Ontology type: schema:ScholarlyArticle Open Access: True
2022-05-02
AUTHORS ABSTRACTDespite the emergence of experimental methods for simultaneous measurement of multiple omics modalities in single cells, most single-cell datasets include only one modality. A major obstacle in integrating omics data from multiple modalities is that different omics layers typically have distinct feature spaces. Here, we propose a computational framework called GLUE (graph-linked unified embedding), which bridges the gap by modeling regulatory interactions across omics layers explicitly. Systematic benchmarking demonstrated that GLUE is more accurate, robust and scalable than state-of-the-art tools for heterogeneous single-cell multi-omics data. We applied GLUE to various challenging tasks, including triple-omics integration, integrative regulatory inference and multi-omics human cell atlas construction over millions of cells, where GLUE was able to correct previous annotations. GLUE features a modular design that can be flexibly extended and enhanced for new analysis tasks. The full package is available online at https://github.com/gao-lab/GLUE. More... »
PAGES1-9
http://scigraph.springernature.com/pub.10.1038/s41587-022-01284-4
DOIhttp://dx.doi.org/10.1038/s41587-022-01284-4
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1147541248
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/35501393
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Changping Laboratory, Beijing, China",
"id": "http://www.grid.ac/institutes/None",
"name": [
"State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Biomedical Pioneering Innovative Center (BIOPIC) and Beijing Advanced Innovation Center for Genomics (ICG), Center for Bioinformatics (CBI), Peking University, Beijing, China",
"Changping Laboratory, Beijing, China"
],
"type": "Organization"
},
"familyName": "Cao",
"givenName": "Zhi-Jie",
"id": "sg:person.012323105171.88",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012323105171.88"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Changping Laboratory, Beijing, China",
"id": "http://www.grid.ac/institutes/None",
"name": [
"State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Biomedical Pioneering Innovative Center (BIOPIC) and Beijing Advanced Innovation Center for Genomics (ICG), Center for Bioinformatics (CBI), Peking University, Beijing, China",
"Changping Laboratory, Beijing, China"
],
"type": "Organization"
},
"familyName": "Gao",
"givenName": "Ge",
"id": "sg:person.01240557564.33",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240557564.33"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1038/s41592-018-0229-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1110105670",
"https://doi.org/10.1038/s41592-018-0229-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41592-021-01336-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1144112334",
"https://doi.org/10.1038/s41592-021-01336-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nbt.4038",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1099637572",
"https://doi.org/10.1038/nbt.4038"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41587-021-00867-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1137304898",
"https://doi.org/10.1038/s41587-021-00867-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/srep16923",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045031591",
"https://doi.org/10.1038/srep16923"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/ncomms14049",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019155899",
"https://doi.org/10.1038/ncomms14049"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41587-021-00869-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1137142226",
"https://doi.org/10.1038/s41587-021-00869-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41587-019-0290-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1121784608",
"https://doi.org/10.1038/s41587-019-0290-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s13059-019-1850-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1124132420",
"https://doi.org/10.1186/s13059-019-1850-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s13059-019-1854-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1122683497",
"https://doi.org/10.1186/s13059-019-1854-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature14319",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015767010",
"https://doi.org/10.1038/nature14319"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41467-021-22368-w",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1137166690",
"https://doi.org/10.1038/s41467-021-22368-w"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41467-018-03149-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1101086624",
"https://doi.org/10.1038/s41467-018-03149-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41588-019-0494-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1120926154",
"https://doi.org/10.1038/s41588-019-0494-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41587-021-00895-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1137703351",
"https://doi.org/10.1038/s41587-021-00895-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nrg3454",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046147193",
"https://doi.org/10.1038/nrg3454"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nmeth.3629",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026517170",
"https://doi.org/10.1038/nmeth.3629"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41586-021-03500-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1141642032",
"https://doi.org/10.1038/s41586-021-03500-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nmeth.2639",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006291172",
"https://doi.org/10.1038/nmeth.2639"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nprot.2017.149",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1101289316",
"https://doi.org/10.1038/nprot.2017.149"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41467-020-17281-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1129128665",
"https://doi.org/10.1038/s41467-020-17281-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nbt.4112",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1103188713",
"https://doi.org/10.1038/nbt.4112"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41576-019-0093-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1111753598",
"https://doi.org/10.1038/s41576-019-0093-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature24277",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1092152730",
"https://doi.org/10.1038/nature24277"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41592-019-0619-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1122668169",
"https://doi.org/10.1038/s41592-019-0619-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41586-019-1049-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1112966762",
"https://doi.org/10.1038/s41586-019-1049-y"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41467-019-12547-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1121615204",
"https://doi.org/10.1038/s41467-019-12547-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41586-021-03220-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1141642081",
"https://doi.org/10.1038/s41586-021-03220-z"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41467-020-20249-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1134293765",
"https://doi.org/10.1038/s41467-020-20249-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nbt.4096",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1101885942",
"https://doi.org/10.1038/nbt.4096"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41467-021-21409-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1135651135",
"https://doi.org/10.1038/s41467-021-21409-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41467-021-22851-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1137745286",
"https://doi.org/10.1038/s41467-021-22851-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nmeth.4463",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1092132373",
"https://doi.org/10.1038/nmeth.4463"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s13059-021-02452-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1140643366",
"https://doi.org/10.1186/s13059-021-02452-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41467-018-07771-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1110537170",
"https://doi.org/10.1038/s41467-018-07771-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41587-021-01034-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1141783009",
"https://doi.org/10.1038/s41587-021-01034-y"
],
"type": "CreativeWork"
}
],
"datePublished": "2022-05-02",
"datePublishedReg": "2022-05-02",
"description": "Despite the emergence of experimental methods for simultaneous measurement of multiple omics modalities in single cells, most single-cell datasets include only one modality. A major obstacle in integrating omics data from multiple modalities is that different omics layers typically have distinct feature spaces. Here, we propose a computational framework called GLUE (graph-linked unified embedding), which bridges the gap by modeling regulatory interactions across omics layers explicitly. Systematic benchmarking demonstrated that GLUE is more accurate, robust and scalable than state-of-the-art tools for heterogeneous single-cell multi-omics data. We applied GLUE to various challenging tasks, including triple-omics integration, integrative regulatory inference and multi-omics human cell atlas construction over millions of cells, where GLUE was able to correct previous annotations. GLUE features a modular design that can be flexibly extended and enhanced for new analysis tasks. The full package is available online at https://github.com/gao-lab/GLUE.",
"genre": "article",
"id": "sg:pub.10.1038/s41587-022-01284-4",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1115214",
"issn": [
"1087-0156",
"1546-1696"
],
"name": "Nature Biotechnology",
"publisher": "Springer Nature",
"type": "Periodical"
}
],
"keywords": [
"new analysis tasks",
"distinct feature spaces",
"single-cell data integration",
"different omics layers",
"analysis tasks",
"data integration",
"feature space",
"art tools",
"challenging task",
"multiple modalities",
"systematic benchmarking",
"modular design",
"computational framework",
"omics layers",
"millions of cells",
"previous annotations",
"single-cell datasets",
"omics data",
"task",
"regulatory inference",
"multi-omics data",
"integration",
"dataset",
"annotation",
"inference",
"embedding",
"omics modalities",
"single-cell multi-omics data",
"framework",
"benchmarking",
"major obstacle",
"millions",
"package",
"tool",
"data",
"full package",
"obstacles",
"design",
"space",
"modalities",
"method",
"construction",
"layer",
"state",
"emergence",
"gap",
"regulatory interactions",
"interaction",
"glue",
"experimental methods",
"measurements",
"single cells",
"simultaneous measurement",
"cells",
"human cells"
],
"name": "Multi-omics single-cell data integration and regulatory inference with graph-linked embedding",
"pagination": "1-9",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1147541248"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1038/s41587-022-01284-4"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"35501393"
]
}
],
"sameAs": [
"https://doi.org/10.1038/s41587-022-01284-4",
"https://app.dimensions.ai/details/publication/pub.1147541248"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T22:24",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_937.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1038/s41587-022-01284-4"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41587-022-01284-4'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41587-022-01284-4'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41587-022-01284-4'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41587-022-01284-4'
This table displays all metadata directly associated to this object as RDF triples.
263 TRIPLES
22 PREDICATES
115 URIs
71 LITERALS
5 BLANK NODES