.grid.ac/institutes/grid.284723.8", 
              "name": [
                "Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zheng", 
            "givenName": "Zhong-Dai-Xi", 
            "id": "sg:person.07435223134.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07435223134.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Gut Infection and Inflammation Biology Lab, UNESCO-Regional Center for Biotechnology, NCR Biotech Science Cluster, Faridabad, India", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Gut Infection and Inflammation Biology Lab, UNESCO-Regional Center for Biotechnology, NCR Biotech Science Cluster, Faridabad, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mujagond", 
            "givenName": "Prabhakar", 
            "id": "sg:person.010232603534.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010232603534.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China", 
              "id": "http://www.grid.ac/institutes/grid.284723.8", 
              "name": [
                "Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Xiao-Jiao", 
            "id": "sg:person.011030164134.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011030164134.47"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou, China", 
              "id": "http://www.grid.ac/institutes/grid.284723.8", 
              "name": [
                "Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China", 
                "Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rong", 
            "givenName": "Zu-Hua", 
            "id": "sg:person.01260171625.59", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260171625.59"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Pathophysiology, Southern Medical University, Guangzhou, China", 
              "id": "http://www.grid.ac/institutes/grid.284723.8", 
              "name": [
                "Department of Pathophysiology, Southern Medical University, Guangzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Peng", 
            "id": "sg:person.01116225354.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116225354.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Shenzhen Fun-Poo Biotech Co., Ltd., Shenzhen, China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Shenzhen Fun-Poo Biotech Co., Ltd., Shenzhen, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lyu", 
            "givenName": "Li-Yi", 
            "id": "sg:person.011207641304.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011207641304.86"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Shenzhen Fun-Poo Biotech Co., Ltd., Shenzhen, China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Shenzhen Fun-Poo Biotech Co., Ltd., Shenzhen, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Xian", 
            "id": "sg:person.012005221704.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012005221704.76"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Shenzhen Fun-Poo Biotech Co., Ltd., Shenzhen, China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Shenzhen Fun-Poo Biotech Co., Ltd., Shenzhen, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wu", 
            "givenName": "Chong-Bin", 
            "id": "sg:person.014613446534.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014613446534.88"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China", 
              "id": "http://www.grid.ac/institutes/grid.284723.8", 
              "name": [
                "Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yu", 
            "givenName": "Nan", 
            "id": "sg:person.0674514010.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674514010.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China", 
              "id": "http://www.grid.ac/institutes/grid.508326.a", 
              "name": [
                "Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xu", 
            "givenName": "Yan-Jun", 
            "id": "sg:person.01173316633.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173316633.47"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Neurology, NanFang Hospital, Southern Medical University, Guangzhou, China", 
              "id": "http://www.grid.ac/institutes/grid.284723.8", 
              "name": [
                "Department of Neurology, NanFang Hospital, Southern Medical University, Guangzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yin", 
            "givenName": "Jia", 
            "id": "sg:person.01362332620.71", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362332620.71"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Vrije Universiteit Brussel, Faculty of Sciences and Bioengineering Sciences, Microbiology Unit, Brussels, Belgium", 
              "id": "http://www.grid.ac/institutes/grid.8767.e", 
              "name": [
                "Department of Microbiology and Immunology, KU Leuven\u2013University of Leuven, Leuven, Belgium", 
                "VIB, Center for the Biology of Disease, Leuven, Belgium", 
                "Vrije Universiteit Brussel, Faculty of Sciences and Bioengineering Sciences, Microbiology Unit, Brussels, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Raes", 
            "givenName": "Jeroen", 
            "id": "sg:person.0765515705.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765515705.86"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.266100.3", 
              "name": [
                "Department of Pediatrics, University of California San Diego, La Jolla, CA, USA", 
                "Department of Computer Science & Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA", 
                "Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Knight", 
            "givenName": "Rob", 
            "id": "sg:person.016311745377.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016311745377.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China", 
              "id": "http://www.grid.ac/institutes/grid.508326.a", 
              "name": [
                "Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ma", 
            "givenName": "Wen-Jun", 
            "id": "sg:person.01113051340.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113051340.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China", 
              "id": "http://www.grid.ac/institutes/grid.284723.8", 
              "name": [
                "Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China", 
                "Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou, China", 
                "State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhou", 
            "givenName": "Hong-Wei", 
            "id": "sg:person.0777466453.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777466453.44"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nmeth.f.303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009032055", 
              "https://doi.org/10.1038/nmeth.f.303"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40168-015-0117-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028122611", 
              "https://doi.org/10.1186/s40168-015-0117-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature15766", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014535385", 
              "https://doi.org/10.1038/nature15766"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrgastro.2013.178", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048327279", 
              "https://doi.org/10.1038/nrgastro.2013.178"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm.4517", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103195574", 
              "https://doi.org/10.1038/nm.4517"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-10-362", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024254929", 
              "https://doi.org/10.1186/1471-2105-10-362"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40168-015-0081-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029757572", 
              "https://doi.org/10.1186/s40168-015-0081-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3960", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092055967", 
              "https://doi.org/10.1038/nbt.3960"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2012-13-9-r79", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029450096", 
              "https://doi.org/10.1186/gb-2012-13-9-r79"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11053", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052378845", 
              "https://doi.org/10.1038/nature11053"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature18850", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013019120", 
              "https://doi.org/10.1038/nature18850"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40168-017-0338-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091775780", 
              "https://doi.org/10.1186/s40168-017-0338-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-017-17851-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100351876", 
              "https://doi.org/10.1038/s41598-017-17851-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2011.139", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051863807", 
              "https://doi.org/10.1038/ismej.2011.139"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-08-27", 
        "datePublishedReg": "2018-08-27", 
        "description": "Dysbiosis, departure of the gut microbiome from a healthy state, has been suggested to be a powerful biomarker of disease incidence and progression1\u20133. Diagnostic applications have been proposed for inflammatory bowel disease diagnosis and prognosis4, colorectal cancer prescreening5 and therapeutic choices in melanoma6. Noninvasive sampling could facilitate large-scale public health applications, including early diagnosis and risk assessment in metabolic7 and cardiovascular diseases8. To understand the generalizability of microbiota-based diagnostic models of metabolic disease, we characterized the gut microbiota of 7,009 individuals from 14 districts within 1 province in China. Among phenotypes, host location showed the strongest associations with microbiota variations. Microbiota-based metabolic disease models developed in one location failed when used elsewhere, suggesting that such models cannot be extrapolated. Interpolated models performed much better, especially in diseases with obvious microbiota-related characteristics. Interpolation efficiency decreased as geographic scale increased, indicating a need to build localized baseline and disease models to predict metabolic risks.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41591-018-0164-x", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8359299", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8189952", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8177112", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1113716", 
            "issn": [
              "1078-8956", 
              "1546-170X"
            ], 
            "name": "Nature Medicine", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "10", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "24"
          }
        ], 
        "keywords": [
          "disease models", 
          "inflammatory bowel disease diagnosis", 
          "metabolic disease models", 
          "metabolic risk", 
          "therapeutic choice", 
          "early diagnosis", 
          "gut microbiota", 
          "metabolic diseases", 
          "reference range", 
          "gut microbiome", 
          "powerful biomarker", 
          "strong association", 
          "public health applications", 
          "microbiota variation", 
          "disease", 
          "diagnosis", 
          "microbiota", 
          "healthy state", 
          "disease diagnosis", 
          "disease incidence", 
          "dysbiosis", 
          "risk assessment", 
          "health applications", 
          "incidence", 
          "regional variation", 
          "baseline", 
          "biomarkers", 
          "risk", 
          "diagnostic model", 
          "noninvasive sampling", 
          "association", 
          "microbiome", 
          "phenotype", 
          "diagnostic applications", 
          "individuals", 
          "assessment", 
          "generalizability", 
          "need", 
          "interpolated model", 
          "location", 
          "model", 
          "sampling", 
          "district", 
          "choice", 
          "scale", 
          "characteristics", 
          "Province", 
          "variation", 
          "state", 
          "host location", 
          "range", 
          "China", 
          "applications", 
          "such models", 
          "efficiency", 
          "departure", 
          "geographic scales", 
          "interpolation efficiency", 
          "progression1\u20133", 
          "bowel disease diagnosis", 
          "prognosis4", 
          "colorectal cancer prescreening5", 
          "cancer prescreening5", 
          "prescreening5", 
          "melanoma6", 
          "large-scale public health applications", 
          "metabolic7", 
          "cardiovascular diseases8", 
          "diseases8", 
          "microbiota-based diagnostic models", 
          "obvious microbiota-related characteristics", 
          "microbiota-related characteristics", 
          "healthy gut microbiome reference ranges", 
          "gut microbiome reference ranges", 
          "microbiome reference ranges"
        ], 
        "name": "Regional variation limits applications of healthy gut microbiome reference ranges and disease models", 
        "pagination": "1532-1535", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1106199536"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41591-018-0164-x"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30150716"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41591-018-0164-x", 
          "https://app.dimensions.ai/details/publication/pub.1106199536"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:47", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_793.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41591-018-0164-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41591-018-0164-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41591-018-0164-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41591-018-0164-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41591-018-0164-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    426 TRIPLES      22 PREDICATES      124 URIs      102 LITERALS      16 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41591-018-0164-x schema:about N3d92facacab349fb95d6359e68f21033
    2 N41a9cc5fec254c8c89da905072cb0a57
    3 N684cc915c1374b779ba6405a422761a4
    4 N7586cef7bd694cc4990950873254e07e
    5 N7f81da3a9a6d40ad87d04dfef62588fb
    6 N8c5e7ea123a844c1a19e82e812be7ce9
    7 N91d6b986050d41e79b9b4a6ea2d574e9
    8 Nad0df3b31a724333b729a92690bb91a5
    9 Nea9668f160e647448139b68a1d9cbcb6
    10 anzsrc-for:11
    11 anzsrc-for:1117
    12 schema:author N497b5d472b5940d28d68ad604c4d268f
    13 schema:citation sg:pub.10.1038/ismej.2011.139
    14 sg:pub.10.1038/nature11053
    15 sg:pub.10.1038/nature15766
    16 sg:pub.10.1038/nature18850
    17 sg:pub.10.1038/nbt.3960
    18 sg:pub.10.1038/nm.4517
    19 sg:pub.10.1038/nmeth.f.303
    20 sg:pub.10.1038/nrgastro.2013.178
    21 sg:pub.10.1038/s41598-017-17851-8
    22 sg:pub.10.1186/1471-2105-10-362
    23 sg:pub.10.1186/gb-2012-13-9-r79
    24 sg:pub.10.1186/s40168-015-0081-x
    25 sg:pub.10.1186/s40168-015-0117-2
    26 sg:pub.10.1186/s40168-017-0338-7
    27 schema:datePublished 2018-08-27
    28 schema:datePublishedReg 2018-08-27
    29 schema:description Dysbiosis, departure of the gut microbiome from a healthy state, has been suggested to be a powerful biomarker of disease incidence and progression1–3. Diagnostic applications have been proposed for inflammatory bowel disease diagnosis and prognosis4, colorectal cancer prescreening5 and therapeutic choices in melanoma6. Noninvasive sampling could facilitate large-scale public health applications, including early diagnosis and risk assessment in metabolic7 and cardiovascular diseases8. To understand the generalizability of microbiota-based diagnostic models of metabolic disease, we characterized the gut microbiota of 7,009 individuals from 14 districts within 1 province in China. Among phenotypes, host location showed the strongest associations with microbiota variations. Microbiota-based metabolic disease models developed in one location failed when used elsewhere, suggesting that such models cannot be extrapolated. Interpolated models performed much better, especially in diseases with obvious microbiota-related characteristics. Interpolation efficiency decreased as geographic scale increased, indicating a need to build localized baseline and disease models to predict metabolic risks.
    30 schema:genre article
    31 schema:inLanguage en
    32 schema:isAccessibleForFree false
    33 schema:isPartOf N3d647a7538af418eaf65cfb08727749f
    34 N5f5af41557ca49acb8e0c234a4e85317
    35 sg:journal.1113716
    36 schema:keywords China
    37 Province
    38 applications
    39 assessment
    40 association
    41 baseline
    42 biomarkers
    43 bowel disease diagnosis
    44 cancer prescreening5
    45 cardiovascular diseases8
    46 characteristics
    47 choice
    48 colorectal cancer prescreening5
    49 departure
    50 diagnosis
    51 diagnostic applications
    52 diagnostic model
    53 disease
    54 disease diagnosis
    55 disease incidence
    56 disease models
    57 diseases8
    58 district
    59 dysbiosis
    60 early diagnosis
    61 efficiency
    62 generalizability
    63 geographic scales
    64 gut microbiome
    65 gut microbiome reference ranges
    66 gut microbiota
    67 health applications
    68 healthy gut microbiome reference ranges
    69 healthy state
    70 host location
    71 incidence
    72 individuals
    73 inflammatory bowel disease diagnosis
    74 interpolated model
    75 interpolation efficiency
    76 large-scale public health applications
    77 location
    78 melanoma6
    79 metabolic disease models
    80 metabolic diseases
    81 metabolic risk
    82 metabolic7
    83 microbiome
    84 microbiome reference ranges
    85 microbiota
    86 microbiota variation
    87 microbiota-based diagnostic models
    88 microbiota-related characteristics
    89 model
    90 need
    91 noninvasive sampling
    92 obvious microbiota-related characteristics
    93 phenotype
    94 powerful biomarker
    95 prescreening5
    96 prognosis4
    97 progression1–3
    98 public health applications
    99 range
    100 reference range
    101 regional variation
    102 risk
    103 risk assessment
    104 sampling
    105 scale
    106 state
    107 strong association
    108 such models
    109 therapeutic choice
    110 variation
    111 schema:name Regional variation limits applications of healthy gut microbiome reference ranges and disease models
    112 schema:pagination 1532-1535
    113 schema:productId N30019aa8e1374733be64b1a19d01158b
    114 N9627f5d828164be2b02260717a6ebd61
    115 Ndc4914fc422b4f728d4e771a57641df1
    116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106199536
    117 https://doi.org/10.1038/s41591-018-0164-x
    118 schema:sdDatePublished 2022-01-01T18:47
    119 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    120 schema:sdPublisher N87f02af059eb499c8523c1744dfcc094
    121 schema:url https://doi.org/10.1038/s41591-018-0164-x
    122 sgo:license sg:explorer/license/
    123 sgo:sdDataset articles
    124 rdf:type schema:ScholarlyArticle
    125 N04770cc39b604f85b98c32f34dfe4814 rdf:first sg:person.011207641304.86
    126 rdf:rest N61b803153e1842038692e75fb27649c0
    127 N0943edd72d924c3987911b683c553373 rdf:first sg:person.01173316633.47
    128 rdf:rest Nadea3eccfa554b64a968618b4fe55bc0
    129 N0b552dbcd8c1494eb9e197d1ceea774d rdf:first sg:person.0777466453.44
    130 rdf:rest rdf:nil
    131 N1b44675c3acc4876abab51d893bf15ca rdf:first sg:person.0765515705.86
    132 rdf:rest N5d98dbfa79a34f19a0cd4a6568ff09d3
    133 N2ede7cbc469d4b28a432b3e7bddbad1b rdf:first sg:person.01250472621.41
    134 rdf:rest Nd50432eb376943ff9d1aea6fc5f9bf16
    135 N30019aa8e1374733be64b1a19d01158b schema:name pubmed_id
    136 schema:value 30150716
    137 rdf:type schema:PropertyValue
    138 N3d647a7538af418eaf65cfb08727749f schema:volumeNumber 24
    139 rdf:type schema:PublicationVolume
    140 N3d92facacab349fb95d6359e68f21033 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    141 schema:name Phylogeography
    142 rdf:type schema:DefinedTerm
    143 N41a9cc5fec254c8c89da905072cb0a57 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    144 schema:name Prognosis
    145 rdf:type schema:DefinedTerm
    146 N497b5d472b5940d28d68ad604c4d268f rdf:first sg:person.01057646527.26
    147 rdf:rest Nb976ef2790c541499fb0eff48c4e4b75
    148 N55514db88fb443a6af2e4f395da87018 rdf:first sg:person.011557431334.96
    149 rdf:rest N8c9eac689fd94ca8a6436f79b74cc923
    150 N5d98dbfa79a34f19a0cd4a6568ff09d3 rdf:first sg:person.016311745377.96
    151 rdf:rest Nd5f870f47a284d56ac9e9e49e92a6e8c
    152 N5f5af41557ca49acb8e0c234a4e85317 schema:issueNumber 10
    153 rdf:type schema:PublicationIssue
    154 N5fbaf4682681452fb89aa9d35d9f9eff rdf:first sg:person.0676122006.18
    155 rdf:rest Na921acad60184271b9b714df046934e8
    156 N61b803153e1842038692e75fb27649c0 rdf:first sg:person.012005221704.76
    157 rdf:rest Nab6902b9a15c45629621692066bb92c4
    158 N684cc915c1374b779ba6405a422761a4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    159 schema:name Gastrointestinal Microbiome
    160 rdf:type schema:DefinedTerm
    161 N6e9ba46805ab4b708ed82cc3247e9424 rdf:first sg:person.01324411177.44
    162 rdf:rest N5fbaf4682681452fb89aa9d35d9f9eff
    163 N7586cef7bd694cc4990950873254e07e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    164 schema:name Host-Pathogen Interactions
    165 rdf:type schema:DefinedTerm
    166 N7f81da3a9a6d40ad87d04dfef62588fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    167 schema:name Male
    168 rdf:type schema:DefinedTerm
    169 N87f02af059eb499c8523c1744dfcc094 schema:name Springer Nature - SN SciGraph project
    170 rdf:type schema:Organization
    171 N8c5e7ea123a844c1a19e82e812be7ce9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    172 schema:name China
    173 rdf:type schema:DefinedTerm
    174 N8c9eac689fd94ca8a6436f79b74cc923 rdf:first sg:person.012355011734.64
    175 rdf:rest N6e9ba46805ab4b708ed82cc3247e9424
    176 N91d6b986050d41e79b9b4a6ea2d574e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    177 schema:name Female
    178 rdf:type schema:DefinedTerm
    179 N9627f5d828164be2b02260717a6ebd61 schema:name doi
    180 schema:value 10.1038/s41591-018-0164-x
    181 rdf:type schema:PropertyValue
    182 N9d553453c2f54c7390af3e85fb6dbcb4 rdf:first sg:person.01260171625.59
    183 rdf:rest Nfba12feb972d453e85f558b407e99167
    184 Na921acad60184271b9b714df046934e8 rdf:first sg:person.015234033713.30
    185 rdf:rest N2ede7cbc469d4b28a432b3e7bddbad1b
    186 Nab6902b9a15c45629621692066bb92c4 rdf:first sg:person.014613446534.88
    187 rdf:rest Nc5c8a38cacad43a193b5715193abefc9
    188 Nad0df3b31a724333b729a92690bb91a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    189 schema:name Metabolic Diseases
    190 rdf:type schema:DefinedTerm
    191 Nadea3eccfa554b64a968618b4fe55bc0 rdf:first sg:person.01362332620.71
    192 rdf:rest N1b44675c3acc4876abab51d893bf15ca
    193 Nb976ef2790c541499fb0eff48c4e4b75 rdf:first sg:person.0772733144.12
    194 rdf:rest N55514db88fb443a6af2e4f395da87018
    195 Nc3e3a01456884152949f07634a043fc7 rdf:first sg:person.07435223134.31
    196 rdf:rest Ned586eb3a4b045859346cc8e0a5995a4
    197 Nc5c8a38cacad43a193b5715193abefc9 rdf:first sg:person.0674514010.21
    198 rdf:rest N0943edd72d924c3987911b683c553373
    199 Nd50432eb376943ff9d1aea6fc5f9bf16 rdf:first sg:person.01155735211.40
    200 rdf:rest Nc3e3a01456884152949f07634a043fc7
    201 Nd5f870f47a284d56ac9e9e49e92a6e8c rdf:first sg:person.01113051340.35
    202 rdf:rest N0b552dbcd8c1494eb9e197d1ceea774d
    203 Ndc4914fc422b4f728d4e771a57641df1 schema:name dimensions_id
    204 schema:value pub.1106199536
    205 rdf:type schema:PropertyValue
    206 Ne404a17394ff4d888c621dc01ba842c2 rdf:first sg:person.011030164134.47
    207 rdf:rest N9d553453c2f54c7390af3e85fb6dbcb4
    208 Nea9668f160e647448139b68a1d9cbcb6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    209 schema:name Humans
    210 rdf:type schema:DefinedTerm
    211 Ned586eb3a4b045859346cc8e0a5995a4 rdf:first sg:person.010232603534.58
    212 rdf:rest Ne404a17394ff4d888c621dc01ba842c2
    213 Nfba12feb972d453e85f558b407e99167 rdf:first sg:person.01116225354.28
    214 rdf:rest N04770cc39b604f85b98c32f34dfe4814
    215 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    216 schema:name Medical and Health Sciences
    217 rdf:type schema:DefinedTerm
    218 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
    219 schema:name Public Health and Health Services
    220 rdf:type schema:DefinedTerm
    221 sg:grant.8177112 http://pending.schema.org/fundedItem sg:pub.10.1038/s41591-018-0164-x
    222 rdf:type schema:MonetaryGrant
    223 sg:grant.8189952 http://pending.schema.org/fundedItem sg:pub.10.1038/s41591-018-0164-x
    224 rdf:type schema:MonetaryGrant
    225 sg:grant.8359299 http://pending.schema.org/fundedItem sg:pub.10.1038/s41591-018-0164-x
    226 rdf:type schema:MonetaryGrant
    227 sg:journal.1113716 schema:issn 1078-8956
    228 1546-170X
    229 schema:name Nature Medicine
    230 schema:publisher Springer Nature
    231 rdf:type schema:Periodical
    232 sg:person.010232603534.58 schema:affiliation grid-institutes:None
    233 schema:familyName Mujagond
    234 schema:givenName Prabhakar
    235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010232603534.58
    236 rdf:type schema:Person
    237 sg:person.01057646527.26 schema:affiliation grid-institutes:grid.284723.8
    238 schema:familyName He
    239 schema:givenName Yan
    240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057646527.26
    241 rdf:type schema:Person
    242 sg:person.011030164134.47 schema:affiliation grid-institutes:grid.284723.8
    243 schema:familyName Chen
    244 schema:givenName Xiao-Jiao
    245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011030164134.47
    246 rdf:type schema:Person
    247 sg:person.01113051340.35 schema:affiliation grid-institutes:grid.508326.a
    248 schema:familyName Ma
    249 schema:givenName Wen-Jun
    250 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113051340.35
    251 rdf:type schema:Person
    252 sg:person.01116225354.28 schema:affiliation grid-institutes:grid.284723.8
    253 schema:familyName Chen
    254 schema:givenName Peng
    255 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116225354.28
    256 rdf:type schema:Person
    257 sg:person.011207641304.86 schema:affiliation grid-institutes:None
    258 schema:familyName Lyu
    259 schema:givenName Li-Yi
    260 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011207641304.86
    261 rdf:type schema:Person
    262 sg:person.01155735211.40 schema:affiliation grid-institutes:grid.508326.a
    263 schema:familyName Ji
    264 schema:givenName Gui-Yuan
    265 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155735211.40
    266 rdf:type schema:Person
    267 sg:person.011557431334.96 schema:affiliation grid-institutes:grid.284723.8
    268 schema:familyName Zheng
    269 schema:givenName Hui-Min
    270 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011557431334.96
    271 rdf:type schema:Person
    272 sg:person.01173316633.47 schema:affiliation grid-institutes:grid.508326.a
    273 schema:familyName Xu
    274 schema:givenName Yan-Jun
    275 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173316633.47
    276 rdf:type schema:Person
    277 sg:person.012005221704.76 schema:affiliation grid-institutes:None
    278 schema:familyName Wang
    279 schema:givenName Xian
    280 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012005221704.76
    281 rdf:type schema:Person
    282 sg:person.012355011734.64 schema:affiliation grid-institutes:grid.284723.8
    283 schema:familyName Li
    284 schema:givenName Pan
    285 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012355011734.64
    286 rdf:type schema:Person
    287 sg:person.01250472621.41 schema:affiliation grid-institutes:grid.508326.a
    288 schema:familyName Chen
    289 schema:givenName Zi-Hui
    290 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250472621.41
    291 rdf:type schema:Person
    292 sg:person.01260171625.59 schema:affiliation grid-institutes:grid.284723.8
    293 schema:familyName Rong
    294 schema:givenName Zu-Hua
    295 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260171625.59
    296 rdf:type schema:Person
    297 sg:person.01324411177.44 schema:affiliation grid-institutes:grid.266100.3
    298 schema:familyName McDonald
    299 schema:givenName Daniel
    300 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324411177.44
    301 rdf:type schema:Person
    302 sg:person.01362332620.71 schema:affiliation grid-institutes:grid.284723.8
    303 schema:familyName Yin
    304 schema:givenName Jia
    305 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362332620.71
    306 rdf:type schema:Person
    307 sg:person.014613446534.88 schema:affiliation grid-institutes:None
    308 schema:familyName Wu
    309 schema:givenName Chong-Bin
    310 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014613446534.88
    311 rdf:type schema:Person
    312 sg:person.015234033713.30 schema:affiliation grid-institutes:grid.284723.8
    313 schema:familyName Chen
    314 schema:givenName Mu-Xuan
    315 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015234033713.30
    316 rdf:type schema:Person
    317 sg:person.016311745377.96 schema:affiliation grid-institutes:grid.266100.3
    318 schema:familyName Knight
    319 schema:givenName Rob
    320 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016311745377.96
    321 rdf:type schema:Person
    322 sg:person.0674514010.21 schema:affiliation grid-institutes:grid.284723.8
    323 schema:familyName Yu
    324 schema:givenName Nan
    325 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674514010.21
    326 rdf:type schema:Person
    327 sg:person.0676122006.18 schema:affiliation grid-institutes:grid.284723.8
    328 schema:familyName Sheng
    329 schema:givenName Hua-Fang
    330 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0676122006.18
    331 rdf:type schema:Person
    332 sg:person.07435223134.31 schema:affiliation grid-institutes:grid.284723.8
    333 schema:familyName Zheng
    334 schema:givenName Zhong-Dai-Xi
    335 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07435223134.31
    336 rdf:type schema:Person
    337 sg:person.0765515705.86 schema:affiliation grid-institutes:grid.8767.e
    338 schema:familyName Raes
    339 schema:givenName Jeroen
    340 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765515705.86
    341 rdf:type schema:Person
    342 sg:person.0772733144.12 schema:affiliation grid-institutes:grid.508326.a
    343 schema:familyName Wu
    344 schema:givenName Wei
    345 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772733144.12
    346 rdf:type schema:Person
    347 sg:person.0777466453.44 schema:affiliation grid-institutes:grid.284723.8
    348 schema:familyName Zhou
    349 schema:givenName Hong-Wei
    350 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777466453.44
    351 rdf:type schema:Person
    352 sg:pub.10.1038/ismej.2011.139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051863807
    353 https://doi.org/10.1038/ismej.2011.139
    354 rdf:type schema:CreativeWork
    355 sg:pub.10.1038/nature11053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052378845
    356 https://doi.org/10.1038/nature11053
    357 rdf:type schema:CreativeWork
    358 sg:pub.10.1038/nature15766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014535385
    359 https://doi.org/10.1038/nature15766
    360 rdf:type schema:CreativeWork
    361 sg:pub.10.1038/nature18850 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013019120
    362 https://doi.org/10.1038/nature18850
    363 rdf:type schema:CreativeWork
    364 sg:pub.10.1038/nbt.3960 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092055967
    365 https://doi.org/10.1038/nbt.3960
    366 rdf:type schema:CreativeWork
    367 sg:pub.10.1038/nm.4517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103195574
    368 https://doi.org/10.1038/nm.4517
    369 rdf:type schema:CreativeWork
    370 sg:pub.10.1038/nmeth.f.303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009032055
    371 https://doi.org/10.1038/nmeth.f.303
    372 rdf:type schema:CreativeWork
    373 sg:pub.10.1038/nrgastro.2013.178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048327279
    374 https://doi.org/10.1038/nrgastro.2013.178
    375 rdf:type schema:CreativeWork
    376 sg:pub.10.1038/s41598-017-17851-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100351876
    377 https://doi.org/10.1038/s41598-017-17851-8
    378 rdf:type schema:CreativeWork
    379 sg:pub.10.1186/1471-2105-10-362 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024254929
    380 https://doi.org/10.1186/1471-2105-10-362
    381 rdf:type schema:CreativeWork
    382 sg:pub.10.1186/gb-2012-13-9-r79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029450096
    383 https://doi.org/10.1186/gb-2012-13-9-r79
    384 rdf:type schema:CreativeWork
    385 sg:pub.10.1186/s40168-015-0081-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029757572
    386 https://doi.org/10.1186/s40168-015-0081-x
    387 rdf:type schema:CreativeWork
    388 sg:pub.10.1186/s40168-015-0117-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028122611
    389 https://doi.org/10.1186/s40168-015-0117-2
    390 rdf:type schema:CreativeWork
    391 sg:pub.10.1186/s40168-017-0338-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091775780
    392 https://doi.org/10.1186/s40168-017-0338-7
    393 rdf:type schema:CreativeWork
    394 grid-institutes:None schema:alternateName Gut Infection and Inflammation Biology Lab, UNESCO-Regional Center for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
    395 Shenzhen Fun-Poo Biotech Co., Ltd., Shenzhen, China
    396 schema:name Gut Infection and Inflammation Biology Lab, UNESCO-Regional Center for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
    397 Shenzhen Fun-Poo Biotech Co., Ltd., Shenzhen, China
    398 rdf:type schema:Organization
    399 grid-institutes:grid.266100.3 schema:alternateName Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
    400 Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
    401 schema:name Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
    402 Department of Computer Science & Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
    403 Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
    404 rdf:type schema:Organization
    405 grid-institutes:grid.284723.8 schema:alternateName Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou, China
    406 Department of Neurology, NanFang Hospital, Southern Medical University, Guangzhou, China
    407 Department of Pathophysiology, Southern Medical University, Guangzhou, China
    408 Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
    409 State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
    410 schema:name Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou, China
    411 Department of Neurology, NanFang Hospital, Southern Medical University, Guangzhou, China
    412 Department of Pathophysiology, Southern Medical University, Guangzhou, China
    413 Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
    414 State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
    415 rdf:type schema:Organization
    416 grid-institutes:grid.508326.a schema:alternateName Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
    417 Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
    418 schema:name Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou, China
    419 Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
    420 Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
    421 rdf:type schema:Organization
    422 grid-institutes:grid.8767.e schema:alternateName Vrije Universiteit Brussel, Faculty of Sciences and Bioengineering Sciences, Microbiology Unit, Brussels, Belgium
    423 schema:name Department of Microbiology and Immunology, KU Leuven–University of Leuven, Leuven, Belgium
    424 VIB, Center for the Biology of Disease, Leuven, Belgium
    425 Vrije Universiteit Brussel, Faculty of Sciences and Bioengineering Sciences, Microbiology Unit, Brussels, Belgium
    426 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...