Scalable generalized linear mixed model for region-based association tests in large biobanks and cohorts View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-05-18

AUTHORS

Wei Zhou, Zhangchen Zhao, Jonas B. Nielsen, Lars G. Fritsche, Jonathon LeFaive, Sarah A. Gagliano Taliun, Wenjian Bi, Maiken E. Gabrielsen, Mark J. Daly, Benjamin M. Neale, Kristian Hveem, Goncalo R. Abecasis, Cristen J. Willer, Seunggeun Lee

ABSTRACT

With very large sample sizes, biobanks provide an exciting opportunity to identify genetic components of complex traits. To analyze rare variants, region-based multiple-variant aggregate tests are commonly used to increase power for association tests. However, because of the substantial computational cost, existing region-based tests cannot analyze hundreds of thousands of samples while accounting for confounders such as population stratification and sample relatedness. Here we propose a scalable generalized mixed-model region-based association test, SAIGE-GENE, that is applicable to exome-wide and genome-wide region-based analysis for hundreds of thousands of samples and can account for unbalanced case–control ratios for binary traits. Through extensive simulation studies and analysis of the HUNT study with 69,716 Norwegian samples and the UK Biobank data with 408,910 White British samples, we show that SAIGE-GENE can efficiently analyze large-sample data (N > 400,000) with type I error rates well controlled. More... »

PAGES

634-639

References to SciGraph publications

  • 2018-10-10. The UK Biobank resource with deep phenotyping and genomic data in NATURE
  • 2013-12-15. Meta-analysis of gene-level tests for rare variant association in NATURE GENETICS
  • 2001-12-03. Merlin—rapid analysis of dense genetic maps using sparse gene flow trees in NATURE GENETICS
  • 2010-03-07. Variance component model to account for sample structure in genome-wide association studies in NATURE GENETICS
  • 2006-01-15. An efficient variance component approach implementing an average information REML suitable for combined LD and linkage mapping with a general complex pedigree in GENETICS SELECTION EVOLUTION
  • 2008-01-13. Newly identified loci that influence lipid concentrations and risk of coronary artery disease in NATURE GENETICS
  • 2016-10-31. Identification of genomic loci associated with resting heart rate and shared genetic predictors with all-cause mortality in NATURE GENETICS
  • 2016-08-22. A reference panel of 64,976 haplotypes for genotype imputation in NATURE GENETICS
  • 2018-08-13. Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies in NATURE GENETICS
  • 2012-09-16. Rapid variance components–based method for whole-genome association analysis in NATURE GENETICS
  • 2010-01-10. Several common variants modulate heart rate, PR interval and QRS duration in NATURE GENETICS
  • 2013-10-06. Discovery and refinement of loci associated with lipid levels in NATURE GENETICS
  • 2016-08-29. Next-generation genotype imputation service and methods in NATURE GENETICS
  • 2017-02-01. Rare and low-frequency coding variants alter human adult height in NATURE
  • 2014-06-22. Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization in NATURE GENETICS
  • 2015-02-02. Efficient Bayesian mixed-model analysis increases association power in large cohorts in NATURE GENETICS
  • 2014-01-29. Advantages and pitfalls in the application of mixed-model association methods in NATURE GENETICS
  • 2018-08-23. Deep-coverage whole genome sequences and blood lipids among 16,324 individuals in NATURE COMMUNICATIONS
  • 2012-09-14. The HUNT study: participation is associated with survival and depends on socioeconomic status, diseases and symptoms in BMC MEDICAL RESEARCH METHODOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41588-020-0621-6

    DOI

    http://dx.doi.org/10.1038/s41588-020-0621-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1127684974

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/32424355


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biological Specimen Banks", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Case-Control Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Exome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Markers", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Linear Models", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Lipoproteins, HDL", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Multifactorial Inheritance", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Norway", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "United Kingdom", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Waist-Hip Ratio", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.66859.34", 
              "name": [
                "Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA", 
                "Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA", 
                "Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA", 
                "Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhou", 
            "givenName": "Wei", 
            "id": "sg:person.0706552355.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0706552355.14"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA", 
              "id": "http://www.grid.ac/institutes/grid.214458.e", 
              "name": [
                "Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA", 
                "Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhao", 
            "givenName": "Zhangchen", 
            "id": "sg:person.016277220307.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016277220307.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Division of Cardiology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA", 
              "id": "http://www.grid.ac/institutes/grid.214458.e", 
              "name": [
                "Division of Cardiology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nielsen", 
            "givenName": "Jonas B.", 
            "id": "sg:person.0765074230.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765074230.63"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA", 
              "id": "http://www.grid.ac/institutes/grid.214458.e", 
              "name": [
                "Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA", 
                "Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fritsche", 
            "givenName": "Lars G.", 
            "id": "sg:person.0736477270.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736477270.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA", 
              "id": "http://www.grid.ac/institutes/grid.214458.e", 
              "name": [
                "Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA", 
                "Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "LeFaive", 
            "givenName": "Jonathon", 
            "id": "sg:person.013725704650.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013725704650.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA", 
              "id": "http://www.grid.ac/institutes/grid.214458.e", 
              "name": [
                "Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA", 
                "Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gagliano Taliun", 
            "givenName": "Sarah A.", 
            "id": "sg:person.015733217351.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015733217351.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA", 
              "id": "http://www.grid.ac/institutes/grid.214458.e", 
              "name": [
                "Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA", 
                "Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bi", 
            "givenName": "Wenjian", 
            "id": "sg:person.0626365326.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626365326.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway", 
              "id": "http://www.grid.ac/institutes/grid.5947.f", 
              "name": [
                "K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gabrielsen", 
            "givenName": "Maiken E.", 
            "id": "sg:person.01235162135.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235162135.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Molecular Medicine Finland, Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland", 
              "id": "http://www.grid.ac/institutes/grid.452494.a", 
              "name": [
                "Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA", 
                "Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA", 
                "Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA", 
                "Institute for Molecular Medicine Finland, Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Daly", 
            "givenName": "Mark J.", 
            "id": "sg:person.011517303117.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011517303117.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.66859.34", 
              "name": [
                "Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA", 
                "Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA", 
                "Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Neale", 
            "givenName": "Benjamin M.", 
            "id": "sg:person.014377465057.81", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014377465057.81"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "HUNT Research Centre, Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Levanger, Norway", 
              "id": "http://www.grid.ac/institutes/grid.5947.f", 
              "name": [
                "K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway", 
                "HUNT Research Centre, Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Levanger, Norway"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hveem", 
            "givenName": "Kristian", 
            "id": "sg:person.0703577540.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703577540.65"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA", 
              "id": "http://www.grid.ac/institutes/grid.214458.e", 
              "name": [
                "Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA", 
                "Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Abecasis", 
            "givenName": "Goncalo R.", 
            "id": "sg:person.0641525362.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641525362.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA", 
              "id": "http://www.grid.ac/institutes/grid.214458.e", 
              "name": [
                "Division of Cardiology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA", 
                "Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA", 
                "Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Willer", 
            "givenName": "Cristen J.", 
            "id": "sg:person.01175557647.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175557647.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Graduate School of Data Science, Seoul National University, Seoul, Republic of Korea", 
              "id": "http://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA", 
                "Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA", 
                "Graduate School of Data Science, Seoul National University, Seoul, Republic of Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Seunggeun", 
            "id": "sg:person.013062152347.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013062152347.40"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/ng.511", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001729273", 
              "https://doi.org/10.1038/ng.511"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.548", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016055940", 
              "https://doi.org/10.1038/ng.548"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.76", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009408087", 
              "https://doi.org/10.1038/ng.76"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2288-12-143", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049114369", 
              "https://doi.org/10.1186/1471-2288-12-143"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3643", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050700099", 
              "https://doi.org/10.1038/ng.3643"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3190", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041665159", 
              "https://doi.org/10.1038/ng.3190"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature21039", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083401652", 
              "https://doi.org/10.1038/nature21039"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng786", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041343500", 
              "https://doi.org/10.1038/ng786"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41588-018-0184-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106070347", 
              "https://doi.org/10.1038/s41588-018-0184-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2797", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031899225", 
              "https://doi.org/10.1038/ng.2797"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-018-0579-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107363293", 
              "https://doi.org/10.1038/s41586-018-0579-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2876", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016276818", 
              "https://doi.org/10.1038/ng.2876"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3656", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006258085", 
              "https://doi.org/10.1038/ng.3656"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2852", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040621712", 
              "https://doi.org/10.1038/ng.2852"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004633015", 
              "https://doi.org/10.1038/ng.3014"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-05747-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106199477", 
              "https://doi.org/10.1038/s41467-018-05747-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1297-9686-38-1-25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040980514", 
              "https://doi.org/10.1186/1297-9686-38-1-25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3708", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015010011", 
              "https://doi.org/10.1038/ng.3708"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2410", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036140888", 
              "https://doi.org/10.1038/ng.2410"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2020-05-18", 
        "datePublishedReg": "2020-05-18", 
        "description": "With very large sample sizes, biobanks provide an exciting opportunity to identify genetic components of complex traits. To analyze rare variants, region-based multiple-variant aggregate tests are commonly used to increase power for association tests. However, because of the substantial computational cost, existing region-based tests cannot analyze hundreds of thousands of samples while accounting for confounders such as population stratification and sample relatedness. Here we propose a scalable generalized mixed-model region-based association test, SAIGE-GENE, that is applicable to exome-wide and genome-wide region-based analysis for hundreds of thousands of samples and can account for unbalanced case\u2013control ratios for binary traits. Through extensive simulation studies and analysis of the HUNT study with 69,716 Norwegian samples and the UK Biobank data with 408,910 White British samples, we show that SAIGE-GENE can efficiently analyze large-sample data (N\u2009>\u2009400,000) with type I error rates well controlled.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41588-020-0621-6", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.9424382", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.5124417", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8473586", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6617285", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1103138", 
            "issn": [
              "1061-4036", 
              "1546-1718"
            ], 
            "name": "Nature Genetics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "52"
          }
        ], 
        "keywords": [
          "region-based association tests", 
          "unbalanced case-control ratios", 
          "extensive simulation study", 
          "substantial computational cost", 
          "sample relatedness", 
          "Type I error rates", 
          "computational cost", 
          "I error rate", 
          "generalized linear mixed model", 
          "case-control ratio", 
          "simulation study", 
          "large sample data", 
          "binary traits", 
          "White British sample", 
          "linear mixed models", 
          "UK Biobank data", 
          "region-based tests", 
          "hundreds of thousands", 
          "sample size", 
          "mixed models", 
          "population stratification", 
          "Biobank data", 
          "large biobanks", 
          "Association Test", 
          "error rate", 
          "model", 
          "larger sample size", 
          "power", 
          "complex traits", 
          "thousands", 
          "analysis", 
          "exciting opportunities", 
          "data", 
          "hundreds", 
          "cost", 
          "size", 
          "aggregate tests", 
          "components", 
          "variants", 
          "samples", 
          "ratio", 
          "test", 
          "region-based analysis", 
          "study", 
          "stratification", 
          "rare variants", 
          "rate", 
          "opportunities", 
          "Biobank", 
          "traits", 
          "genetic component", 
          "relatedness", 
          "confounders", 
          "Norwegian sample", 
          "British sample", 
          "cohort", 
          "HUNT Study"
        ], 
        "name": "Scalable generalized linear mixed model for region-based association tests in large biobanks and cohorts", 
        "pagination": "634-639", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1127684974"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41588-020-0621-6"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "32424355"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41588-020-0621-6", 
          "https://app.dimensions.ai/details/publication/pub.1127684974"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:42", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_870.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41588-020-0621-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41588-020-0621-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41588-020-0621-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41588-020-0621-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41588-020-0621-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    369 TRIPLES      21 PREDICATES      113 URIs      86 LITERALS      19 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41588-020-0621-6 schema:about N34d8307bae444acc9f0f1c4113200804
    2 N4600bfaf98de472e9c08e5babbbb29df
    3 N4c2fc48c108d40c7ac1b4e8797ad2e0e
    4 N50e78ae652234837bbd76482ddeaf7c6
    5 N6420e0d1de6a4aa28a266f3bfc059578
    6 N67e56223330d4186acd35b451297fba3
    7 N79e7062b6d46469ab47b5c3a24760893
    8 Na823c5b4ae1149b08acdabf1acde8b4a
    9 Nc4cd04120a51417186e2d92a924c4202
    10 Nca38e86f480c4506b2702bb6bc5771c2
    11 Nd5a0cdd3f92b41a2aba2c3d18175c3b9
    12 Nda3b9ea3ac164f5e83b8249858487e9b
    13 anzsrc-for:06
    14 anzsrc-for:0604
    15 schema:author Nb00bb1a2438f41dab5245d088e63150e
    16 schema:citation sg:pub.10.1038/nature21039
    17 sg:pub.10.1038/ng.2410
    18 sg:pub.10.1038/ng.2797
    19 sg:pub.10.1038/ng.2852
    20 sg:pub.10.1038/ng.2876
    21 sg:pub.10.1038/ng.3014
    22 sg:pub.10.1038/ng.3190
    23 sg:pub.10.1038/ng.3643
    24 sg:pub.10.1038/ng.3656
    25 sg:pub.10.1038/ng.3708
    26 sg:pub.10.1038/ng.511
    27 sg:pub.10.1038/ng.548
    28 sg:pub.10.1038/ng.76
    29 sg:pub.10.1038/ng786
    30 sg:pub.10.1038/s41467-018-05747-8
    31 sg:pub.10.1038/s41586-018-0579-z
    32 sg:pub.10.1038/s41588-018-0184-y
    33 sg:pub.10.1186/1297-9686-38-1-25
    34 sg:pub.10.1186/1471-2288-12-143
    35 schema:datePublished 2020-05-18
    36 schema:datePublishedReg 2020-05-18
    37 schema:description With very large sample sizes, biobanks provide an exciting opportunity to identify genetic components of complex traits. To analyze rare variants, region-based multiple-variant aggregate tests are commonly used to increase power for association tests. However, because of the substantial computational cost, existing region-based tests cannot analyze hundreds of thousands of samples while accounting for confounders such as population stratification and sample relatedness. Here we propose a scalable generalized mixed-model region-based association test, SAIGE-GENE, that is applicable to exome-wide and genome-wide region-based analysis for hundreds of thousands of samples and can account for unbalanced case–control ratios for binary traits. Through extensive simulation studies and analysis of the HUNT study with 69,716 Norwegian samples and the UK Biobank data with 408,910 White British samples, we show that SAIGE-GENE can efficiently analyze large-sample data (N > 400,000) with type I error rates well controlled.
    38 schema:genre article
    39 schema:isAccessibleForFree true
    40 schema:isPartOf Na3e15e187b7e4e0ea1c473c586747983
    41 Ne389d79d2b134954a89fd97e5a9398b0
    42 sg:journal.1103138
    43 schema:keywords Association Test
    44 Biobank
    45 Biobank data
    46 British sample
    47 HUNT Study
    48 I error rate
    49 Norwegian sample
    50 Type I error rates
    51 UK Biobank data
    52 White British sample
    53 aggregate tests
    54 analysis
    55 binary traits
    56 case-control ratio
    57 cohort
    58 complex traits
    59 components
    60 computational cost
    61 confounders
    62 cost
    63 data
    64 error rate
    65 exciting opportunities
    66 extensive simulation study
    67 generalized linear mixed model
    68 genetic component
    69 hundreds
    70 hundreds of thousands
    71 large biobanks
    72 large sample data
    73 larger sample size
    74 linear mixed models
    75 mixed models
    76 model
    77 opportunities
    78 population stratification
    79 power
    80 rare variants
    81 rate
    82 ratio
    83 region-based analysis
    84 region-based association tests
    85 region-based tests
    86 relatedness
    87 sample relatedness
    88 sample size
    89 samples
    90 simulation study
    91 size
    92 stratification
    93 study
    94 substantial computational cost
    95 test
    96 thousands
    97 traits
    98 unbalanced case-control ratios
    99 variants
    100 schema:name Scalable generalized linear mixed model for region-based association tests in large biobanks and cohorts
    101 schema:pagination 634-639
    102 schema:productId N5fa8acf8ae5f42d5803ebefd65c0b05f
    103 N9140ee6b2bb04e7791d58e604e9b0aa4
    104 Nbe5247f147484d96a60dfbdd0d836ff4
    105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1127684974
    106 https://doi.org/10.1038/s41588-020-0621-6
    107 schema:sdDatePublished 2022-12-01T06:42
    108 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    109 schema:sdPublisher N27db7bb3edd9482cbba14c20fe570ac4
    110 schema:url https://doi.org/10.1038/s41588-020-0621-6
    111 sgo:license sg:explorer/license/
    112 sgo:sdDataset articles
    113 rdf:type schema:ScholarlyArticle
    114 N153e29cbd99048129fe4c80fa9f14d9e rdf:first sg:person.014377465057.81
    115 rdf:rest Nd2719da035844dc69435c303f1d92076
    116 N27db7bb3edd9482cbba14c20fe570ac4 schema:name Springer Nature - SN SciGraph project
    117 rdf:type schema:Organization
    118 N281657a2c5584cd6b242e2ac7a4a105b rdf:first sg:person.0641525362.39
    119 rdf:rest Nf2723b6ac3a6428aae1224f551cc4303
    120 N34d8307bae444acc9f0f1c4113200804 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name Lipoproteins, HDL
    122 rdf:type schema:DefinedTerm
    123 N4600bfaf98de472e9c08e5babbbb29df schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    124 schema:name Models, Genetic
    125 rdf:type schema:DefinedTerm
    126 N4c2fc48c108d40c7ac1b4e8797ad2e0e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    127 schema:name Genetic Markers
    128 rdf:type schema:DefinedTerm
    129 N50e78ae652234837bbd76482ddeaf7c6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    130 schema:name United Kingdom
    131 rdf:type schema:DefinedTerm
    132 N5fa8acf8ae5f42d5803ebefd65c0b05f schema:name doi
    133 schema:value 10.1038/s41588-020-0621-6
    134 rdf:type schema:PropertyValue
    135 N614299670eb24bd4b25d05ec3711c9b7 rdf:first sg:person.013062152347.40
    136 rdf:rest rdf:nil
    137 N6420e0d1de6a4aa28a266f3bfc059578 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    138 schema:name Case-Control Studies
    139 rdf:type schema:DefinedTerm
    140 N67e56223330d4186acd35b451297fba3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    141 schema:name Biological Specimen Banks
    142 rdf:type schema:DefinedTerm
    143 N79e7062b6d46469ab47b5c3a24760893 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    144 schema:name Exome
    145 rdf:type schema:DefinedTerm
    146 N836a123fe657473eaf93ae8c26d0e7fe rdf:first sg:person.01235162135.10
    147 rdf:rest Ne87dfdf3c13c46b5be8f5d939ac706dd
    148 N9140ee6b2bb04e7791d58e604e9b0aa4 schema:name dimensions_id
    149 schema:value pub.1127684974
    150 rdf:type schema:PropertyValue
    151 N9d3da492c550450c93b1847f0264fb68 rdf:first sg:person.0736477270.05
    152 rdf:rest Nad7afb568ee342f594ff04de64104b67
    153 N9f2b7b089f5349f2acee3241039e6136 rdf:first sg:person.0626365326.32
    154 rdf:rest N836a123fe657473eaf93ae8c26d0e7fe
    155 Na2055c6b25f446c9ae817982c83d9be0 rdf:first sg:person.015733217351.58
    156 rdf:rest N9f2b7b089f5349f2acee3241039e6136
    157 Na3e15e187b7e4e0ea1c473c586747983 schema:volumeNumber 52
    158 rdf:type schema:PublicationVolume
    159 Na823c5b4ae1149b08acdabf1acde8b4a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    160 schema:name Humans
    161 rdf:type schema:DefinedTerm
    162 Nad7afb568ee342f594ff04de64104b67 rdf:first sg:person.013725704650.44
    163 rdf:rest Na2055c6b25f446c9ae817982c83d9be0
    164 Nb00bb1a2438f41dab5245d088e63150e rdf:first sg:person.0706552355.14
    165 rdf:rest Nee25c03eaae541b99ca91aea0a47cbbd
    166 Nb35c23da4fed4b0eb6c1272ef9a90fc6 rdf:first sg:person.0765074230.63
    167 rdf:rest N9d3da492c550450c93b1847f0264fb68
    168 Nbe5247f147484d96a60dfbdd0d836ff4 schema:name pubmed_id
    169 schema:value 32424355
    170 rdf:type schema:PropertyValue
    171 Nc4cd04120a51417186e2d92a924c4202 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    172 schema:name Linear Models
    173 rdf:type schema:DefinedTerm
    174 Nca38e86f480c4506b2702bb6bc5771c2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    175 schema:name Multifactorial Inheritance
    176 rdf:type schema:DefinedTerm
    177 Nd2719da035844dc69435c303f1d92076 rdf:first sg:person.0703577540.65
    178 rdf:rest N281657a2c5584cd6b242e2ac7a4a105b
    179 Nd5a0cdd3f92b41a2aba2c3d18175c3b9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    180 schema:name Waist-Hip Ratio
    181 rdf:type schema:DefinedTerm
    182 Nda3b9ea3ac164f5e83b8249858487e9b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    183 schema:name Norway
    184 rdf:type schema:DefinedTerm
    185 Ne389d79d2b134954a89fd97e5a9398b0 schema:issueNumber 6
    186 rdf:type schema:PublicationIssue
    187 Ne87dfdf3c13c46b5be8f5d939ac706dd rdf:first sg:person.011517303117.07
    188 rdf:rest N153e29cbd99048129fe4c80fa9f14d9e
    189 Nee25c03eaae541b99ca91aea0a47cbbd rdf:first sg:person.016277220307.28
    190 rdf:rest Nb35c23da4fed4b0eb6c1272ef9a90fc6
    191 Nf2723b6ac3a6428aae1224f551cc4303 rdf:first sg:person.01175557647.16
    192 rdf:rest N614299670eb24bd4b25d05ec3711c9b7
    193 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    194 schema:name Biological Sciences
    195 rdf:type schema:DefinedTerm
    196 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    197 schema:name Genetics
    198 rdf:type schema:DefinedTerm
    199 sg:grant.5124417 http://pending.schema.org/fundedItem sg:pub.10.1038/s41588-020-0621-6
    200 rdf:type schema:MonetaryGrant
    201 sg:grant.6617285 http://pending.schema.org/fundedItem sg:pub.10.1038/s41588-020-0621-6
    202 rdf:type schema:MonetaryGrant
    203 sg:grant.8473586 http://pending.schema.org/fundedItem sg:pub.10.1038/s41588-020-0621-6
    204 rdf:type schema:MonetaryGrant
    205 sg:grant.9424382 http://pending.schema.org/fundedItem sg:pub.10.1038/s41588-020-0621-6
    206 rdf:type schema:MonetaryGrant
    207 sg:journal.1103138 schema:issn 1061-4036
    208 1546-1718
    209 schema:name Nature Genetics
    210 schema:publisher Springer Nature
    211 rdf:type schema:Periodical
    212 sg:person.011517303117.07 schema:affiliation grid-institutes:grid.452494.a
    213 schema:familyName Daly
    214 schema:givenName Mark J.
    215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011517303117.07
    216 rdf:type schema:Person
    217 sg:person.01175557647.16 schema:affiliation grid-institutes:grid.214458.e
    218 schema:familyName Willer
    219 schema:givenName Cristen J.
    220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175557647.16
    221 rdf:type schema:Person
    222 sg:person.01235162135.10 schema:affiliation grid-institutes:grid.5947.f
    223 schema:familyName Gabrielsen
    224 schema:givenName Maiken E.
    225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235162135.10
    226 rdf:type schema:Person
    227 sg:person.013062152347.40 schema:affiliation grid-institutes:grid.31501.36
    228 schema:familyName Lee
    229 schema:givenName Seunggeun
    230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013062152347.40
    231 rdf:type schema:Person
    232 sg:person.013725704650.44 schema:affiliation grid-institutes:grid.214458.e
    233 schema:familyName LeFaive
    234 schema:givenName Jonathon
    235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013725704650.44
    236 rdf:type schema:Person
    237 sg:person.014377465057.81 schema:affiliation grid-institutes:grid.66859.34
    238 schema:familyName Neale
    239 schema:givenName Benjamin M.
    240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014377465057.81
    241 rdf:type schema:Person
    242 sg:person.015733217351.58 schema:affiliation grid-institutes:grid.214458.e
    243 schema:familyName Gagliano Taliun
    244 schema:givenName Sarah A.
    245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015733217351.58
    246 rdf:type schema:Person
    247 sg:person.016277220307.28 schema:affiliation grid-institutes:grid.214458.e
    248 schema:familyName Zhao
    249 schema:givenName Zhangchen
    250 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016277220307.28
    251 rdf:type schema:Person
    252 sg:person.0626365326.32 schema:affiliation grid-institutes:grid.214458.e
    253 schema:familyName Bi
    254 schema:givenName Wenjian
    255 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626365326.32
    256 rdf:type schema:Person
    257 sg:person.0641525362.39 schema:affiliation grid-institutes:grid.214458.e
    258 schema:familyName Abecasis
    259 schema:givenName Goncalo R.
    260 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641525362.39
    261 rdf:type schema:Person
    262 sg:person.0703577540.65 schema:affiliation grid-institutes:grid.5947.f
    263 schema:familyName Hveem
    264 schema:givenName Kristian
    265 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703577540.65
    266 rdf:type schema:Person
    267 sg:person.0706552355.14 schema:affiliation grid-institutes:grid.66859.34
    268 schema:familyName Zhou
    269 schema:givenName Wei
    270 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0706552355.14
    271 rdf:type schema:Person
    272 sg:person.0736477270.05 schema:affiliation grid-institutes:grid.214458.e
    273 schema:familyName Fritsche
    274 schema:givenName Lars G.
    275 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736477270.05
    276 rdf:type schema:Person
    277 sg:person.0765074230.63 schema:affiliation grid-institutes:grid.214458.e
    278 schema:familyName Nielsen
    279 schema:givenName Jonas B.
    280 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765074230.63
    281 rdf:type schema:Person
    282 sg:pub.10.1038/nature21039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083401652
    283 https://doi.org/10.1038/nature21039
    284 rdf:type schema:CreativeWork
    285 sg:pub.10.1038/ng.2410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036140888
    286 https://doi.org/10.1038/ng.2410
    287 rdf:type schema:CreativeWork
    288 sg:pub.10.1038/ng.2797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031899225
    289 https://doi.org/10.1038/ng.2797
    290 rdf:type schema:CreativeWork
    291 sg:pub.10.1038/ng.2852 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040621712
    292 https://doi.org/10.1038/ng.2852
    293 rdf:type schema:CreativeWork
    294 sg:pub.10.1038/ng.2876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016276818
    295 https://doi.org/10.1038/ng.2876
    296 rdf:type schema:CreativeWork
    297 sg:pub.10.1038/ng.3014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004633015
    298 https://doi.org/10.1038/ng.3014
    299 rdf:type schema:CreativeWork
    300 sg:pub.10.1038/ng.3190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041665159
    301 https://doi.org/10.1038/ng.3190
    302 rdf:type schema:CreativeWork
    303 sg:pub.10.1038/ng.3643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050700099
    304 https://doi.org/10.1038/ng.3643
    305 rdf:type schema:CreativeWork
    306 sg:pub.10.1038/ng.3656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006258085
    307 https://doi.org/10.1038/ng.3656
    308 rdf:type schema:CreativeWork
    309 sg:pub.10.1038/ng.3708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015010011
    310 https://doi.org/10.1038/ng.3708
    311 rdf:type schema:CreativeWork
    312 sg:pub.10.1038/ng.511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001729273
    313 https://doi.org/10.1038/ng.511
    314 rdf:type schema:CreativeWork
    315 sg:pub.10.1038/ng.548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016055940
    316 https://doi.org/10.1038/ng.548
    317 rdf:type schema:CreativeWork
    318 sg:pub.10.1038/ng.76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009408087
    319 https://doi.org/10.1038/ng.76
    320 rdf:type schema:CreativeWork
    321 sg:pub.10.1038/ng786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041343500
    322 https://doi.org/10.1038/ng786
    323 rdf:type schema:CreativeWork
    324 sg:pub.10.1038/s41467-018-05747-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106199477
    325 https://doi.org/10.1038/s41467-018-05747-8
    326 rdf:type schema:CreativeWork
    327 sg:pub.10.1038/s41586-018-0579-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1107363293
    328 https://doi.org/10.1038/s41586-018-0579-z
    329 rdf:type schema:CreativeWork
    330 sg:pub.10.1038/s41588-018-0184-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1106070347
    331 https://doi.org/10.1038/s41588-018-0184-y
    332 rdf:type schema:CreativeWork
    333 sg:pub.10.1186/1297-9686-38-1-25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040980514
    334 https://doi.org/10.1186/1297-9686-38-1-25
    335 rdf:type schema:CreativeWork
    336 sg:pub.10.1186/1471-2288-12-143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049114369
    337 https://doi.org/10.1186/1471-2288-12-143
    338 rdf:type schema:CreativeWork
    339 grid-institutes:grid.214458.e schema:alternateName Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
    340 Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
    341 Division of Cardiology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
    342 schema:name Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
    343 Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
    344 Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
    345 Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
    346 Division of Cardiology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
    347 rdf:type schema:Organization
    348 grid-institutes:grid.31501.36 schema:alternateName Graduate School of Data Science, Seoul National University, Seoul, Republic of Korea
    349 schema:name Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
    350 Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
    351 Graduate School of Data Science, Seoul National University, Seoul, Republic of Korea
    352 rdf:type schema:Organization
    353 grid-institutes:grid.452494.a schema:alternateName Institute for Molecular Medicine Finland, Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland
    354 schema:name Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
    355 Institute for Molecular Medicine Finland, Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland
    356 Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
    357 Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
    358 rdf:type schema:Organization
    359 grid-institutes:grid.5947.f schema:alternateName HUNT Research Centre, Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Levanger, Norway
    360 K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
    361 schema:name HUNT Research Centre, Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Levanger, Norway
    362 K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
    363 rdf:type schema:Organization
    364 grid-institutes:grid.66859.34 schema:alternateName Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
    365 schema:name Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
    366 Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
    367 Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
    368 Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
    369 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...