High sensitivity of tropical precipitation to local sea surface temperature View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-10-26

AUTHORS

Peter Good, Robin Chadwick, Christopher E. Holloway, John Kennedy, Jason A. Lowe, Romain Roehrig, Stephanie S. Rushley

ABSTRACT

Precipitation and atmospheric circulation are the coupled processes through which tropical ocean surface temperatures drive global weather and climate1–5. Local sea surface warming tends to increase precipitation, but this local control is difficult to disentangle from remote effects of conditions elsewhere. As an example of such a remote effect, El Niño Southern Oscillation (ENSO) events in the equatorial Pacific Ocean alter precipitation across the tropics. Atmospheric circulations associated with tropical precipitation are predominantly deep, extending up to the tropopause. Shallow atmospheric circulations6–8 affecting the lower troposphere also occur, but the importance of their interaction with precipitation is unclear. Uncertainty in precipitation observations9,10 and limited observations of shallow circulations11 further obstruct our understanding of the ocean’s influence on weather and climate. Despite decades of research, persistent biases remain in many numerical model simulations12–18, including excessively wide tropical rainbands14,18, the ‘double-intertropical convergence zone problem’12,16,17 and too-weak responses to ENSO15. These biases demonstrate gaps in our understanding, reducing confidence in forecasts and projections. Here we use observations to show that seasonal tropical precipitation has a high sensitivity to local sea surface temperature. Our best observational estimate is an 80 per cent change in precipitation for every gram per kilogram change in the saturation specific humidity (itself a function of the sea surface temperature). This observed sensitivity is higher than in 43 of the 47 climate models studied, and is associated with strong shallow circulations. Models with more realistic (closer to 80%) sensitivity have smaller biases across a wide range of metrics. Our results apply to both temporal and spatial variation, over regions where climatological precipitation is about one millimetre per day or more. Our analyses of multiple independent observations, physical constraints and model data underpin these findings. The spread in model behaviour is further linked to differences in shallow convection, thus providing a focus for accelerated research to improve seasonal forecasts through multidecadal climate projections. More... »

PAGES

408-414

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41586-020-2887-3

DOI

http://dx.doi.org/10.1038/s41586-020-2887-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1132040100

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/33106670


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oceanography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Atmosphere", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oceans and Seas", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rain", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Satellite Communications", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Temperature", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tropical Climate", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Uncertainty", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Water Movements", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Wind", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "MetOffice Hadley Centre, Exeter, UK", 
          "id": "http://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "MetOffice Hadley Centre, Exeter, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Good", 
        "givenName": "Peter", 
        "id": "sg:person.014703234061.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014703234061.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Global Systems Institute, University of Exeter, Exeter, UK", 
          "id": "http://www.grid.ac/institutes/grid.8391.3", 
          "name": [
            "MetOffice Hadley Centre, Exeter, UK", 
            "Global Systems Institute, University of Exeter, Exeter, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chadwick", 
        "givenName": "Robin", 
        "id": "sg:person.015203375046.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015203375046.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Meteorology, University of Reading, Reading, UK", 
          "id": "http://www.grid.ac/institutes/grid.9435.b", 
          "name": [
            "Department of Meteorology, University of Reading, Reading, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Holloway", 
        "givenName": "Christopher E.", 
        "id": "sg:person.01231233510.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231233510.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MetOffice Hadley Centre, Exeter, UK", 
          "id": "http://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "MetOffice Hadley Centre, Exeter, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kennedy", 
        "givenName": "John", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Priestley International Centre for Climate, University of Leeds, Leeds, UK", 
          "id": "http://www.grid.ac/institutes/grid.9909.9", 
          "name": [
            "MetOffice Hadley Centre, Exeter, UK", 
            "Priestley International Centre for Climate, University of Leeds, Leeds, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lowe", 
        "givenName": "Jason A.", 
        "id": "sg:person.011066117233.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011066117233.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CNRM, Universit\u00e9 de Toulouse, M\u00e9t\u00e9o-France, CNRS, Toulouse, France", 
          "id": "http://www.grid.ac/institutes/grid.508721.9", 
          "name": [
            "CNRM, Universit\u00e9 de Toulouse, M\u00e9t\u00e9o-France, CNRS, Toulouse, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roehrig", 
        "givenName": "Romain", 
        "id": "sg:person.015526426755.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015526426755.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA", 
          "id": "http://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rushley", 
        "givenName": "Stephanie S.", 
        "id": "sg:person.07621772714.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07621772714.22"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature01092a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044980256", 
          "https://doi.org/10.1038/nature01092a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10712-017-9418-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090677126", 
          "https://doi.org/10.1007/s10712-017-9418-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016927016", 
          "https://doi.org/10.1038/nature12829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046916950", 
          "https://doi.org/10.1038/nature01092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10712-017-9442-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092482318", 
          "https://doi.org/10.1007/s10712-017-9442-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/302295a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046487575", 
          "https://doi.org/10.1038/302295a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-013-1839-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021248796", 
          "https://doi.org/10.1007/s00382-013-1839-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-013-1783-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026200117", 
          "https://doi.org/10.1007/s00382-013-1783-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02918685", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002224970", 
          "https://doi.org/10.1007/bf02918685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate2689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030655148", 
          "https://doi.org/10.1038/nclimate2689"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2020-10-26", 
    "datePublishedReg": "2020-10-26", 
    "description": "Precipitation and atmospheric circulation are the coupled processes through which tropical ocean surface temperatures drive global weather and climate1\u20135. Local sea surface warming tends to increase precipitation, but this local control is difficult to disentangle from remote effects of conditions elsewhere. As an example of such a remote effect, El Ni\u00f1o Southern Oscillation (ENSO) events in the equatorial Pacific Ocean alter precipitation across the tropics. Atmospheric circulations associated with tropical precipitation are predominantly deep, extending up to the tropopause. Shallow atmospheric circulations6\u20138 affecting the lower troposphere also occur, but the importance of their interaction with precipitation is unclear. Uncertainty in precipitation observations9,10 and limited observations of shallow circulations11 further obstruct our understanding of the ocean\u2019s influence on weather and climate. Despite decades of research, persistent biases remain in many numerical model simulations12\u201318, including excessively wide tropical rainbands14,18, the \u2018double-intertropical convergence zone problem\u201912,16,17 and too-weak responses to ENSO15. These biases demonstrate gaps in our understanding, reducing confidence in forecasts and projections. Here we use observations to show that seasonal tropical precipitation has a high sensitivity to local sea surface temperature. Our best observational estimate is an 80 per cent change in precipitation for every gram per kilogram change in the saturation specific humidity (itself a function of the sea surface temperature). This observed sensitivity is higher than in 43 of the 47 climate models studied, and is associated with strong shallow circulations. Models with more realistic (closer to 80%) sensitivity have smaller biases across a wide range of metrics. Our results apply to both temporal and spatial variation, over regions where climatological precipitation is about one millimetre per day or more. Our analyses of multiple independent observations, physical constraints and model data underpin these findings. The spread in model behaviour is further linked to differences in shallow convection, thus providing a focus for accelerated research to improve seasonal forecasts through multidecadal climate projections.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41586-020-2887-3", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8558199", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7842", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "589"
      }
    ], 
    "keywords": [
      "local sea surface temperature", 
      "sea surface temperature", 
      "tropical precipitation", 
      "surface temperature", 
      "atmospheric circulation", 
      "El Ni\u00f1o-Southern Oscillation (ENSO) events", 
      "double intertropical convergence zone", 
      "ocean surface temperature", 
      "saturation specific humidity", 
      "local sea surface", 
      "Southern Oscillation events", 
      "remote effects", 
      "best observational estimate", 
      "climatological precipitation", 
      "Ocean influence", 
      "shallow circulation", 
      "convergence zone", 
      "climate models", 
      "seasonal forecasts", 
      "climate projections", 
      "global weather", 
      "lower troposphere", 
      "specific humidity", 
      "shallow convection", 
      "Oscillation events", 
      "observational estimates", 
      "sea surface", 
      "persistent biases", 
      "small biases", 
      "limited observations", 
      "precipitation", 
      "model data", 
      "spatial variation", 
      "realistic sensitivity", 
      "multiple independent observations", 
      "independent observations", 
      "circulation", 
      "model behavior", 
      "weather", 
      "forecasts", 
      "biases", 
      "observed sensitivity", 
      "tropopause", 
      "troposphere", 
      "weak response", 
      "climate", 
      "tropics", 
      "projections", 
      "zone", 
      "convection", 
      "Tropical", 
      "temperature", 
      "humidity", 
      "events", 
      "physical constraints", 
      "changes", 
      "estimates", 
      "uncertainty", 
      "variation", 
      "region", 
      "wide range", 
      "influence", 
      "model", 
      "understanding", 
      "decades of research", 
      "surface", 
      "cent change", 
      "constraints", 
      "decades", 
      "data", 
      "conditions", 
      "range", 
      "sensitivity", 
      "process", 
      "confidence", 
      "importance", 
      "high sensitivity", 
      "analysis", 
      "example", 
      "spread", 
      "results", 
      "metrics", 
      "differences", 
      "accelerated research", 
      "effect", 
      "response", 
      "days", 
      "interaction", 
      "research", 
      "gap", 
      "focus", 
      "local control", 
      "behavior", 
      "control", 
      "findings", 
      "observations"
    ], 
    "name": "High sensitivity of tropical precipitation to local sea surface temperature", 
    "pagination": "408-414", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1132040100"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41586-020-2887-3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "33106670"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41586-020-2887-3", 
      "https://app.dimensions.ai/details/publication/pub.1132040100"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_865.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41586-020-2887-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41586-020-2887-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41586-020-2887-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41586-020-2887-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41586-020-2887-3'


 

This table displays all metadata directly associated to this object as RDF triples.

305 TRIPLES      21 PREDICATES      143 URIs      124 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41586-020-2887-3 schema:about N0d06d31f6108464299b6ed82db043a8b
2 N125394a64e4443c188e9296c18de0170
3 N491ebda26e35402a8138c51e38db7e22
4 N5eac01fbc84f44289c019b81b0fecf43
5 N61f4bca860bb45199fa0d802e03f8069
6 N783b08142ce242a08835bfcaeabd1f3d
7 N8ed5db7bc3aa43aab6646d1b2e9cf49e
8 Na3f3278676fc49f4b7ceed29760b2588
9 Nb4d1a18126c248a39304d553358f4a34
10 Nc6f7a915465346dd9d01b68b734cc419
11 Ndfc78856ac8f4b9dab909d9909bf0d02
12 anzsrc-for:04
13 anzsrc-for:0401
14 anzsrc-for:0405
15 schema:author N3e6721c43dbe40d5842d521c975ad59f
16 schema:citation sg:pub.10.1007/bf02918685
17 sg:pub.10.1007/s00382-013-1783-z
18 sg:pub.10.1007/s00382-013-1839-0
19 sg:pub.10.1007/s10712-017-9418-2
20 sg:pub.10.1007/s10712-017-9442-2
21 sg:pub.10.1038/302295a0
22 sg:pub.10.1038/nature01092
23 sg:pub.10.1038/nature01092a
24 sg:pub.10.1038/nature12829
25 sg:pub.10.1038/nclimate2689
26 schema:datePublished 2020-10-26
27 schema:datePublishedReg 2020-10-26
28 schema:description Precipitation and atmospheric circulation are the coupled processes through which tropical ocean surface temperatures drive global weather and climate1–5. Local sea surface warming tends to increase precipitation, but this local control is difficult to disentangle from remote effects of conditions elsewhere. As an example of such a remote effect, El Niño Southern Oscillation (ENSO) events in the equatorial Pacific Ocean alter precipitation across the tropics. Atmospheric circulations associated with tropical precipitation are predominantly deep, extending up to the tropopause. Shallow atmospheric circulations6–8 affecting the lower troposphere also occur, but the importance of their interaction with precipitation is unclear. Uncertainty in precipitation observations9,10 and limited observations of shallow circulations11 further obstruct our understanding of the ocean’s influence on weather and climate. Despite decades of research, persistent biases remain in many numerical model simulations12–18, including excessively wide tropical rainbands14,18, the ‘double-intertropical convergence zone problem’12,16,17 and too-weak responses to ENSO15. These biases demonstrate gaps in our understanding, reducing confidence in forecasts and projections. Here we use observations to show that seasonal tropical precipitation has a high sensitivity to local sea surface temperature. Our best observational estimate is an 80 per cent change in precipitation for every gram per kilogram change in the saturation specific humidity (itself a function of the sea surface temperature). This observed sensitivity is higher than in 43 of the 47 climate models studied, and is associated with strong shallow circulations. Models with more realistic (closer to 80%) sensitivity have smaller biases across a wide range of metrics. Our results apply to both temporal and spatial variation, over regions where climatological precipitation is about one millimetre per day or more. Our analyses of multiple independent observations, physical constraints and model data underpin these findings. The spread in model behaviour is further linked to differences in shallow convection, thus providing a focus for accelerated research to improve seasonal forecasts through multidecadal climate projections.
29 schema:genre article
30 schema:isAccessibleForFree true
31 schema:isPartOf Nc6e61a526d6a4c19972ce062a1009290
32 Nd53234d4053a4590bf8cb1d4debea2b7
33 sg:journal.1018957
34 schema:keywords El Niño-Southern Oscillation (ENSO) events
35 Ocean influence
36 Oscillation events
37 Southern Oscillation events
38 Tropical
39 accelerated research
40 analysis
41 atmospheric circulation
42 behavior
43 best observational estimate
44 biases
45 cent change
46 changes
47 circulation
48 climate
49 climate models
50 climate projections
51 climatological precipitation
52 conditions
53 confidence
54 constraints
55 control
56 convection
57 convergence zone
58 data
59 days
60 decades
61 decades of research
62 differences
63 double intertropical convergence zone
64 effect
65 estimates
66 events
67 example
68 findings
69 focus
70 forecasts
71 gap
72 global weather
73 high sensitivity
74 humidity
75 importance
76 independent observations
77 influence
78 interaction
79 limited observations
80 local control
81 local sea surface
82 local sea surface temperature
83 lower troposphere
84 metrics
85 model
86 model behavior
87 model data
88 multiple independent observations
89 observational estimates
90 observations
91 observed sensitivity
92 ocean surface temperature
93 persistent biases
94 physical constraints
95 precipitation
96 process
97 projections
98 range
99 realistic sensitivity
100 region
101 remote effects
102 research
103 response
104 results
105 saturation specific humidity
106 sea surface
107 sea surface temperature
108 seasonal forecasts
109 sensitivity
110 shallow circulation
111 shallow convection
112 small biases
113 spatial variation
114 specific humidity
115 spread
116 surface
117 surface temperature
118 temperature
119 tropical precipitation
120 tropics
121 tropopause
122 troposphere
123 uncertainty
124 understanding
125 variation
126 weak response
127 weather
128 wide range
129 zone
130 schema:name High sensitivity of tropical precipitation to local sea surface temperature
131 schema:pagination 408-414
132 schema:productId N7a9a56703d8c4800b6057dab7f123b08
133 N7b49f97c4e19463cbbc333462ff1844d
134 Nb16ed0fcc90b45b49a501cdd0ba7a7e8
135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1132040100
136 https://doi.org/10.1038/s41586-020-2887-3
137 schema:sdDatePublished 2022-10-01T06:48
138 schema:sdLicense https://scigraph.springernature.com/explorer/license/
139 schema:sdPublisher N098bf8d0e7794d809178578d9e52639d
140 schema:url https://doi.org/10.1038/s41586-020-2887-3
141 sgo:license sg:explorer/license/
142 sgo:sdDataset articles
143 rdf:type schema:ScholarlyArticle
144 N098bf8d0e7794d809178578d9e52639d schema:name Springer Nature - SN SciGraph project
145 rdf:type schema:Organization
146 N0d06d31f6108464299b6ed82db043a8b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Rain
148 rdf:type schema:DefinedTerm
149 N125394a64e4443c188e9296c18de0170 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Uncertainty
151 rdf:type schema:DefinedTerm
152 N206082b4ef2a4b5ab1fefc4b726f1cca rdf:first sg:person.015203375046.68
153 rdf:rest N31d5690db85c428c9c6ca75a44b936aa
154 N31d5690db85c428c9c6ca75a44b936aa rdf:first sg:person.01231233510.32
155 rdf:rest N757f00ea6028498b93ee8d73d78b0b4b
156 N3e6721c43dbe40d5842d521c975ad59f rdf:first sg:person.014703234061.47
157 rdf:rest N206082b4ef2a4b5ab1fefc4b726f1cca
158 N491ebda26e35402a8138c51e38db7e22 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Tropical Climate
160 rdf:type schema:DefinedTerm
161 N5eac01fbc84f44289c019b81b0fecf43 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Satellite Communications
163 rdf:type schema:DefinedTerm
164 N61f4bca860bb45199fa0d802e03f8069 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Temperature
166 rdf:type schema:DefinedTerm
167 N757f00ea6028498b93ee8d73d78b0b4b rdf:first Na3fc44d18c6e44f0ab0a4628f469fe97
168 rdf:rest N8b8843ea15044e77bd29139793689dac
169 N783b08142ce242a08835bfcaeabd1f3d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Oceans and Seas
171 rdf:type schema:DefinedTerm
172 N7a9a56703d8c4800b6057dab7f123b08 schema:name dimensions_id
173 schema:value pub.1132040100
174 rdf:type schema:PropertyValue
175 N7b49f97c4e19463cbbc333462ff1844d schema:name doi
176 schema:value 10.1038/s41586-020-2887-3
177 rdf:type schema:PropertyValue
178 N8b8843ea15044e77bd29139793689dac rdf:first sg:person.011066117233.90
179 rdf:rest Nf725ffdfeda14f409babeb23d7b3f6cc
180 N8ed5db7bc3aa43aab6646d1b2e9cf49e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Atmosphere
182 rdf:type schema:DefinedTerm
183 Na3f3278676fc49f4b7ceed29760b2588 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Reproducibility of Results
185 rdf:type schema:DefinedTerm
186 Na3fc44d18c6e44f0ab0a4628f469fe97 schema:affiliation grid-institutes:grid.17100.37
187 schema:familyName Kennedy
188 schema:givenName John
189 rdf:type schema:Person
190 Nb16ed0fcc90b45b49a501cdd0ba7a7e8 schema:name pubmed_id
191 schema:value 33106670
192 rdf:type schema:PropertyValue
193 Nb4d1a18126c248a39304d553358f4a34 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
194 schema:name Water Movements
195 rdf:type schema:DefinedTerm
196 Nc6e61a526d6a4c19972ce062a1009290 schema:volumeNumber 589
197 rdf:type schema:PublicationVolume
198 Nc6f7a915465346dd9d01b68b734cc419 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
199 schema:name Wind
200 rdf:type schema:DefinedTerm
201 Nd53234d4053a4590bf8cb1d4debea2b7 schema:issueNumber 7842
202 rdf:type schema:PublicationIssue
203 Nddafdf4e812f4f6f861b919a326756dc rdf:first sg:person.07621772714.22
204 rdf:rest rdf:nil
205 Ndfc78856ac8f4b9dab909d9909bf0d02 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
206 schema:name Models, Theoretical
207 rdf:type schema:DefinedTerm
208 Nf725ffdfeda14f409babeb23d7b3f6cc rdf:first sg:person.015526426755.97
209 rdf:rest Nddafdf4e812f4f6f861b919a326756dc
210 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
211 schema:name Earth Sciences
212 rdf:type schema:DefinedTerm
213 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
214 schema:name Atmospheric Sciences
215 rdf:type schema:DefinedTerm
216 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
217 schema:name Oceanography
218 rdf:type schema:DefinedTerm
219 sg:grant.8558199 http://pending.schema.org/fundedItem sg:pub.10.1038/s41586-020-2887-3
220 rdf:type schema:MonetaryGrant
221 sg:journal.1018957 schema:issn 0028-0836
222 1476-4687
223 schema:name Nature
224 schema:publisher Springer Nature
225 rdf:type schema:Periodical
226 sg:person.011066117233.90 schema:affiliation grid-institutes:grid.9909.9
227 schema:familyName Lowe
228 schema:givenName Jason A.
229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011066117233.90
230 rdf:type schema:Person
231 sg:person.01231233510.32 schema:affiliation grid-institutes:grid.9435.b
232 schema:familyName Holloway
233 schema:givenName Christopher E.
234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231233510.32
235 rdf:type schema:Person
236 sg:person.014703234061.47 schema:affiliation grid-institutes:grid.17100.37
237 schema:familyName Good
238 schema:givenName Peter
239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014703234061.47
240 rdf:type schema:Person
241 sg:person.015203375046.68 schema:affiliation grid-institutes:grid.8391.3
242 schema:familyName Chadwick
243 schema:givenName Robin
244 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015203375046.68
245 rdf:type schema:Person
246 sg:person.015526426755.97 schema:affiliation grid-institutes:grid.508721.9
247 schema:familyName Roehrig
248 schema:givenName Romain
249 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015526426755.97
250 rdf:type schema:Person
251 sg:person.07621772714.22 schema:affiliation grid-institutes:grid.34477.33
252 schema:familyName Rushley
253 schema:givenName Stephanie S.
254 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07621772714.22
255 rdf:type schema:Person
256 sg:pub.10.1007/bf02918685 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002224970
257 https://doi.org/10.1007/bf02918685
258 rdf:type schema:CreativeWork
259 sg:pub.10.1007/s00382-013-1783-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1026200117
260 https://doi.org/10.1007/s00382-013-1783-z
261 rdf:type schema:CreativeWork
262 sg:pub.10.1007/s00382-013-1839-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021248796
263 https://doi.org/10.1007/s00382-013-1839-0
264 rdf:type schema:CreativeWork
265 sg:pub.10.1007/s10712-017-9418-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090677126
266 https://doi.org/10.1007/s10712-017-9418-2
267 rdf:type schema:CreativeWork
268 sg:pub.10.1007/s10712-017-9442-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092482318
269 https://doi.org/10.1007/s10712-017-9442-2
270 rdf:type schema:CreativeWork
271 sg:pub.10.1038/302295a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046487575
272 https://doi.org/10.1038/302295a0
273 rdf:type schema:CreativeWork
274 sg:pub.10.1038/nature01092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046916950
275 https://doi.org/10.1038/nature01092
276 rdf:type schema:CreativeWork
277 sg:pub.10.1038/nature01092a schema:sameAs https://app.dimensions.ai/details/publication/pub.1044980256
278 https://doi.org/10.1038/nature01092a
279 rdf:type schema:CreativeWork
280 sg:pub.10.1038/nature12829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016927016
281 https://doi.org/10.1038/nature12829
282 rdf:type schema:CreativeWork
283 sg:pub.10.1038/nclimate2689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030655148
284 https://doi.org/10.1038/nclimate2689
285 rdf:type schema:CreativeWork
286 grid-institutes:grid.17100.37 schema:alternateName MetOffice Hadley Centre, Exeter, UK
287 schema:name MetOffice Hadley Centre, Exeter, UK
288 rdf:type schema:Organization
289 grid-institutes:grid.34477.33 schema:alternateName Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA
290 schema:name Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA
291 rdf:type schema:Organization
292 grid-institutes:grid.508721.9 schema:alternateName CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France
293 schema:name CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France
294 rdf:type schema:Organization
295 grid-institutes:grid.8391.3 schema:alternateName Global Systems Institute, University of Exeter, Exeter, UK
296 schema:name Global Systems Institute, University of Exeter, Exeter, UK
297 MetOffice Hadley Centre, Exeter, UK
298 rdf:type schema:Organization
299 grid-institutes:grid.9435.b schema:alternateName Department of Meteorology, University of Reading, Reading, UK
300 schema:name Department of Meteorology, University of Reading, Reading, UK
301 rdf:type schema:Organization
302 grid-institutes:grid.9909.9 schema:alternateName Priestley International Centre for Climate, University of Leeds, Leeds, UK
303 schema:name MetOffice Hadley Centre, Exeter, UK
304 Priestley International Centre for Climate, University of Leeds, Leeds, UK
305 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...