A unified catalog of 204,938 reference genomes from the human gut microbiome View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-07-20

AUTHORS

Alexandre Almeida, Stephen Nayfach, Miguel Boland, Francesco Strozzi, Martin Beracochea, Zhou Jason Shi, Katherine S. Pollard, Ekaterina Sakharova, Donovan H. Parks, Philip Hugenholtz, Nicola Segata, Nikos C. Kyrpides, Robert D. Finn

ABSTRACT

Comprehensive, high-quality reference genomes are required for functional characterization and taxonomic assignment of the human gut microbiota. We present the Unified Human Gastrointestinal Genome (UHGG) collection, comprising 204,938 nonredundant genomes from 4,644 gut prokaryotes. These genomes encode >170 million protein sequences, which we collated in the Unified Human Gastrointestinal Protein (UHGP) catalog. The UHGP more than doubles the number of gut proteins in comparison to those present in the Integrated Gene Catalog. More than 70% of the UHGG species lack cultured representatives, and 40% of the UHGP lack functional annotations. Intraspecies genomic variation analyses revealed a large reservoir of accessory genes and single-nucleotide variants, many of which are specific to individual human populations. The UHGG and UHGP collections will enable studies linking genotypes to phenotypes in the human gut microbiome. More... »

PAGES

105-114

References to SciGraph publications

  • 2014-11-17. Fast and sensitive protein alignment using DIAMOND in NATURE METHODS
  • 2015-03-11. Gut microbiome development along the colorectal adenoma–carcinoma sequence in NATURE COMMUNICATIONS
  • 2019-02-11. A new genomic blueprint of the human gut microbiota in NATURE
  • 2012-06-13. Structure, function and diversity of the healthy human microbiome in NATURE
  • 2018-08-27. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life in NATURE BIOTECHNOLOGY
  • 2019-02-04. 1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses in NATURE BIOTECHNOLOGY
  • 2012-09-26. A metagenome-wide association study of gut microbiota in type 2 diabetes in NATURE
  • 2019-03-13. New insights from uncultivated genomes of the global human gut microbiome in NATURE
  • 2017-05-22. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug in NATURE MEDICINE
  • 2017-09-11. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life in NATURE MICROBIOLOGY
  • 2019-02-04. A human gut bacterial genome and culture collection for improved metagenomic analyses in NATURE BIOTECHNOLOGY
  • 2012-03-04. Fast gapped-read alignment with Bowtie 2 in NATURE METHODS
  • 2014-07-06. An integrated catalog of reference genes in the human gut microbiome in NATURE BIOTECHNOLOGY
  • 2016-06-20. Mash: fast genome and metagenome distance estimation using MinHash in GENOME BIOLOGY
  • 2014-09-14. Binning metagenomic contigs by coverage and composition in NATURE METHODS
  • 2018-06-29. Clustering huge protein sequence sets in linear time in NATURE COMMUNICATIONS
  • 2004-01-30. Versatile and open software for comparing large genomes in GENOME BIOLOGY
  • 2019-08-02. Compendium of 4,941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery in NATURE BIOTECHNOLOGY
  • 2019-06-12. Multiple levels of the unknown in microbiome research in BMC BIOLOGY
  • 2019-02-04. Ultrafast search of all deposited bacterial and viral genomic data in NATURE BIOTECHNOLOGY
  • 2010-03-08. Prodigal: prokaryotic gene recognition and translation initiation site identification in BMC BIOINFORMATICS
  • 2010-03. A human gut microbial gene catalogue established by metagenomic sequencing in NATURE
  • <error retrieving object. in <ERROR RETRIEVING OBJECT
  • 2017-08-01. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea in NATURE BIOTECHNOLOGY
  • 2018-04-25. Single-cell metagenomics: challenges and applications in PROTEIN & CELL
  • 2017-10-17. Enrichment allows identification of diverse, rare elements in metagenomic resistome-virulome sequencing in MICROBIOME
  • 2018-11-30. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries in NATURE COMMUNICATIONS
  • 2012-12-05. Genomic variation landscape of the human gut microbiome in NATURE
  • 2018-05-28. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy in NATURE MICROBIOLOGY
  • 2017-07-25. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2019-11-28. Improved metagenomic analysis with Kraken 2 in GENOME BIOLOGY
  • 2016-10-24. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system in NATURE COMMUNICATIONS
  • 2016-05-04. Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation in NATURE
  • 2017-06-19. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention in NATURE MEDICINE
  • 2019-09-02. A library of human gut bacterial isolates paired with longitudinal multiomics data enables mechanistic microbiome research in NATURE MEDICINE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41587-020-0603-3

    DOI

    http://dx.doi.org/10.1038/s41587-020-0603-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1129483269

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/32690973


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bacteria", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Databases, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gastrointestinal Microbiome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome, Bacterial", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Metagenome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Metagenomics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phenotype", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phylogeny", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK", 
              "id": "http://www.grid.ac/institutes/grid.10306.34", 
              "name": [
                "European Bioinformatics Institute (EMBL\u2013EBI), Wellcome Genome Campus, Hinxton, UK", 
                "Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Almeida", 
            "givenName": "Alexandre", 
            "id": "sg:person.0607475671.59", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607475671.59"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.184769.5", 
              "name": [
                "US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA", 
                "Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nayfach", 
            "givenName": "Stephen", 
            "id": "sg:person.0656131776.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656131776.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "European Bioinformatics Institute (EMBL\u2013EBI), Wellcome Genome Campus, Hinxton, UK", 
              "id": "http://www.grid.ac/institutes/grid.225360.0", 
              "name": [
                "European Bioinformatics Institute (EMBL\u2013EBI), Wellcome Genome Campus, Hinxton, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Boland", 
            "givenName": "Miguel", 
            "id": "sg:person.012520216527.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012520216527.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Enterome Bioscience, Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.511877.d", 
              "name": [
                "Enterome Bioscience, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Strozzi", 
            "givenName": "Francesco", 
            "id": "sg:person.01320675003.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320675003.14"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "European Bioinformatics Institute (EMBL\u2013EBI), Wellcome Genome Campus, Hinxton, UK", 
              "id": "http://www.grid.ac/institutes/grid.225360.0", 
              "name": [
                "European Bioinformatics Institute (EMBL\u2013EBI), Wellcome Genome Campus, Hinxton, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Beracochea", 
            "givenName": "Martin", 
            "id": "sg:person.012245764157.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012245764157.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Chan Zuckerberg Biohub, San Francisco, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.499295.a", 
              "name": [
                "Gladstone Institutes, San Francisco, CA, USA", 
                "Chan Zuckerberg Biohub, San Francisco, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shi", 
            "givenName": "Zhou Jason", 
            "id": "sg:person.01221362113.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221362113.47"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.266102.1", 
              "name": [
                "Gladstone Institutes, San Francisco, CA, USA", 
                "Chan Zuckerberg Biohub, San Francisco, CA, USA", 
                "Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA", 
                "Institute for Computational Health Sciences, University of California San Francisco, San Francisco, CA, USA", 
                "Quantitative Biology Institute, University of California San Francisco, San Francisco, CA, USA", 
                "Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pollard", 
            "givenName": "Katherine S.", 
            "id": "sg:person.01252121116.89", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252121116.89"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "European Bioinformatics Institute (EMBL\u2013EBI), Wellcome Genome Campus, Hinxton, UK", 
              "id": "http://www.grid.ac/institutes/grid.225360.0", 
              "name": [
                "European Bioinformatics Institute (EMBL\u2013EBI), Wellcome Genome Campus, Hinxton, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sakharova", 
            "givenName": "Ekaterina", 
            "id": "sg:person.012366117277.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012366117277.04"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia", 
              "id": "http://www.grid.ac/institutes/grid.1003.2", 
              "name": [
                "Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Parks", 
            "givenName": "Donovan H.", 
            "id": "sg:person.0772760071.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772760071.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia", 
              "id": "http://www.grid.ac/institutes/grid.1003.2", 
              "name": [
                "Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hugenholtz", 
            "givenName": "Philip", 
            "id": "sg:person.01055510700.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055510700.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "CIBIO Department, University of Trento, Trento, Italy", 
              "id": "http://www.grid.ac/institutes/grid.11696.39", 
              "name": [
                "CIBIO Department, University of Trento, Trento, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Segata", 
            "givenName": "Nicola", 
            "id": "sg:person.0736227144.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736227144.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.184769.5", 
              "name": [
                "US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA", 
                "Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kyrpides", 
            "givenName": "Nikos C.", 
            "id": "sg:person.01230412614.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230412614.56"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "European Bioinformatics Institute (EMBL\u2013EBI), Wellcome Genome Campus, Hinxton, UK", 
              "id": "http://www.grid.ac/institutes/grid.225360.0", 
              "name": [
                "European Bioinformatics Institute (EMBL\u2013EBI), Wellcome Genome Campus, Hinxton, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Finn", 
            "givenName": "Robert D.", 
            "id": "sg:person.0577031231.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577031231.30"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/s41564-018-0171-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104243589", 
              "https://doi.org/10.1038/s41564-018-0171-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-07641-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110204842", 
              "https://doi.org/10.1038/s41467-018-07641-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-04964-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105107305", 
              "https://doi.org/10.1038/s41467-018-04964-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm.4358", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086072554", 
              "https://doi.org/10.1038/nm.4358"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-019-1058-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112734629", 
              "https://doi.org/10.1038/s41586-019-1058-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-019-1891-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1122989517", 
              "https://doi.org/10.1186/s13059-019-1891-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3893", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091105392", 
              "https://doi.org/10.1038/nbt.3893"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1923", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006541515", 
              "https://doi.org/10.1038/nmeth.1923"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41587-019-0202-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1120025695", 
              "https://doi.org/10.1038/s41587-019-0202-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms7528", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047959844", 
              "https://doi.org/10.1038/ncomms7528"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms13219", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035143030", 
              "https://doi.org/10.1038/ncomms13219"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2004-5-2-r12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022585853", 
              "https://doi.org/10.1186/gb-2004-5-2-r12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41591-019-0559-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1120764379", 
              "https://doi.org/10.1038/s41591-019-0559-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm.4345", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085459595", 
              "https://doi.org/10.1038/nm.4345"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11450", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004546178", 
              "https://doi.org/10.1038/nature11450"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.4229", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106359945", 
              "https://doi.org/10.1038/nbt.4229"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12915-019-0667-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1117077310", 
              "https://doi.org/10.1186/s12915-019-0667-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41587-018-0009-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111916537", 
              "https://doi.org/10.1038/s41587-018-0009-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature17645", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009705339", 
              "https://doi.org/10.1038/nature17645"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-11-119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026423599", 
              "https://doi.org/10.1186/1471-2105-11-119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11234", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007740093", 
              "https://doi.org/10.1038/nature11234"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41587-018-0010-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111916278", 
              "https://doi.org/10.1038/s41587-018-0010-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2017.126", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090891867", 
              "https://doi.org/10.1038/ismej.2017.126"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-016-0997-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050687712", 
              "https://doi.org/10.1186/s13059-016-0997-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08821", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050498034", 
              "https://doi.org/10.1038/nature08821"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-019-0965-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112059155", 
              "https://doi.org/10.1038/s41586-019-0965-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.3103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034514160", 
              "https://doi.org/10.1038/nmeth.3103"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmicrobiol.2016.203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044832209", 
              "https://doi.org/10.1038/nmicrobiol.2016.203"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2942", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006520065", 
              "https://doi.org/10.1038/nbt.2942"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13238-018-0544-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103635891", 
              "https://doi.org/10.1007/s13238-018-0544-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41587-018-0008-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111907227", 
              "https://doi.org/10.1038/s41587-018-0008-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41564-017-0012-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091527308", 
              "https://doi.org/10.1038/s41564-017-0012-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11711", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004024856", 
              "https://doi.org/10.1038/nature11711"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40168-017-0361-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092249072", 
              "https://doi.org/10.1186/s40168-017-0361-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.3176", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023901695", 
              "https://doi.org/10.1038/nmeth.3176"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2020-07-20", 
        "datePublishedReg": "2020-07-20", 
        "description": "Comprehensive, high-quality reference genomes are required for functional characterization and taxonomic assignment of the human gut microbiota. We present the Unified Human Gastrointestinal Genome (UHGG) collection, comprising 204,938 nonredundant genomes from 4,644 gut prokaryotes. These genomes encode >170 million protein sequences, which we collated in the Unified Human Gastrointestinal Protein (UHGP) catalog. The UHGP more than doubles the number of gut proteins in comparison to those present in the Integrated Gene Catalog. More than 70% of the UHGG species lack cultured representatives, and 40% of the UHGP lack functional annotations. Intraspecies genomic variation analyses revealed a large reservoir of accessory genes and single-nucleotide variants, many of which are specific to individual human populations. The UHGG and UHGP collections will enable studies linking genotypes to phenotypes in the human gut microbiome.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41587-020-0603-3", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.5125827", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7610998", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6623271", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1115214", 
            "issn": [
              "1087-0156", 
              "1546-1696"
            ], 
            "name": "Nature Biotechnology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "39"
          }
        ], 
        "keywords": [
          "human gut microbiome", 
          "reference genome", 
          "Unified Human Gastrointestinal Genome (UHGG) collection", 
          "high-quality reference genome", 
          "integrated gene catalog", 
          "genomic variation analysis", 
          "individual human populations", 
          "single nucleotide variants", 
          "human gut microbiota", 
          "cultured representatives", 
          "gene catalog", 
          "protein catalogue", 
          "functional annotation", 
          "gut microbiome", 
          "functional characterization", 
          "taxonomic assignment", 
          "accessory genes", 
          "protein sequences", 
          "genome", 
          "genome collection", 
          "gut proteins", 
          "human population", 
          "variation analysis", 
          "microbiome", 
          "gut microbiota", 
          "prokaryotes", 
          "large reservoir", 
          "genes", 
          "species", 
          "protein", 
          "phenotype", 
          "annotation", 
          "sequence", 
          "microbiota", 
          "genotypes", 
          "unified catalog", 
          "variants", 
          "catalogue", 
          "population", 
          "characterization", 
          "representatives", 
          "collection", 
          "reservoir", 
          "analysis", 
          "number", 
          "assignment", 
          "study", 
          "comparison"
        ], 
        "name": "A unified catalog of 204,938 reference genomes from the human gut microbiome", 
        "pagination": "105-114", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1129483269"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41587-020-0603-3"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "32690973"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41587-020-0603-3", 
          "https://app.dimensions.ai/details/publication/pub.1129483269"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T17:10", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_863.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41587-020-0603-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41587-020-0603-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41587-020-0603-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41587-020-0603-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41587-020-0603-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    404 TRIPLES      21 PREDICATES      117 URIs      74 LITERALS      16 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41587-020-0603-3 schema:about N271568459db949f0bd4c85d6d227a2c9
    2 N64984c384f1e449bbd428f923610f458
    3 N6a7e21f04e2b42bda926643d99a04f0c
    4 N7422ca92530848c5a7f5d1ab3b06d140
    5 N7fe015c5f7a549989c27b09dfa27aa7f
    6 N95b7b8db600940c38e1f6d68eb04cf86
    7 Nb6a9bce51b3b4d99ac31e584903ac59f
    8 Nde621879fb174f0e9248e5e034d8b4f8
    9 Nf06f927f11144ca9b583e870491fa025
    10 anzsrc-for:06
    11 anzsrc-for:0604
    12 schema:author Naf9de6b0f4d84f4a9a2609fab65f1bb4
    13 schema:citation sg:pub.10.1007/s13238-018-0544-5
    14 sg:pub.10.1038/ismej.2017.126
    15 sg:pub.10.1038/nature08821
    16 sg:pub.10.1038/nature11234
    17 sg:pub.10.1038/nature11450
    18 sg:pub.10.1038/nature11711
    19 sg:pub.10.1038/nature17645
    20 sg:pub.10.1038/nbt.2942
    21 sg:pub.10.1038/nbt.3893
    22 sg:pub.10.1038/nbt.4229
    23 sg:pub.10.1038/ncomms13219
    24 sg:pub.10.1038/ncomms7528
    25 sg:pub.10.1038/nm.4345
    26 sg:pub.10.1038/nm.4358
    27 sg:pub.10.1038/nmeth.1923
    28 sg:pub.10.1038/nmeth.3103
    29 sg:pub.10.1038/nmeth.3176
    30 sg:pub.10.1038/nmicrobiol.2016.203
    31 sg:pub.10.1038/s41467-018-04964-5
    32 sg:pub.10.1038/s41467-018-07641-9
    33 sg:pub.10.1038/s41564-017-0012-7
    34 sg:pub.10.1038/s41564-018-0171-1
    35 sg:pub.10.1038/s41586-019-0965-1
    36 sg:pub.10.1038/s41586-019-1058-x
    37 sg:pub.10.1038/s41587-018-0008-8
    38 sg:pub.10.1038/s41587-018-0009-7
    39 sg:pub.10.1038/s41587-018-0010-1
    40 sg:pub.10.1038/s41587-019-0202-3
    41 sg:pub.10.1038/s41591-019-0559-3
    42 sg:pub.10.1186/1471-2105-11-119
    43 sg:pub.10.1186/gb-2004-5-2-r12
    44 sg:pub.10.1186/s12915-019-0667-z
    45 sg:pub.10.1186/s13059-016-0997-x
    46 sg:pub.10.1186/s13059-019-1891-0
    47 sg:pub.10.1186/s40168-017-0361-8
    48 schema:datePublished 2020-07-20
    49 schema:datePublishedReg 2020-07-20
    50 schema:description Comprehensive, high-quality reference genomes are required for functional characterization and taxonomic assignment of the human gut microbiota. We present the Unified Human Gastrointestinal Genome (UHGG) collection, comprising 204,938 nonredundant genomes from 4,644 gut prokaryotes. These genomes encode >170 million protein sequences, which we collated in the Unified Human Gastrointestinal Protein (UHGP) catalog. The UHGP more than doubles the number of gut proteins in comparison to those present in the Integrated Gene Catalog. More than 70% of the UHGG species lack cultured representatives, and 40% of the UHGP lack functional annotations. Intraspecies genomic variation analyses revealed a large reservoir of accessory genes and single-nucleotide variants, many of which are specific to individual human populations. The UHGG and UHGP collections will enable studies linking genotypes to phenotypes in the human gut microbiome.
    51 schema:genre article
    52 schema:isAccessibleForFree true
    53 schema:isPartOf N0383ee92b6d04a8fa68b139673ca44d0
    54 Nb9a2c7e51df740e9b253612fcadf31a2
    55 sg:journal.1115214
    56 schema:keywords Unified Human Gastrointestinal Genome (UHGG) collection
    57 accessory genes
    58 analysis
    59 annotation
    60 assignment
    61 catalogue
    62 characterization
    63 collection
    64 comparison
    65 cultured representatives
    66 functional annotation
    67 functional characterization
    68 gene catalog
    69 genes
    70 genome
    71 genome collection
    72 genomic variation analysis
    73 genotypes
    74 gut microbiome
    75 gut microbiota
    76 gut proteins
    77 high-quality reference genome
    78 human gut microbiome
    79 human gut microbiota
    80 human population
    81 individual human populations
    82 integrated gene catalog
    83 large reservoir
    84 microbiome
    85 microbiota
    86 number
    87 phenotype
    88 population
    89 prokaryotes
    90 protein
    91 protein catalogue
    92 protein sequences
    93 reference genome
    94 representatives
    95 reservoir
    96 sequence
    97 single nucleotide variants
    98 species
    99 study
    100 taxonomic assignment
    101 unified catalog
    102 variants
    103 variation analysis
    104 schema:name A unified catalog of 204,938 reference genomes from the human gut microbiome
    105 schema:pagination 105-114
    106 schema:productId N2e8c344eba054f5a9e027f0789981d23
    107 N2fca40f39a314c9aba5747a75e2a7960
    108 Nc8ddf226ecf54c99bbbf976a094ec640
    109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1129483269
    110 https://doi.org/10.1038/s41587-020-0603-3
    111 schema:sdDatePublished 2022-08-04T17:10
    112 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    113 schema:sdPublisher Nea6cdc97c0be406592fc7eddbad4f6a3
    114 schema:url https://doi.org/10.1038/s41587-020-0603-3
    115 sgo:license sg:explorer/license/
    116 sgo:sdDataset articles
    117 rdf:type schema:ScholarlyArticle
    118 N0383ee92b6d04a8fa68b139673ca44d0 schema:volumeNumber 39
    119 rdf:type schema:PublicationVolume
    120 N092751d8ac764228a511f5d027bab603 rdf:first sg:person.01252121116.89
    121 rdf:rest Nd7ec02b51b254b1c9f67be79e637c69d
    122 N0b5380e562544560ad0a8d8624523b28 rdf:first sg:person.01230412614.56
    123 rdf:rest N4100e2cdcd9d44148860bb192fa7cf17
    124 N2152a4a34151458eba58b7e19be5108e rdf:first sg:person.012245764157.01
    125 rdf:rest N2d3d03bbdd314488bb020600169f2d3f
    126 N271568459db949f0bd4c85d6d227a2c9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    127 schema:name Gastrointestinal Microbiome
    128 rdf:type schema:DefinedTerm
    129 N2d3d03bbdd314488bb020600169f2d3f rdf:first sg:person.01221362113.47
    130 rdf:rest N092751d8ac764228a511f5d027bab603
    131 N2e8c344eba054f5a9e027f0789981d23 schema:name doi
    132 schema:value 10.1038/s41587-020-0603-3
    133 rdf:type schema:PropertyValue
    134 N2fca40f39a314c9aba5747a75e2a7960 schema:name dimensions_id
    135 schema:value pub.1129483269
    136 rdf:type schema:PropertyValue
    137 N4100e2cdcd9d44148860bb192fa7cf17 rdf:first sg:person.0577031231.30
    138 rdf:rest rdf:nil
    139 N4364fceb226641c089dd1a448dc31454 rdf:first sg:person.01055510700.73
    140 rdf:rest N71074815f53047eb88716fc8a93bd0cc
    141 N64984c384f1e449bbd428f923610f458 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    142 schema:name Metagenomics
    143 rdf:type schema:DefinedTerm
    144 N6a7e21f04e2b42bda926643d99a04f0c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    145 schema:name Humans
    146 rdf:type schema:DefinedTerm
    147 N6f670173297c4faeb80eb9f109378fc5 rdf:first sg:person.01320675003.14
    148 rdf:rest N2152a4a34151458eba58b7e19be5108e
    149 N71074815f53047eb88716fc8a93bd0cc rdf:first sg:person.0736227144.03
    150 rdf:rest N0b5380e562544560ad0a8d8624523b28
    151 N7422ca92530848c5a7f5d1ab3b06d140 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    152 schema:name Phylogeny
    153 rdf:type schema:DefinedTerm
    154 N77c48f2ac588498b984a307fe3906167 rdf:first sg:person.0772760071.00
    155 rdf:rest N4364fceb226641c089dd1a448dc31454
    156 N7fe015c5f7a549989c27b09dfa27aa7f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    157 schema:name Databases, Genetic
    158 rdf:type schema:DefinedTerm
    159 N85b54f0cc00d47059c183cc046e0edcc rdf:first sg:person.0656131776.20
    160 rdf:rest Nd24a76ad1f9940c381c2b90cac173bb3
    161 N95b7b8db600940c38e1f6d68eb04cf86 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    162 schema:name Genome, Bacterial
    163 rdf:type schema:DefinedTerm
    164 Naf9de6b0f4d84f4a9a2609fab65f1bb4 rdf:first sg:person.0607475671.59
    165 rdf:rest N85b54f0cc00d47059c183cc046e0edcc
    166 Nb6a9bce51b3b4d99ac31e584903ac59f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    167 schema:name Phenotype
    168 rdf:type schema:DefinedTerm
    169 Nb9a2c7e51df740e9b253612fcadf31a2 schema:issueNumber 1
    170 rdf:type schema:PublicationIssue
    171 Nc8ddf226ecf54c99bbbf976a094ec640 schema:name pubmed_id
    172 schema:value 32690973
    173 rdf:type schema:PropertyValue
    174 Nd24a76ad1f9940c381c2b90cac173bb3 rdf:first sg:person.012520216527.38
    175 rdf:rest N6f670173297c4faeb80eb9f109378fc5
    176 Nd7ec02b51b254b1c9f67be79e637c69d rdf:first sg:person.012366117277.04
    177 rdf:rest N77c48f2ac588498b984a307fe3906167
    178 Nde621879fb174f0e9248e5e034d8b4f8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    179 schema:name Bacteria
    180 rdf:type schema:DefinedTerm
    181 Nea6cdc97c0be406592fc7eddbad4f6a3 schema:name Springer Nature - SN SciGraph project
    182 rdf:type schema:Organization
    183 Nf06f927f11144ca9b583e870491fa025 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    184 schema:name Metagenome
    185 rdf:type schema:DefinedTerm
    186 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    187 schema:name Biological Sciences
    188 rdf:type schema:DefinedTerm
    189 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    190 schema:name Genetics
    191 rdf:type schema:DefinedTerm
    192 sg:grant.5125827 http://pending.schema.org/fundedItem sg:pub.10.1038/s41587-020-0603-3
    193 rdf:type schema:MonetaryGrant
    194 sg:grant.6623271 http://pending.schema.org/fundedItem sg:pub.10.1038/s41587-020-0603-3
    195 rdf:type schema:MonetaryGrant
    196 sg:grant.7610998 http://pending.schema.org/fundedItem sg:pub.10.1038/s41587-020-0603-3
    197 rdf:type schema:MonetaryGrant
    198 sg:journal.1115214 schema:issn 1087-0156
    199 1546-1696
    200 schema:name Nature Biotechnology
    201 schema:publisher Springer Nature
    202 rdf:type schema:Periodical
    203 sg:person.01055510700.73 schema:affiliation grid-institutes:grid.1003.2
    204 schema:familyName Hugenholtz
    205 schema:givenName Philip
    206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055510700.73
    207 rdf:type schema:Person
    208 sg:person.01221362113.47 schema:affiliation grid-institutes:grid.499295.a
    209 schema:familyName Shi
    210 schema:givenName Zhou Jason
    211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221362113.47
    212 rdf:type schema:Person
    213 sg:person.012245764157.01 schema:affiliation grid-institutes:grid.225360.0
    214 schema:familyName Beracochea
    215 schema:givenName Martin
    216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012245764157.01
    217 rdf:type schema:Person
    218 sg:person.01230412614.56 schema:affiliation grid-institutes:grid.184769.5
    219 schema:familyName Kyrpides
    220 schema:givenName Nikos C.
    221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230412614.56
    222 rdf:type schema:Person
    223 sg:person.012366117277.04 schema:affiliation grid-institutes:grid.225360.0
    224 schema:familyName Sakharova
    225 schema:givenName Ekaterina
    226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012366117277.04
    227 rdf:type schema:Person
    228 sg:person.012520216527.38 schema:affiliation grid-institutes:grid.225360.0
    229 schema:familyName Boland
    230 schema:givenName Miguel
    231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012520216527.38
    232 rdf:type schema:Person
    233 sg:person.01252121116.89 schema:affiliation grid-institutes:grid.266102.1
    234 schema:familyName Pollard
    235 schema:givenName Katherine S.
    236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252121116.89
    237 rdf:type schema:Person
    238 sg:person.01320675003.14 schema:affiliation grid-institutes:grid.511877.d
    239 schema:familyName Strozzi
    240 schema:givenName Francesco
    241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320675003.14
    242 rdf:type schema:Person
    243 sg:person.0577031231.30 schema:affiliation grid-institutes:grid.225360.0
    244 schema:familyName Finn
    245 schema:givenName Robert D.
    246 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577031231.30
    247 rdf:type schema:Person
    248 sg:person.0607475671.59 schema:affiliation grid-institutes:grid.10306.34
    249 schema:familyName Almeida
    250 schema:givenName Alexandre
    251 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607475671.59
    252 rdf:type schema:Person
    253 sg:person.0656131776.20 schema:affiliation grid-institutes:grid.184769.5
    254 schema:familyName Nayfach
    255 schema:givenName Stephen
    256 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656131776.20
    257 rdf:type schema:Person
    258 sg:person.0736227144.03 schema:affiliation grid-institutes:grid.11696.39
    259 schema:familyName Segata
    260 schema:givenName Nicola
    261 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736227144.03
    262 rdf:type schema:Person
    263 sg:person.0772760071.00 schema:affiliation grid-institutes:grid.1003.2
    264 schema:familyName Parks
    265 schema:givenName Donovan H.
    266 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772760071.00
    267 rdf:type schema:Person
    268 sg:pub.10.1007/s13238-018-0544-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103635891
    269 https://doi.org/10.1007/s13238-018-0544-5
    270 rdf:type schema:CreativeWork
    271 sg:pub.10.1038/ismej.2017.126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090891867
    272 https://doi.org/10.1038/ismej.2017.126
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1038/nature08821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050498034
    275 https://doi.org/10.1038/nature08821
    276 rdf:type schema:CreativeWork
    277 sg:pub.10.1038/nature11234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007740093
    278 https://doi.org/10.1038/nature11234
    279 rdf:type schema:CreativeWork
    280 sg:pub.10.1038/nature11450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004546178
    281 https://doi.org/10.1038/nature11450
    282 rdf:type schema:CreativeWork
    283 sg:pub.10.1038/nature11711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004024856
    284 https://doi.org/10.1038/nature11711
    285 rdf:type schema:CreativeWork
    286 sg:pub.10.1038/nature17645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009705339
    287 https://doi.org/10.1038/nature17645
    288 rdf:type schema:CreativeWork
    289 sg:pub.10.1038/nbt.2942 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006520065
    290 https://doi.org/10.1038/nbt.2942
    291 rdf:type schema:CreativeWork
    292 sg:pub.10.1038/nbt.3893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091105392
    293 https://doi.org/10.1038/nbt.3893
    294 rdf:type schema:CreativeWork
    295 sg:pub.10.1038/nbt.4229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106359945
    296 https://doi.org/10.1038/nbt.4229
    297 rdf:type schema:CreativeWork
    298 sg:pub.10.1038/ncomms13219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035143030
    299 https://doi.org/10.1038/ncomms13219
    300 rdf:type schema:CreativeWork
    301 sg:pub.10.1038/ncomms7528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047959844
    302 https://doi.org/10.1038/ncomms7528
    303 rdf:type schema:CreativeWork
    304 sg:pub.10.1038/nm.4345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085459595
    305 https://doi.org/10.1038/nm.4345
    306 rdf:type schema:CreativeWork
    307 sg:pub.10.1038/nm.4358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086072554
    308 https://doi.org/10.1038/nm.4358
    309 rdf:type schema:CreativeWork
    310 sg:pub.10.1038/nmeth.1923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006541515
    311 https://doi.org/10.1038/nmeth.1923
    312 rdf:type schema:CreativeWork
    313 sg:pub.10.1038/nmeth.3103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034514160
    314 https://doi.org/10.1038/nmeth.3103
    315 rdf:type schema:CreativeWork
    316 sg:pub.10.1038/nmeth.3176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023901695
    317 https://doi.org/10.1038/nmeth.3176
    318 rdf:type schema:CreativeWork
    319 sg:pub.10.1038/nmicrobiol.2016.203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044832209
    320 https://doi.org/10.1038/nmicrobiol.2016.203
    321 rdf:type schema:CreativeWork
    322 sg:pub.10.1038/s41467-018-04964-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105107305
    323 https://doi.org/10.1038/s41467-018-04964-5
    324 rdf:type schema:CreativeWork
    325 sg:pub.10.1038/s41467-018-07641-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110204842
    326 https://doi.org/10.1038/s41467-018-07641-9
    327 rdf:type schema:CreativeWork
    328 sg:pub.10.1038/s41564-017-0012-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091527308
    329 https://doi.org/10.1038/s41564-017-0012-7
    330 rdf:type schema:CreativeWork
    331 sg:pub.10.1038/s41564-018-0171-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104243589
    332 https://doi.org/10.1038/s41564-018-0171-1
    333 rdf:type schema:CreativeWork
    334 sg:pub.10.1038/s41586-019-0965-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112059155
    335 https://doi.org/10.1038/s41586-019-0965-1
    336 rdf:type schema:CreativeWork
    337 sg:pub.10.1038/s41586-019-1058-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1112734629
    338 https://doi.org/10.1038/s41586-019-1058-x
    339 rdf:type schema:CreativeWork
    340 sg:pub.10.1038/s41587-018-0008-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111907227
    341 https://doi.org/10.1038/s41587-018-0008-8
    342 rdf:type schema:CreativeWork
    343 sg:pub.10.1038/s41587-018-0009-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111916537
    344 https://doi.org/10.1038/s41587-018-0009-7
    345 rdf:type schema:CreativeWork
    346 sg:pub.10.1038/s41587-018-0010-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111916278
    347 https://doi.org/10.1038/s41587-018-0010-1
    348 rdf:type schema:CreativeWork
    349 sg:pub.10.1038/s41587-019-0202-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120025695
    350 https://doi.org/10.1038/s41587-019-0202-3
    351 rdf:type schema:CreativeWork
    352 sg:pub.10.1038/s41591-019-0559-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120764379
    353 https://doi.org/10.1038/s41591-019-0559-3
    354 rdf:type schema:CreativeWork
    355 sg:pub.10.1186/1471-2105-11-119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026423599
    356 https://doi.org/10.1186/1471-2105-11-119
    357 rdf:type schema:CreativeWork
    358 sg:pub.10.1186/gb-2004-5-2-r12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022585853
    359 https://doi.org/10.1186/gb-2004-5-2-r12
    360 rdf:type schema:CreativeWork
    361 sg:pub.10.1186/s12915-019-0667-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1117077310
    362 https://doi.org/10.1186/s12915-019-0667-z
    363 rdf:type schema:CreativeWork
    364 sg:pub.10.1186/s13059-016-0997-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050687712
    365 https://doi.org/10.1186/s13059-016-0997-x
    366 rdf:type schema:CreativeWork
    367 sg:pub.10.1186/s13059-019-1891-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122989517
    368 https://doi.org/10.1186/s13059-019-1891-0
    369 rdf:type schema:CreativeWork
    370 sg:pub.10.1186/s40168-017-0361-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092249072
    371 https://doi.org/10.1186/s40168-017-0361-8
    372 rdf:type schema:CreativeWork
    373 grid-institutes:grid.1003.2 schema:alternateName Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
    374 schema:name Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
    375 rdf:type schema:Organization
    376 grid-institutes:grid.10306.34 schema:alternateName Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
    377 schema:name European Bioinformatics Institute (EMBL–EBI), Wellcome Genome Campus, Hinxton, UK
    378 Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
    379 rdf:type schema:Organization
    380 grid-institutes:grid.11696.39 schema:alternateName CIBIO Department, University of Trento, Trento, Italy
    381 schema:name CIBIO Department, University of Trento, Trento, Italy
    382 rdf:type schema:Organization
    383 grid-institutes:grid.184769.5 schema:alternateName Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
    384 schema:name Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
    385 US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
    386 rdf:type schema:Organization
    387 grid-institutes:grid.225360.0 schema:alternateName European Bioinformatics Institute (EMBL–EBI), Wellcome Genome Campus, Hinxton, UK
    388 schema:name European Bioinformatics Institute (EMBL–EBI), Wellcome Genome Campus, Hinxton, UK
    389 rdf:type schema:Organization
    390 grid-institutes:grid.266102.1 schema:alternateName Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
    391 schema:name Chan Zuckerberg Biohub, San Francisco, CA, USA
    392 Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
    393 Gladstone Institutes, San Francisco, CA, USA
    394 Institute for Computational Health Sciences, University of California San Francisco, San Francisco, CA, USA
    395 Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
    396 Quantitative Biology Institute, University of California San Francisco, San Francisco, CA, USA
    397 rdf:type schema:Organization
    398 grid-institutes:grid.499295.a schema:alternateName Chan Zuckerberg Biohub, San Francisco, CA, USA
    399 schema:name Chan Zuckerberg Biohub, San Francisco, CA, USA
    400 Gladstone Institutes, San Francisco, CA, USA
    401 rdf:type schema:Organization
    402 grid-institutes:grid.511877.d schema:alternateName Enterome Bioscience, Paris, France
    403 schema:name Enterome Bioscience, Paris, France
    404 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...