Cascade of phase transitions and Dirac revivals in magic-angle graphene View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-06-11

AUTHORS

U. Zondiner, A. Rozen, D. Rodan-Legrain, Y. Cao, R. Queiroz, T. Taniguchi, K. Watanabe, Y. Oreg, F. von Oppen, Ady Stern, E. Berg, P. Jarillo-Herrero, S. Ilani

ABSTRACT

Twisted bilayer graphene near the magic angle1–4 exhibits rich electron-correlation physics, displaying insulating3–6, magnetic7,8 and superconducting phases4–6. The electronic bands of this system were predicted1,2 to narrow markedly9,10 near the magic angle, leading to a variety of possible symmetry-breaking ground states11–17. Here, using measurements of the local electronic compressibility, we show that these correlated phases originate from a high-energy state with an unusual sequence of band population. As carriers are added to the system, the four electronic ‘flavours’, which correspond to the spin and valley degrees of freedom, are not filled equally. Rather, they are populated through a sequence of sharp phase transitions, which appear as strong asymmetric jumps of the electronic compressibility near integer fillings of the moiré lattice. At each transition, a single spin/valley flavour takes all the carriers from its partially filled peers, ‘resetting’ them to the vicinity of the charge neutrality point. As a result, the Dirac-like character observed near charge neutrality reappears after each integer filling. Measurement of the in-plane magnetic field dependence of the chemical potential near filling factor one reveals a large spontaneous magnetization, further substantiating this picture of a cascade of symmetry breaking. The sequence of phase transitions and Dirac revivals is observed at temperatures well above the onset of the superconducting and correlated insulating states. This indicates that the state that we report here, with its strongly broken electronic flavour symmetry and revived Dirac-like electronic character, is important in the physics of magic-angle graphene, forming the parent state out of which the more fragile superconducting and correlated insulating ground states emerge. More... »

PAGES

203-208

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41586-020-2373-y

DOI

http://dx.doi.org/10.1038/s41586-020-2373-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1128386891

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/32528091


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel", 
          "id": "http://www.grid.ac/institutes/grid.13992.30", 
          "name": [
            "Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zondiner", 
        "givenName": "U.", 
        "id": "sg:person.015011070323.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015011070323.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel", 
          "id": "http://www.grid.ac/institutes/grid.13992.30", 
          "name": [
            "Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rozen", 
        "givenName": "A.", 
        "id": "sg:person.016654271725.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016654271725.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rodan-Legrain", 
        "givenName": "D.", 
        "id": "sg:person.010630742514.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010630742514.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cao", 
        "givenName": "Y.", 
        "id": "sg:person.010452736144.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010452736144.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel", 
          "id": "http://www.grid.ac/institutes/grid.13992.30", 
          "name": [
            "Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Queiroz", 
        "givenName": "R.", 
        "id": "sg:person.014526255552.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014526255552.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Materials Science, Tsukuba, Japan", 
          "id": "http://www.grid.ac/institutes/grid.21941.3f", 
          "name": [
            "National Institute for Materials Science, Tsukuba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Taniguchi", 
        "givenName": "T.", 
        "id": "sg:person.0765715521.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765715521.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Materials Science, Tsukuba, Japan", 
          "id": "http://www.grid.ac/institutes/grid.21941.3f", 
          "name": [
            "National Institute for Materials Science, Tsukuba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Watanabe", 
        "givenName": "K.", 
        "id": "sg:person.010575643400.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010575643400.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel", 
          "id": "http://www.grid.ac/institutes/grid.13992.30", 
          "name": [
            "Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oreg", 
        "givenName": "Y.", 
        "id": "sg:person.01235174414.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235174414.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universit\u00e4t Berlin, Berlin, Germany", 
          "id": "http://www.grid.ac/institutes/grid.14095.39", 
          "name": [
            "Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universit\u00e4t Berlin, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "von Oppen", 
        "givenName": "F.", 
        "id": "sg:person.01366036711.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366036711.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel", 
          "id": "http://www.grid.ac/institutes/grid.13992.30", 
          "name": [
            "Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stern", 
        "givenName": "Ady", 
        "id": "sg:person.014055640065.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014055640065.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel", 
          "id": "http://www.grid.ac/institutes/grid.13992.30", 
          "name": [
            "Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Berg", 
        "givenName": "E.", 
        "id": "sg:person.0632015002.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632015002.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jarillo-Herrero", 
        "givenName": "P.", 
        "id": "sg:person.01034030721.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034030721.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel", 
          "id": "http://www.grid.ac/institutes/grid.13992.30", 
          "name": [
            "Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ilani", 
        "givenName": "S.", 
        "id": "sg:person.01004454574.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004454574.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/s41586-019-1460-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1120002745", 
          "https://doi.org/10.1038/s41586-019-1460-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41586-019-1431-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1120013755", 
          "https://doi.org/10.1038/s41586-019-1431-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045564126", 
          "https://doi.org/10.1038/nphys1463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001765518", 
          "https://doi.org/10.1038/nmat3810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41567-019-0596-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1120130624", 
          "https://doi.org/10.1038/s41567-019-0596-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2013.143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018758750", 
          "https://doi.org/10.1038/nnano.2013.143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41586-019-1422-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1120006284", 
          "https://doi.org/10.1038/s41586-019-1422-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41586-019-1695-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1122174617", 
          "https://doi.org/10.1038/s41586-019-1695-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41567-019-0606-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1120128486", 
          "https://doi.org/10.1038/s41567-019-0606-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41563-019-0346-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1113480067", 
          "https://doi.org/10.1038/s41563-019-0346-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature26160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101336540", 
          "https://doi.org/10.1038/nature26160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature26154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101337104", 
          "https://doi.org/10.1038/nature26154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41586-020-2255-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1127387903", 
          "https://doi.org/10.1038/s41586-020-2255-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2020-06-11", 
    "datePublishedReg": "2020-06-11", 
    "description": "Twisted bilayer graphene near the magic angle1\u20134 exhibits rich electron-correlation physics, displaying insulating3\u20136, magnetic7,8 and superconducting phases4\u20136. The electronic bands of this system were predicted1,2 to narrow markedly9,10 near the magic angle, leading to a variety of possible symmetry-breaking ground states11\u201317. Here, using measurements of the local electronic compressibility, we show that these correlated phases originate from a high-energy state with an unusual sequence of band population. As carriers are added to the system, the four electronic \u2018flavours\u2019, which correspond to the spin and valley degrees of freedom, are not filled equally. Rather, they are populated through a sequence of sharp phase transitions, which appear as strong asymmetric jumps of the electronic compressibility near integer fillings of the moir\u00e9 lattice. At each transition, a single spin/valley flavour takes all the carriers from its partially filled peers, \u2018resetting\u2019 them to the vicinity of the charge neutrality point. As a result, the Dirac-like character observed near charge neutrality reappears after each integer filling. Measurement of the in-plane magnetic field dependence of the chemical potential near filling factor one reveals a large spontaneous magnetization, further substantiating this picture of a cascade of symmetry breaking. The sequence of phase transitions and Dirac revivals is observed at temperatures well above the onset of the superconducting and correlated insulating states. This indicates that the state that\u00a0we report here, with its strongly broken electronic flavour symmetry and revived Dirac-like electronic character, is important in the physics of magic-angle graphene, forming the parent state out of which the more fragile superconducting and correlated insulating ground states emerge.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41586-020-2373-y", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.9246244", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4161100", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3479835", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7926572", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.9023626", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7570942", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4318495", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7704000", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7811", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "582"
      }
    ], 
    "keywords": [
      "electronic compressibility", 
      "integer fillings", 
      "phase transition", 
      "plane magnetic field dependence", 
      "twisted bilayer graphene", 
      "insulating ground state", 
      "charge neutrality point", 
      "magnetic field dependence", 
      "high-energy states", 
      "valley degree", 
      "large spontaneous magnetization", 
      "bilayer graphene", 
      "insulating state", 
      "moir\u00e9 lattice", 
      "band population", 
      "ground state", 
      "neutrality point", 
      "electronic bands", 
      "symmetry breaking", 
      "angle graphene", 
      "charge neutrality", 
      "field dependence", 
      "sharp phase transition", 
      "parent state", 
      "spontaneous magnetization", 
      "flavor symmetry", 
      "chemical potential", 
      "asymmetric jumps", 
      "superconducting", 
      "physics", 
      "electronic character", 
      "graphene", 
      "transition", 
      "magic angle", 
      "spin", 
      "measurements", 
      "state", 
      "magnetization", 
      "breaking", 
      "symmetry", 
      "lattice", 
      "carriers", 
      "band", 
      "dependence", 
      "jump", 
      "factor one", 
      "compressibility", 
      "vicinity", 
      "flavor", 
      "angle", 
      "system", 
      "filling", 
      "revival", 
      "temperature", 
      "freedom", 
      "phase", 
      "unusual sequence", 
      "picture", 
      "point", 
      "character", 
      "one", 
      "cascade", 
      "sequence", 
      "potential", 
      "results", 
      "neutrality", 
      "degree", 
      "variety", 
      "onset", 
      "population", 
      "peers"
    ], 
    "name": "Cascade of phase transitions and Dirac revivals in magic-angle graphene", 
    "pagination": "203-208", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1128386891"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41586-020-2373-y"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "32528091"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41586-020-2373-y", 
      "https://app.dimensions.ai/details/publication/pub.1128386891"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_832.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41586-020-2373-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41586-020-2373-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41586-020-2373-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41586-020-2373-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41586-020-2373-y'


 

This table displays all metadata directly associated to this object as RDF triples.

293 TRIPLES      21 PREDICATES      109 URIs      88 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41586-020-2373-y schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Naedd2245137547228e9daa3a5677bbfb
4 schema:citation sg:pub.10.1038/nature26154
5 sg:pub.10.1038/nature26160
6 sg:pub.10.1038/nmat3810
7 sg:pub.10.1038/nnano.2013.143
8 sg:pub.10.1038/nphys1463
9 sg:pub.10.1038/s41563-019-0346-z
10 sg:pub.10.1038/s41567-019-0596-3
11 sg:pub.10.1038/s41567-019-0606-5
12 sg:pub.10.1038/s41586-019-1422-x
13 sg:pub.10.1038/s41586-019-1431-9
14 sg:pub.10.1038/s41586-019-1460-4
15 sg:pub.10.1038/s41586-019-1695-0
16 sg:pub.10.1038/s41586-020-2255-3
17 schema:datePublished 2020-06-11
18 schema:datePublishedReg 2020-06-11
19 schema:description Twisted bilayer graphene near the magic angle1–4 exhibits rich electron-correlation physics, displaying insulating3–6, magnetic7,8 and superconducting phases4–6. The electronic bands of this system were predicted1,2 to narrow markedly9,10 near the magic angle, leading to a variety of possible symmetry-breaking ground states11–17. Here, using measurements of the local electronic compressibility, we show that these correlated phases originate from a high-energy state with an unusual sequence of band population. As carriers are added to the system, the four electronic ‘flavours’, which correspond to the spin and valley degrees of freedom, are not filled equally. Rather, they are populated through a sequence of sharp phase transitions, which appear as strong asymmetric jumps of the electronic compressibility near integer fillings of the moiré lattice. At each transition, a single spin/valley flavour takes all the carriers from its partially filled peers, ‘resetting’ them to the vicinity of the charge neutrality point. As a result, the Dirac-like character observed near charge neutrality reappears after each integer filling. Measurement of the in-plane magnetic field dependence of the chemical potential near filling factor one reveals a large spontaneous magnetization, further substantiating this picture of a cascade of symmetry breaking. The sequence of phase transitions and Dirac revivals is observed at temperatures well above the onset of the superconducting and correlated insulating states. This indicates that the state that we report here, with its strongly broken electronic flavour symmetry and revived Dirac-like electronic character, is important in the physics of magic-angle graphene, forming the parent state out of which the more fragile superconducting and correlated insulating ground states emerge.
20 schema:genre article
21 schema:isAccessibleForFree true
22 schema:isPartOf Ndae1b766c4684acab801f849f390cd16
23 Ne9085754e8454aac95779897c5c754b0
24 sg:journal.1018957
25 schema:keywords angle
26 angle graphene
27 asymmetric jumps
28 band
29 band population
30 bilayer graphene
31 breaking
32 carriers
33 cascade
34 character
35 charge neutrality
36 charge neutrality point
37 chemical potential
38 compressibility
39 degree
40 dependence
41 electronic bands
42 electronic character
43 electronic compressibility
44 factor one
45 field dependence
46 filling
47 flavor
48 flavor symmetry
49 freedom
50 graphene
51 ground state
52 high-energy states
53 insulating ground state
54 insulating state
55 integer fillings
56 jump
57 large spontaneous magnetization
58 lattice
59 magic angle
60 magnetic field dependence
61 magnetization
62 measurements
63 moiré lattice
64 neutrality
65 neutrality point
66 one
67 onset
68 parent state
69 peers
70 phase
71 phase transition
72 physics
73 picture
74 plane magnetic field dependence
75 point
76 population
77 potential
78 results
79 revival
80 sequence
81 sharp phase transition
82 spin
83 spontaneous magnetization
84 state
85 superconducting
86 symmetry
87 symmetry breaking
88 system
89 temperature
90 transition
91 twisted bilayer graphene
92 unusual sequence
93 valley degree
94 variety
95 vicinity
96 schema:name Cascade of phase transitions and Dirac revivals in magic-angle graphene
97 schema:pagination 203-208
98 schema:productId N02be56b8fe3348c79f1fd88fccc1c71b
99 N5c12566bf8794179b7138c4954536488
100 Ne4656b88aa0749e3960c2de897dd0730
101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1128386891
102 https://doi.org/10.1038/s41586-020-2373-y
103 schema:sdDatePublished 2022-12-01T06:40
104 schema:sdLicense https://scigraph.springernature.com/explorer/license/
105 schema:sdPublisher N6182127fb9bb41f0b8dd568d339d3a10
106 schema:url https://doi.org/10.1038/s41586-020-2373-y
107 sgo:license sg:explorer/license/
108 sgo:sdDataset articles
109 rdf:type schema:ScholarlyArticle
110 N02be56b8fe3348c79f1fd88fccc1c71b schema:name dimensions_id
111 schema:value pub.1128386891
112 rdf:type schema:PropertyValue
113 N1d5ed6201f914d7a912967c62957062f rdf:first sg:person.010452736144.78
114 rdf:rest Ne2f69ebb87e14fefa32f24f24fb746b9
115 N293e7423ffbc47c4a64137e8a6fccd82 rdf:first sg:person.010630742514.84
116 rdf:rest N1d5ed6201f914d7a912967c62957062f
117 N5203fc5ff7304cd3a52ead5b30010d1b rdf:first sg:person.01034030721.03
118 rdf:rest N9266430a637f4246a4b3f274075e45b6
119 N5c12566bf8794179b7138c4954536488 schema:name pubmed_id
120 schema:value 32528091
121 rdf:type schema:PropertyValue
122 N5c7ab29987ba44b497b24a137efdf6f0 rdf:first sg:person.014055640065.48
123 rdf:rest Na46fc39edd044ff1993520808a789833
124 N603c466d904a48e6a8cbe9cd344ab9b2 rdf:first sg:person.016654271725.65
125 rdf:rest N293e7423ffbc47c4a64137e8a6fccd82
126 N6182127fb9bb41f0b8dd568d339d3a10 schema:name Springer Nature - SN SciGraph project
127 rdf:type schema:Organization
128 N7d88428b03d740be93b243d5ef1f2fa2 rdf:first sg:person.01235174414.28
129 rdf:rest Na9f52882e6d94430a5fd3782ad217136
130 N7f218d76d14a4f89952050a64ebcd758 rdf:first sg:person.0765715521.02
131 rdf:rest N9b649adf9bbb42b8b40dd4ad7e70a6eb
132 N9266430a637f4246a4b3f274075e45b6 rdf:first sg:person.01004454574.17
133 rdf:rest rdf:nil
134 N9b649adf9bbb42b8b40dd4ad7e70a6eb rdf:first sg:person.010575643400.34
135 rdf:rest N7d88428b03d740be93b243d5ef1f2fa2
136 Na46fc39edd044ff1993520808a789833 rdf:first sg:person.0632015002.43
137 rdf:rest N5203fc5ff7304cd3a52ead5b30010d1b
138 Na9f52882e6d94430a5fd3782ad217136 rdf:first sg:person.01366036711.96
139 rdf:rest N5c7ab29987ba44b497b24a137efdf6f0
140 Naedd2245137547228e9daa3a5677bbfb rdf:first sg:person.015011070323.14
141 rdf:rest N603c466d904a48e6a8cbe9cd344ab9b2
142 Ndae1b766c4684acab801f849f390cd16 schema:volumeNumber 582
143 rdf:type schema:PublicationVolume
144 Ne2f69ebb87e14fefa32f24f24fb746b9 rdf:first sg:person.014526255552.41
145 rdf:rest N7f218d76d14a4f89952050a64ebcd758
146 Ne4656b88aa0749e3960c2de897dd0730 schema:name doi
147 schema:value 10.1038/s41586-020-2373-y
148 rdf:type schema:PropertyValue
149 Ne9085754e8454aac95779897c5c754b0 schema:issueNumber 7811
150 rdf:type schema:PublicationIssue
151 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
152 schema:name Engineering
153 rdf:type schema:DefinedTerm
154 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
155 schema:name Materials Engineering
156 rdf:type schema:DefinedTerm
157 sg:grant.3479835 http://pending.schema.org/fundedItem sg:pub.10.1038/s41586-020-2373-y
158 rdf:type schema:MonetaryGrant
159 sg:grant.4161100 http://pending.schema.org/fundedItem sg:pub.10.1038/s41586-020-2373-y
160 rdf:type schema:MonetaryGrant
161 sg:grant.4318495 http://pending.schema.org/fundedItem sg:pub.10.1038/s41586-020-2373-y
162 rdf:type schema:MonetaryGrant
163 sg:grant.7570942 http://pending.schema.org/fundedItem sg:pub.10.1038/s41586-020-2373-y
164 rdf:type schema:MonetaryGrant
165 sg:grant.7704000 http://pending.schema.org/fundedItem sg:pub.10.1038/s41586-020-2373-y
166 rdf:type schema:MonetaryGrant
167 sg:grant.7926572 http://pending.schema.org/fundedItem sg:pub.10.1038/s41586-020-2373-y
168 rdf:type schema:MonetaryGrant
169 sg:grant.9023626 http://pending.schema.org/fundedItem sg:pub.10.1038/s41586-020-2373-y
170 rdf:type schema:MonetaryGrant
171 sg:grant.9246244 http://pending.schema.org/fundedItem sg:pub.10.1038/s41586-020-2373-y
172 rdf:type schema:MonetaryGrant
173 sg:journal.1018957 schema:issn 0028-0836
174 1476-4687
175 schema:name Nature
176 schema:publisher Springer Nature
177 rdf:type schema:Periodical
178 sg:person.01004454574.17 schema:affiliation grid-institutes:grid.13992.30
179 schema:familyName Ilani
180 schema:givenName S.
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004454574.17
182 rdf:type schema:Person
183 sg:person.01034030721.03 schema:affiliation grid-institutes:grid.116068.8
184 schema:familyName Jarillo-Herrero
185 schema:givenName P.
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034030721.03
187 rdf:type schema:Person
188 sg:person.010452736144.78 schema:affiliation grid-institutes:grid.116068.8
189 schema:familyName Cao
190 schema:givenName Y.
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010452736144.78
192 rdf:type schema:Person
193 sg:person.010575643400.34 schema:affiliation grid-institutes:grid.21941.3f
194 schema:familyName Watanabe
195 schema:givenName K.
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010575643400.34
197 rdf:type schema:Person
198 sg:person.010630742514.84 schema:affiliation grid-institutes:grid.116068.8
199 schema:familyName Rodan-Legrain
200 schema:givenName D.
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010630742514.84
202 rdf:type schema:Person
203 sg:person.01235174414.28 schema:affiliation grid-institutes:grid.13992.30
204 schema:familyName Oreg
205 schema:givenName Y.
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235174414.28
207 rdf:type schema:Person
208 sg:person.01366036711.96 schema:affiliation grid-institutes:grid.14095.39
209 schema:familyName von Oppen
210 schema:givenName F.
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366036711.96
212 rdf:type schema:Person
213 sg:person.014055640065.48 schema:affiliation grid-institutes:grid.13992.30
214 schema:familyName Stern
215 schema:givenName Ady
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014055640065.48
217 rdf:type schema:Person
218 sg:person.014526255552.41 schema:affiliation grid-institutes:grid.13992.30
219 schema:familyName Queiroz
220 schema:givenName R.
221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014526255552.41
222 rdf:type schema:Person
223 sg:person.015011070323.14 schema:affiliation grid-institutes:grid.13992.30
224 schema:familyName Zondiner
225 schema:givenName U.
226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015011070323.14
227 rdf:type schema:Person
228 sg:person.016654271725.65 schema:affiliation grid-institutes:grid.13992.30
229 schema:familyName Rozen
230 schema:givenName A.
231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016654271725.65
232 rdf:type schema:Person
233 sg:person.0632015002.43 schema:affiliation grid-institutes:grid.13992.30
234 schema:familyName Berg
235 schema:givenName E.
236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632015002.43
237 rdf:type schema:Person
238 sg:person.0765715521.02 schema:affiliation grid-institutes:grid.21941.3f
239 schema:familyName Taniguchi
240 schema:givenName T.
241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765715521.02
242 rdf:type schema:Person
243 sg:pub.10.1038/nature26154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101337104
244 https://doi.org/10.1038/nature26154
245 rdf:type schema:CreativeWork
246 sg:pub.10.1038/nature26160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101336540
247 https://doi.org/10.1038/nature26160
248 rdf:type schema:CreativeWork
249 sg:pub.10.1038/nmat3810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001765518
250 https://doi.org/10.1038/nmat3810
251 rdf:type schema:CreativeWork
252 sg:pub.10.1038/nnano.2013.143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018758750
253 https://doi.org/10.1038/nnano.2013.143
254 rdf:type schema:CreativeWork
255 sg:pub.10.1038/nphys1463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045564126
256 https://doi.org/10.1038/nphys1463
257 rdf:type schema:CreativeWork
258 sg:pub.10.1038/s41563-019-0346-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1113480067
259 https://doi.org/10.1038/s41563-019-0346-z
260 rdf:type schema:CreativeWork
261 sg:pub.10.1038/s41567-019-0596-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120130624
262 https://doi.org/10.1038/s41567-019-0596-3
263 rdf:type schema:CreativeWork
264 sg:pub.10.1038/s41567-019-0606-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120128486
265 https://doi.org/10.1038/s41567-019-0606-5
266 rdf:type schema:CreativeWork
267 sg:pub.10.1038/s41586-019-1422-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1120006284
268 https://doi.org/10.1038/s41586-019-1422-x
269 rdf:type schema:CreativeWork
270 sg:pub.10.1038/s41586-019-1431-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120013755
271 https://doi.org/10.1038/s41586-019-1431-9
272 rdf:type schema:CreativeWork
273 sg:pub.10.1038/s41586-019-1460-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120002745
274 https://doi.org/10.1038/s41586-019-1460-4
275 rdf:type schema:CreativeWork
276 sg:pub.10.1038/s41586-019-1695-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122174617
277 https://doi.org/10.1038/s41586-019-1695-0
278 rdf:type schema:CreativeWork
279 sg:pub.10.1038/s41586-020-2255-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1127387903
280 https://doi.org/10.1038/s41586-020-2255-3
281 rdf:type schema:CreativeWork
282 grid-institutes:grid.116068.8 schema:alternateName Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
283 schema:name Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
284 rdf:type schema:Organization
285 grid-institutes:grid.13992.30 schema:alternateName Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel
286 schema:name Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel
287 rdf:type schema:Organization
288 grid-institutes:grid.14095.39 schema:alternateName Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, Berlin, Germany
289 schema:name Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, Berlin, Germany
290 rdf:type schema:Organization
291 grid-institutes:grid.21941.3f schema:alternateName National Institute for Materials Science, Tsukuba, Japan
292 schema:name National Institute for Materials Science, Tsukuba, Japan
293 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...