Scalable generalized linear mixed model for region-based association tests in large biobanks and cohorts View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-05-18

AUTHORS

Wei Zhou, Zhangchen Zhao, Jonas B. Nielsen, Lars G. Fritsche, Jonathon LeFaive, Sarah A. Gagliano Taliun, Wenjian Bi, Maiken E. Gabrielsen, Mark J. Daly, Benjamin M. Neale, Kristian Hveem, Goncalo R. Abecasis, Cristen J. Willer, Seunggeun Lee

ABSTRACT

With very large sample sizes, biobanks provide an exciting opportunity to identify genetic components of complex traits. To analyze rare variants, region-based multiple-variant aggregate tests are commonly used to increase power for association tests. However, because of the substantial computational cost, existing region-based tests cannot analyze hundreds of thousands of samples while accounting for confounders such as population stratification and sample relatedness. Here we propose a scalable generalized mixed-model region-based association test, SAIGE-GENE, that is applicable to exome-wide and genome-wide region-based analysis for hundreds of thousands of samples and can account for unbalanced case–control ratios for binary traits. Through extensive simulation studies and analysis of the HUNT study with 69,716 Norwegian samples and the UK Biobank data with 408,910 White British samples, we show that SAIGE-GENE can efficiently analyze large-sample data (N > 400,000) with type I error rates well controlled. More... »

PAGES

634-639

References to SciGraph publications

  • 2016-08-22. A reference panel of 64,976 haplotypes for genotype imputation in NATURE GENETICS
  • 2018-10-10. The UK Biobank resource with deep phenotyping and genomic data in NATURE
  • 2013-12-15. Meta-analysis of gene-level tests for rare variant association in NATURE GENETICS
  • 2001-12-03. Merlin—rapid analysis of dense genetic maps using sparse gene flow trees in NATURE GENETICS
  • 2010-03-07. Variance component model to account for sample structure in genome-wide association studies in NATURE GENETICS
  • 2006-01-15. An efficient variance component approach implementing an average information REML suitable for combined LD and linkage mapping with a general complex pedigree in GENETICS SELECTION EVOLUTION
  • 2008-01-13. Newly identified loci that influence lipid concentrations and risk of coronary artery disease in NATURE GENETICS
  • 2016-10-31. Identification of genomic loci associated with resting heart rate and shared genetic predictors with all-cause mortality in NATURE GENETICS
  • 2012-09-14. The HUNT study: participation is associated with survival and depends on socioeconomic status, diseases and symptoms in BMC MEDICAL RESEARCH METHODOLOGY
  • 2018-08-13. Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies in NATURE GENETICS
  • 2012-09-16. Rapid variance components–based method for whole-genome association analysis in NATURE GENETICS
  • 2010-01-10. Several common variants modulate heart rate, PR interval and QRS duration in NATURE GENETICS
  • 2013-10-06. Discovery and refinement of loci associated with lipid levels in NATURE GENETICS
  • 2016-08-29. Next-generation genotype imputation service and methods in NATURE GENETICS
  • 2017-02-01. Rare and low-frequency coding variants alter human adult height in NATURE
  • 2014-06-22. Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization in NATURE GENETICS
  • 2015-02-02. Efficient Bayesian mixed-model analysis increases association power in large cohorts in NATURE GENETICS
  • 2014-01-29. Advantages and pitfalls in the application of mixed-model association methods in NATURE GENETICS
  • 2018-08-23. Deep-coverage whole genome sequences and blood lipids among 16,324 individuals in NATURE COMMUNICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41588-020-0621-6

    DOI

    http://dx.doi.org/10.1038/s41588-020-0621-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1127684974

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/32424355


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biological Specimen Banks", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Case-Control Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Exome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Markers", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Linear Models", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Lipoproteins, HDL", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Multifactorial Inheritance", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Norway", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "United Kingdom", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Waist-Hip Ratio", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.66859.34", 
              "name": [
                "Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA", 
                "Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA", 
                "Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA", 
                "Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhou", 
            "givenName": "Wei", 
            "id": "sg:person.0706552355.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0706552355.14"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA", 
              "id": "http://www.grid.ac/institutes/grid.214458.e", 
              "name": [
                "Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA", 
                "Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhao", 
            "givenName": "Zhangchen", 
            "id": "sg:person.016277220307.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016277220307.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Division of Cardiology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA", 
              "id": "http://www.grid.ac/institutes/grid.214458.e", 
              "name": [
                "Division of Cardiology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nielsen", 
            "givenName": "Jonas B.", 
            "id": "sg:person.0765074230.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765074230.63"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA", 
              "id": "http://www.grid.ac/institutes/grid.214458.e", 
              "name": [
                "Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA", 
                "Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fritsche", 
            "givenName": "Lars G.", 
            "id": "sg:person.0736477270.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736477270.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA", 
              "id": "http://www.grid.ac/institutes/grid.214458.e", 
              "name": [
                "Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA", 
                "Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "LeFaive", 
            "givenName": "Jonathon", 
            "id": "sg:person.013725704650.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013725704650.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA", 
              "id": "http://www.grid.ac/institutes/grid.214458.e", 
              "name": [
                "Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA", 
                "Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gagliano Taliun", 
            "givenName": "Sarah A.", 
            "id": "sg:person.015733217351.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015733217351.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA", 
              "id": "http://www.grid.ac/institutes/grid.214458.e", 
              "name": [
                "Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA", 
                "Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bi", 
            "givenName": "Wenjian", 
            "id": "sg:person.0626365326.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626365326.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway", 
              "id": "http://www.grid.ac/institutes/grid.5947.f", 
              "name": [
                "K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gabrielsen", 
            "givenName": "Maiken E.", 
            "id": "sg:person.01235162135.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235162135.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Molecular Medicine Finland, Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland", 
              "id": "http://www.grid.ac/institutes/grid.452494.a", 
              "name": [
                "Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA", 
                "Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA", 
                "Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA", 
                "Institute for Molecular Medicine Finland, Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Daly", 
            "givenName": "Mark J.", 
            "id": "sg:person.011517303117.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011517303117.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.66859.34", 
              "name": [
                "Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA", 
                "Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA", 
                "Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Neale", 
            "givenName": "Benjamin M.", 
            "id": "sg:person.014377465057.81", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014377465057.81"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "HUNT Research Centre, Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Levanger, Norway", 
              "id": "http://www.grid.ac/institutes/grid.5947.f", 
              "name": [
                "K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway", 
                "HUNT Research Centre, Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Levanger, Norway"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hveem", 
            "givenName": "Kristian", 
            "id": "sg:person.0703577540.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703577540.65"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA", 
              "id": "http://www.grid.ac/institutes/grid.214458.e", 
              "name": [
                "Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA", 
                "Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Abecasis", 
            "givenName": "Goncalo R.", 
            "id": "sg:person.0641525362.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641525362.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA", 
              "id": "http://www.grid.ac/institutes/grid.214458.e", 
              "name": [
                "Division of Cardiology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA", 
                "Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA", 
                "Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Willer", 
            "givenName": "Cristen J.", 
            "id": "sg:person.01175557647.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175557647.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Graduate School of Data Science, Seoul National University, Seoul, Republic of Korea", 
              "id": "http://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA", 
                "Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA", 
                "Graduate School of Data Science, Seoul National University, Seoul, Republic of Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Seunggeun", 
            "id": "sg:person.013062152347.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013062152347.40"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/ng.3014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004633015", 
              "https://doi.org/10.1038/ng.3014"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3190", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041665159", 
              "https://doi.org/10.1038/ng.3190"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41588-018-0184-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106070347", 
              "https://doi.org/10.1038/s41588-018-0184-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2797", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031899225", 
              "https://doi.org/10.1038/ng.2797"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2288-12-143", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049114369", 
              "https://doi.org/10.1186/1471-2288-12-143"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.548", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016055940", 
              "https://doi.org/10.1038/ng.548"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.76", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009408087", 
              "https://doi.org/10.1038/ng.76"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.511", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001729273", 
              "https://doi.org/10.1038/ng.511"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-05747-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106199477", 
              "https://doi.org/10.1038/s41467-018-05747-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-018-0579-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107363293", 
              "https://doi.org/10.1038/s41586-018-0579-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature21039", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083401652", 
              "https://doi.org/10.1038/nature21039"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3643", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050700099", 
              "https://doi.org/10.1038/ng.3643"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3656", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006258085", 
              "https://doi.org/10.1038/ng.3656"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2852", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040621712", 
              "https://doi.org/10.1038/ng.2852"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3708", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015010011", 
              "https://doi.org/10.1038/ng.3708"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1297-9686-38-1-25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040980514", 
              "https://doi.org/10.1186/1297-9686-38-1-25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng786", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041343500", 
              "https://doi.org/10.1038/ng786"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2410", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036140888", 
              "https://doi.org/10.1038/ng.2410"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2876", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016276818", 
              "https://doi.org/10.1038/ng.2876"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2020-05-18", 
        "datePublishedReg": "2020-05-18", 
        "description": "With very large sample sizes, biobanks provide an exciting opportunity to identify genetic components of complex traits. To analyze rare variants, region-based multiple-variant aggregate tests are commonly used to increase power for association tests. However, because of the substantial computational cost, existing region-based tests cannot analyze hundreds of thousands of samples while accounting for confounders such as population stratification and sample relatedness. Here we propose a scalable generalized mixed-model region-based association test, SAIGE-GENE, that is applicable to exome-wide and genome-wide region-based analysis for hundreds of thousands of samples and can account for unbalanced case\u2013control ratios for binary traits. Through extensive simulation studies and analysis of the HUNT study with 69,716 Norwegian samples and the UK Biobank data with 408,910 White British samples, we show that SAIGE-GENE can efficiently analyze large-sample data (N\u2009>\u2009400,000) with type I error rates well controlled.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41588-020-0621-6", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.9424382", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.5124417", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8473586", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6617285", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1103138", 
            "issn": [
              "1061-4036", 
              "1546-1718"
            ], 
            "name": "Nature Genetics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "52"
          }
        ], 
        "keywords": [
          "region-based association tests", 
          "unbalanced case-control ratios", 
          "extensive simulation study", 
          "substantial computational cost", 
          "sample relatedness", 
          "Type I error rates", 
          "computational cost", 
          "I error rate", 
          "generalized linear mixed model", 
          "case-control ratio", 
          "simulation study", 
          "large sample data", 
          "binary traits", 
          "White British sample", 
          "linear mixed models", 
          "UK Biobank data", 
          "region-based tests", 
          "hundreds of thousands", 
          "sample size", 
          "mixed models", 
          "population stratification", 
          "Biobank data", 
          "large biobanks", 
          "Association Test", 
          "error rate", 
          "model", 
          "larger sample size", 
          "power", 
          "complex traits", 
          "thousands", 
          "analysis", 
          "exciting opportunities", 
          "data", 
          "hundreds", 
          "cost", 
          "size", 
          "aggregate tests", 
          "components", 
          "variants", 
          "samples", 
          "ratio", 
          "test", 
          "region-based analysis", 
          "study", 
          "stratification", 
          "rare variants", 
          "rate", 
          "opportunities", 
          "Biobank", 
          "traits", 
          "genetic component", 
          "relatedness", 
          "confounders", 
          "Norwegian sample", 
          "British sample", 
          "cohort", 
          "HUNT Study"
        ], 
        "name": "Scalable generalized linear mixed model for region-based association tests in large biobanks and cohorts", 
        "pagination": "634-639", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1127684974"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41588-020-0621-6"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "32424355"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41588-020-0621-6", 
          "https://app.dimensions.ai/details/publication/pub.1127684974"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:47", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_850.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41588-020-0621-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41588-020-0621-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41588-020-0621-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41588-020-0621-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41588-020-0621-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    369 TRIPLES      21 PREDICATES      113 URIs      86 LITERALS      19 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41588-020-0621-6 schema:about N025fb958717242e09d2cc1429880f66c
    2 N0add88bf2fa9454dbe34f86713aad20a
    3 N16d04e3ca62640a6b11f99e636089eeb
    4 N2de01b78045d4559b5b02a5420fe9580
    5 N3cc92284a5c94076adf08d8c03fe3793
    6 N65e921b9fa284db48989a31ef13823ae
    7 N9dc94e21933b48d2945009764bc5157a
    8 Nb07083b3d65d484196b40c1774a65028
    9 Nb83f8e7317a14a459218f4b194ef116d
    10 Nc0f09f2d1ce9440d99f67afa4f2575b3
    11 Nd5789831bc354102855951474144a30b
    12 Nfe394baf7e1641519fbe5977f424dbca
    13 anzsrc-for:06
    14 anzsrc-for:0604
    15 schema:author N41092b2514fa4e3f8fa6fcf139c30fcd
    16 schema:citation sg:pub.10.1038/nature21039
    17 sg:pub.10.1038/ng.2410
    18 sg:pub.10.1038/ng.2797
    19 sg:pub.10.1038/ng.2852
    20 sg:pub.10.1038/ng.2876
    21 sg:pub.10.1038/ng.3014
    22 sg:pub.10.1038/ng.3190
    23 sg:pub.10.1038/ng.3643
    24 sg:pub.10.1038/ng.3656
    25 sg:pub.10.1038/ng.3708
    26 sg:pub.10.1038/ng.511
    27 sg:pub.10.1038/ng.548
    28 sg:pub.10.1038/ng.76
    29 sg:pub.10.1038/ng786
    30 sg:pub.10.1038/s41467-018-05747-8
    31 sg:pub.10.1038/s41586-018-0579-z
    32 sg:pub.10.1038/s41588-018-0184-y
    33 sg:pub.10.1186/1297-9686-38-1-25
    34 sg:pub.10.1186/1471-2288-12-143
    35 schema:datePublished 2020-05-18
    36 schema:datePublishedReg 2020-05-18
    37 schema:description With very large sample sizes, biobanks provide an exciting opportunity to identify genetic components of complex traits. To analyze rare variants, region-based multiple-variant aggregate tests are commonly used to increase power for association tests. However, because of the substantial computational cost, existing region-based tests cannot analyze hundreds of thousands of samples while accounting for confounders such as population stratification and sample relatedness. Here we propose a scalable generalized mixed-model region-based association test, SAIGE-GENE, that is applicable to exome-wide and genome-wide region-based analysis for hundreds of thousands of samples and can account for unbalanced case–control ratios for binary traits. Through extensive simulation studies and analysis of the HUNT study with 69,716 Norwegian samples and the UK Biobank data with 408,910 White British samples, we show that SAIGE-GENE can efficiently analyze large-sample data (N > 400,000) with type I error rates well controlled.
    38 schema:genre article
    39 schema:isAccessibleForFree true
    40 schema:isPartOf N8ffb95d1cac340c695d4acd6facfd228
    41 Na2d2810fbef5460ab9c811db8bbdddc5
    42 sg:journal.1103138
    43 schema:keywords Association Test
    44 Biobank
    45 Biobank data
    46 British sample
    47 HUNT Study
    48 I error rate
    49 Norwegian sample
    50 Type I error rates
    51 UK Biobank data
    52 White British sample
    53 aggregate tests
    54 analysis
    55 binary traits
    56 case-control ratio
    57 cohort
    58 complex traits
    59 components
    60 computational cost
    61 confounders
    62 cost
    63 data
    64 error rate
    65 exciting opportunities
    66 extensive simulation study
    67 generalized linear mixed model
    68 genetic component
    69 hundreds
    70 hundreds of thousands
    71 large biobanks
    72 large sample data
    73 larger sample size
    74 linear mixed models
    75 mixed models
    76 model
    77 opportunities
    78 population stratification
    79 power
    80 rare variants
    81 rate
    82 ratio
    83 region-based analysis
    84 region-based association tests
    85 region-based tests
    86 relatedness
    87 sample relatedness
    88 sample size
    89 samples
    90 simulation study
    91 size
    92 stratification
    93 study
    94 substantial computational cost
    95 test
    96 thousands
    97 traits
    98 unbalanced case-control ratios
    99 variants
    100 schema:name Scalable generalized linear mixed model for region-based association tests in large biobanks and cohorts
    101 schema:pagination 634-639
    102 schema:productId N5725f480149041edbdbac3fb8cc0a2cf
    103 N71050ba294074b8b8b21b6a233e11ce6
    104 Nee0188fcaba44c039b84869a64e209f0
    105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1127684974
    106 https://doi.org/10.1038/s41588-020-0621-6
    107 schema:sdDatePublished 2022-10-01T06:47
    108 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    109 schema:sdPublisher Nd883682bf5f649f48a2772ac699bf030
    110 schema:url https://doi.org/10.1038/s41588-020-0621-6
    111 sgo:license sg:explorer/license/
    112 sgo:sdDataset articles
    113 rdf:type schema:ScholarlyArticle
    114 N025fb958717242e09d2cc1429880f66c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    115 schema:name Waist-Hip Ratio
    116 rdf:type schema:DefinedTerm
    117 N089aa882c95c410393b2cbcd9648d95d rdf:first sg:person.0703577540.65
    118 rdf:rest Nae6e1a09e79a40e7a155fd9c5285818a
    119 N0add88bf2fa9454dbe34f86713aad20a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    120 schema:name Multifactorial Inheritance
    121 rdf:type schema:DefinedTerm
    122 N16d04e3ca62640a6b11f99e636089eeb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    123 schema:name Models, Genetic
    124 rdf:type schema:DefinedTerm
    125 N1e5a56a798354225b4a970d46a5d66b8 rdf:first sg:person.01235162135.10
    126 rdf:rest Nfb4440cac59c48338110c775ff566b84
    127 N29fcb79044cb4c168976ba60e20a71f3 rdf:first sg:person.01175557647.16
    128 rdf:rest N942a2f2bbecd49f8910a6bf12856a284
    129 N2de01b78045d4559b5b02a5420fe9580 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    130 schema:name Lipoproteins, HDL
    131 rdf:type schema:DefinedTerm
    132 N3a4a1d3c4e9245b7b51affbc4138ee65 rdf:first sg:person.016277220307.28
    133 rdf:rest N447735178d9a41cf8426624c1099a112
    134 N3cc92284a5c94076adf08d8c03fe3793 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    135 schema:name Case-Control Studies
    136 rdf:type schema:DefinedTerm
    137 N41092b2514fa4e3f8fa6fcf139c30fcd rdf:first sg:person.0706552355.14
    138 rdf:rest N3a4a1d3c4e9245b7b51affbc4138ee65
    139 N412ec083c6154b60ae7b96fa21dd6784 rdf:first sg:person.0626365326.32
    140 rdf:rest N1e5a56a798354225b4a970d46a5d66b8
    141 N447735178d9a41cf8426624c1099a112 rdf:first sg:person.0765074230.63
    142 rdf:rest Nadcaa42149d94ef6b956732e710b72d3
    143 N5725f480149041edbdbac3fb8cc0a2cf schema:name dimensions_id
    144 schema:value pub.1127684974
    145 rdf:type schema:PropertyValue
    146 N6213a7c9c8d3462f8db821abb697d2e9 rdf:first sg:person.014377465057.81
    147 rdf:rest N089aa882c95c410393b2cbcd9648d95d
    148 N65e921b9fa284db48989a31ef13823ae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    149 schema:name Norway
    150 rdf:type schema:DefinedTerm
    151 N71050ba294074b8b8b21b6a233e11ce6 schema:name pubmed_id
    152 schema:value 32424355
    153 rdf:type schema:PropertyValue
    154 N8ffb95d1cac340c695d4acd6facfd228 schema:issueNumber 6
    155 rdf:type schema:PublicationIssue
    156 N942a2f2bbecd49f8910a6bf12856a284 rdf:first sg:person.013062152347.40
    157 rdf:rest rdf:nil
    158 N97132cf5ae7d4e8bbe102dcf00dc5ce6 rdf:first sg:person.013725704650.44
    159 rdf:rest Ndbaebeeca3a34385a042a563c66c2652
    160 N9dc94e21933b48d2945009764bc5157a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    161 schema:name Exome
    162 rdf:type schema:DefinedTerm
    163 Na2d2810fbef5460ab9c811db8bbdddc5 schema:volumeNumber 52
    164 rdf:type schema:PublicationVolume
    165 Nadcaa42149d94ef6b956732e710b72d3 rdf:first sg:person.0736477270.05
    166 rdf:rest N97132cf5ae7d4e8bbe102dcf00dc5ce6
    167 Nae6e1a09e79a40e7a155fd9c5285818a rdf:first sg:person.0641525362.39
    168 rdf:rest N29fcb79044cb4c168976ba60e20a71f3
    169 Nb07083b3d65d484196b40c1774a65028 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    170 schema:name Genetic Markers
    171 rdf:type schema:DefinedTerm
    172 Nb83f8e7317a14a459218f4b194ef116d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    173 schema:name Biological Specimen Banks
    174 rdf:type schema:DefinedTerm
    175 Nc0f09f2d1ce9440d99f67afa4f2575b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    176 schema:name United Kingdom
    177 rdf:type schema:DefinedTerm
    178 Nd5789831bc354102855951474144a30b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    179 schema:name Linear Models
    180 rdf:type schema:DefinedTerm
    181 Nd883682bf5f649f48a2772ac699bf030 schema:name Springer Nature - SN SciGraph project
    182 rdf:type schema:Organization
    183 Ndbaebeeca3a34385a042a563c66c2652 rdf:first sg:person.015733217351.58
    184 rdf:rest N412ec083c6154b60ae7b96fa21dd6784
    185 Nee0188fcaba44c039b84869a64e209f0 schema:name doi
    186 schema:value 10.1038/s41588-020-0621-6
    187 rdf:type schema:PropertyValue
    188 Nfb4440cac59c48338110c775ff566b84 rdf:first sg:person.011517303117.07
    189 rdf:rest N6213a7c9c8d3462f8db821abb697d2e9
    190 Nfe394baf7e1641519fbe5977f424dbca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    191 schema:name Humans
    192 rdf:type schema:DefinedTerm
    193 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    194 schema:name Biological Sciences
    195 rdf:type schema:DefinedTerm
    196 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    197 schema:name Genetics
    198 rdf:type schema:DefinedTerm
    199 sg:grant.5124417 http://pending.schema.org/fundedItem sg:pub.10.1038/s41588-020-0621-6
    200 rdf:type schema:MonetaryGrant
    201 sg:grant.6617285 http://pending.schema.org/fundedItem sg:pub.10.1038/s41588-020-0621-6
    202 rdf:type schema:MonetaryGrant
    203 sg:grant.8473586 http://pending.schema.org/fundedItem sg:pub.10.1038/s41588-020-0621-6
    204 rdf:type schema:MonetaryGrant
    205 sg:grant.9424382 http://pending.schema.org/fundedItem sg:pub.10.1038/s41588-020-0621-6
    206 rdf:type schema:MonetaryGrant
    207 sg:journal.1103138 schema:issn 1061-4036
    208 1546-1718
    209 schema:name Nature Genetics
    210 schema:publisher Springer Nature
    211 rdf:type schema:Periodical
    212 sg:person.011517303117.07 schema:affiliation grid-institutes:grid.452494.a
    213 schema:familyName Daly
    214 schema:givenName Mark J.
    215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011517303117.07
    216 rdf:type schema:Person
    217 sg:person.01175557647.16 schema:affiliation grid-institutes:grid.214458.e
    218 schema:familyName Willer
    219 schema:givenName Cristen J.
    220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175557647.16
    221 rdf:type schema:Person
    222 sg:person.01235162135.10 schema:affiliation grid-institutes:grid.5947.f
    223 schema:familyName Gabrielsen
    224 schema:givenName Maiken E.
    225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235162135.10
    226 rdf:type schema:Person
    227 sg:person.013062152347.40 schema:affiliation grid-institutes:grid.31501.36
    228 schema:familyName Lee
    229 schema:givenName Seunggeun
    230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013062152347.40
    231 rdf:type schema:Person
    232 sg:person.013725704650.44 schema:affiliation grid-institutes:grid.214458.e
    233 schema:familyName LeFaive
    234 schema:givenName Jonathon
    235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013725704650.44
    236 rdf:type schema:Person
    237 sg:person.014377465057.81 schema:affiliation grid-institutes:grid.66859.34
    238 schema:familyName Neale
    239 schema:givenName Benjamin M.
    240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014377465057.81
    241 rdf:type schema:Person
    242 sg:person.015733217351.58 schema:affiliation grid-institutes:grid.214458.e
    243 schema:familyName Gagliano Taliun
    244 schema:givenName Sarah A.
    245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015733217351.58
    246 rdf:type schema:Person
    247 sg:person.016277220307.28 schema:affiliation grid-institutes:grid.214458.e
    248 schema:familyName Zhao
    249 schema:givenName Zhangchen
    250 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016277220307.28
    251 rdf:type schema:Person
    252 sg:person.0626365326.32 schema:affiliation grid-institutes:grid.214458.e
    253 schema:familyName Bi
    254 schema:givenName Wenjian
    255 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626365326.32
    256 rdf:type schema:Person
    257 sg:person.0641525362.39 schema:affiliation grid-institutes:grid.214458.e
    258 schema:familyName Abecasis
    259 schema:givenName Goncalo R.
    260 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641525362.39
    261 rdf:type schema:Person
    262 sg:person.0703577540.65 schema:affiliation grid-institutes:grid.5947.f
    263 schema:familyName Hveem
    264 schema:givenName Kristian
    265 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703577540.65
    266 rdf:type schema:Person
    267 sg:person.0706552355.14 schema:affiliation grid-institutes:grid.66859.34
    268 schema:familyName Zhou
    269 schema:givenName Wei
    270 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0706552355.14
    271 rdf:type schema:Person
    272 sg:person.0736477270.05 schema:affiliation grid-institutes:grid.214458.e
    273 schema:familyName Fritsche
    274 schema:givenName Lars G.
    275 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736477270.05
    276 rdf:type schema:Person
    277 sg:person.0765074230.63 schema:affiliation grid-institutes:grid.214458.e
    278 schema:familyName Nielsen
    279 schema:givenName Jonas B.
    280 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765074230.63
    281 rdf:type schema:Person
    282 sg:pub.10.1038/nature21039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083401652
    283 https://doi.org/10.1038/nature21039
    284 rdf:type schema:CreativeWork
    285 sg:pub.10.1038/ng.2410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036140888
    286 https://doi.org/10.1038/ng.2410
    287 rdf:type schema:CreativeWork
    288 sg:pub.10.1038/ng.2797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031899225
    289 https://doi.org/10.1038/ng.2797
    290 rdf:type schema:CreativeWork
    291 sg:pub.10.1038/ng.2852 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040621712
    292 https://doi.org/10.1038/ng.2852
    293 rdf:type schema:CreativeWork
    294 sg:pub.10.1038/ng.2876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016276818
    295 https://doi.org/10.1038/ng.2876
    296 rdf:type schema:CreativeWork
    297 sg:pub.10.1038/ng.3014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004633015
    298 https://doi.org/10.1038/ng.3014
    299 rdf:type schema:CreativeWork
    300 sg:pub.10.1038/ng.3190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041665159
    301 https://doi.org/10.1038/ng.3190
    302 rdf:type schema:CreativeWork
    303 sg:pub.10.1038/ng.3643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050700099
    304 https://doi.org/10.1038/ng.3643
    305 rdf:type schema:CreativeWork
    306 sg:pub.10.1038/ng.3656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006258085
    307 https://doi.org/10.1038/ng.3656
    308 rdf:type schema:CreativeWork
    309 sg:pub.10.1038/ng.3708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015010011
    310 https://doi.org/10.1038/ng.3708
    311 rdf:type schema:CreativeWork
    312 sg:pub.10.1038/ng.511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001729273
    313 https://doi.org/10.1038/ng.511
    314 rdf:type schema:CreativeWork
    315 sg:pub.10.1038/ng.548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016055940
    316 https://doi.org/10.1038/ng.548
    317 rdf:type schema:CreativeWork
    318 sg:pub.10.1038/ng.76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009408087
    319 https://doi.org/10.1038/ng.76
    320 rdf:type schema:CreativeWork
    321 sg:pub.10.1038/ng786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041343500
    322 https://doi.org/10.1038/ng786
    323 rdf:type schema:CreativeWork
    324 sg:pub.10.1038/s41467-018-05747-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106199477
    325 https://doi.org/10.1038/s41467-018-05747-8
    326 rdf:type schema:CreativeWork
    327 sg:pub.10.1038/s41586-018-0579-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1107363293
    328 https://doi.org/10.1038/s41586-018-0579-z
    329 rdf:type schema:CreativeWork
    330 sg:pub.10.1038/s41588-018-0184-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1106070347
    331 https://doi.org/10.1038/s41588-018-0184-y
    332 rdf:type schema:CreativeWork
    333 sg:pub.10.1186/1297-9686-38-1-25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040980514
    334 https://doi.org/10.1186/1297-9686-38-1-25
    335 rdf:type schema:CreativeWork
    336 sg:pub.10.1186/1471-2288-12-143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049114369
    337 https://doi.org/10.1186/1471-2288-12-143
    338 rdf:type schema:CreativeWork
    339 grid-institutes:grid.214458.e schema:alternateName Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
    340 Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
    341 Division of Cardiology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
    342 schema:name Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
    343 Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
    344 Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
    345 Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
    346 Division of Cardiology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
    347 rdf:type schema:Organization
    348 grid-institutes:grid.31501.36 schema:alternateName Graduate School of Data Science, Seoul National University, Seoul, Republic of Korea
    349 schema:name Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
    350 Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
    351 Graduate School of Data Science, Seoul National University, Seoul, Republic of Korea
    352 rdf:type schema:Organization
    353 grid-institutes:grid.452494.a schema:alternateName Institute for Molecular Medicine Finland, Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland
    354 schema:name Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
    355 Institute for Molecular Medicine Finland, Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland
    356 Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
    357 Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
    358 rdf:type schema:Organization
    359 grid-institutes:grid.5947.f schema:alternateName HUNT Research Centre, Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Levanger, Norway
    360 K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
    361 schema:name HUNT Research Centre, Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Levanger, Norway
    362 K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
    363 rdf:type schema:Organization
    364 grid-institutes:grid.66859.34 schema:alternateName Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
    365 schema:name Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
    366 Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
    367 Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
    368 Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
    369 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...