Structure of SWI/SNF chromatin remodeller RSC bound to a nucleosome View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-03-11

AUTHORS

Felix R. Wagner, Christian Dienemann, Haibo Wang, Alexandra Stützer, Dimitry Tegunov, Henning Urlaub, Patrick Cramer

ABSTRACT

Chromatin-remodelling complexes of the SWI/SNF family function in the formation of nucleosome-depleted, transcriptionally active promoter regions (NDRs)1,2. In the yeast Saccharomyces cerevisiae, the essential SWI/SNF complex RSC3 contains 16 subunits, including the ATP-dependent DNA translocase Sth14,5. RSC removes nucleosomes from promoter regions6,7 and positions the specialized +1 and −1 nucleosomes that flank NDRs8,9. Here we present the cryo-electron microscopy structure of RSC in complex with a nucleosome substrate. The structure reveals that RSC forms five protein modules and suggests key features of the remodelling mechanism. The body module serves as a scaffold for the four flexible modules that we call DNA-interacting, ATPase, arm and actin-related protein (ARP) modules. The DNA-interacting module binds extra-nucleosomal DNA and is involved in the recognition of promoter DNA elements8,10,11 that influence RSC functionality12. The ATPase and arm modules sandwich the nucleosome disc with the Snf2 ATP-coupling (SnAC) domain and the finger helix, respectively. The translocase motor of the ATPase module engages with the edge of the nucleosome at superhelical location +2. The mobile ARP module may modulate translocase–nucleosome interactions to regulate RSC activity5. The RSC–nucleosome structure provides a basis for understanding NDR formation and the structure and function of human SWI/SNF complexes that are frequently mutated in cancer13. More... »

PAGES

448-451

References to SciGraph publications

  • 2005-08-07. Chromatin remodeling through directional DNA translocation from an internal nucleosomal site in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 2010-04-06. Structural insights into selective histone H3 recognition by the human Polybromo bromodomain 2 in CELL RESEARCH
  • 2019-10-07. Real-time cryo-electron microscopy data preprocessing with Warp in NATURE METHODS
  • 2000-12. Crystal structure of a nucleosome core particle containing the variant histone H2A.Z in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 2012-07-08. Identification of cross-linked peptides from complex samples in NATURE METHODS
  • 1999-06-25. Expression and Purification of Recombinant Histones and Nucleosome Reconstitution in CHROMATIN PROTOCOLS
  • 2015-06-10. Structural basis for retroviral integration into nucleosomes in NATURE
  • 2004-03-19. Genetic analysis of RSC58, which encodes a component of a yeast chromatin remodeling complex, and interacts with the transcription factor Swi6 in MOLECULAR GENETICS AND GENOMICS
  • 2018-04-11. Structure and regulation of the human INO80–nucleosome complex in NATURE
  • 1968-06. Cytochemical localization of monoamine stores in sheep thyroid gland at the electron microscope level in CELLULAR AND MOLECULAR LIFE SCIENCES
  • 1999-10. A generic protein purification method for protein complex characterization and proteome exploration in NATURE BIOTECHNOLOGY
  • 2008-04-13. The HSA domain binds nuclear actin-related proteins to regulate chromatin-remodeling ATPases in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 2017-10-11. Nucleosome–Chd1 structure and implications for chromatin remodelling in NATURE
  • 2019-03-14. Structures of the ISWI–nucleosome complex reveal a conserved mechanism of chromatin remodeling in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 2008-11-23. Structure of a RSC–nucleosome complex and insights into chromatin remodeling in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 2018-04-11. Structural basis for ATP-dependent chromatin remodelling by the INO80 complex in NATURE
  • 2017-05-17. Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • 2019-03-13. Mechanism of DNA translocation underlying chromatin remodelling by Snf2 in NATURE
  • 2012-06-03. A map of nucleosome positions in yeast at base-pair resolution in NATURE
  • 2007-12-23. GraFix: sample preparation for single-particle electron cryomicroscopy in NATURE METHODS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41586-020-2088-0

    DOI

    http://dx.doi.org/10.1038/s41586-020-2088-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1125547786

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/32188943


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adenosine Triphosphatases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Amino Acid Sequence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biological Transport", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Cycle Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cryoelectron Microscopy", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Drosophila melanogaster", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mice", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Molecular", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Multiprotein Complexes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nuclear Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nucleosomes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Protein Subunits", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Saccharomyces cerevisiae", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Saccharomyces cerevisiae Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Xenopus laevis", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, G\u00f6ttingen, Germany", 
              "id": "http://www.grid.ac/institutes/grid.418140.8", 
              "name": [
                "Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, G\u00f6ttingen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wagner", 
            "givenName": "Felix R.", 
            "id": "sg:person.01164216217.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164216217.90"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, G\u00f6ttingen, Germany", 
              "id": "http://www.grid.ac/institutes/grid.418140.8", 
              "name": [
                "Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, G\u00f6ttingen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dienemann", 
            "givenName": "Christian", 
            "id": "sg:person.0751564643.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751564643.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, G\u00f6ttingen, Germany", 
              "id": "http://www.grid.ac/institutes/grid.418140.8", 
              "name": [
                "Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, G\u00f6ttingen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Haibo", 
            "id": "sg:person.011460541117.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011460541117.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Max Planck Institute for Biophysical Chemistry, Bioanalytical Mass Spectrometry, G\u00f6ttingen, Germany", 
              "id": "http://www.grid.ac/institutes/grid.418140.8", 
              "name": [
                "Max Planck Institute for Biophysical Chemistry, Bioanalytical Mass Spectrometry, G\u00f6ttingen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "St\u00fctzer", 
            "givenName": "Alexandra", 
            "id": "sg:person.0657740105.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657740105.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, G\u00f6ttingen, Germany", 
              "id": "http://www.grid.ac/institutes/grid.418140.8", 
              "name": [
                "Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, G\u00f6ttingen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tegunov", 
            "givenName": "Dimitry", 
            "id": "sg:person.07417541233.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07417541233.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University Medical Center G\u00f6ttingen, Institute of Clinical Chemistry, Bioanalytics Group, G\u00f6ttingen, Germany", 
              "id": "http://www.grid.ac/institutes/grid.411984.1", 
              "name": [
                "Max Planck Institute for Biophysical Chemistry, Bioanalytical Mass Spectrometry, G\u00f6ttingen, Germany", 
                "University Medical Center G\u00f6ttingen, Institute of Clinical Chemistry, Bioanalytics Group, G\u00f6ttingen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Urlaub", 
            "givenName": "Henning", 
            "id": "sg:person.01264764341.85", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264764341.85"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, G\u00f6ttingen, Germany", 
              "id": "http://www.grid.ac/institutes/grid.418140.8", 
              "name": [
                "Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, G\u00f6ttingen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cramer", 
            "givenName": "Patrick", 
            "id": "sg:person.01045113153.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01045113153.17"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/s41586-019-1029-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112734627", 
              "https://doi.org/10.1038/s41586-019-1029-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrm.2017.26", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085427015", 
              "https://doi.org/10.1038/nrm.2017.26"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth1139", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010210484", 
              "https://doi.org/10.1038/nmeth1139"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/81971", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033450120", 
              "https://doi.org/10.1038/81971"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2099", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025908454", 
              "https://doi.org/10.1038/nmeth.2099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsmb.1403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004697177", 
              "https://doi.org/10.1038/nsmb.1403"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11142", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048157440", 
              "https://doi.org/10.1038/nature11142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41592-019-0580-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1121550754", 
              "https://doi.org/10.1038/s41592-019-0580-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/cr.2010.43", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015019171", 
              "https://doi.org/10.1038/cr.2010.43"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-018-0029-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103215194", 
              "https://doi.org/10.1038/s41586-018-0029-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature24046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092152718", 
              "https://doi.org/10.1038/nature24046"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsmb973", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007163617", 
              "https://doi.org/10.1038/nsmb973"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/13732", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045828427", 
              "https://doi.org/10.1038/13732"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41594-019-0199-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112768621", 
              "https://doi.org/10.1038/s41594-019-0199-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1385/1-59259-681-9:1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029829810", 
              "https://doi.org/10.1385/1-59259-681-9:1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsmb.1524", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023874029", 
              "https://doi.org/10.1038/nsmb.1524"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00438-004-0999-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029892896", 
              "https://doi.org/10.1007/s00438-004-0999-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02153794", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044920043", 
              "https://doi.org/10.1007/bf02153794"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14495", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048301144", 
              "https://doi.org/10.1038/nature14495"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-018-0021-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103212957", 
              "https://doi.org/10.1038/s41586-018-0021-6"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2020-03-11", 
        "datePublishedReg": "2020-03-11", 
        "description": "Chromatin-remodelling complexes of the SWI/SNF family function in the formation of nucleosome-depleted, transcriptionally active promoter regions (NDRs)1,2. In the yeast Saccharomyces cerevisiae, the essential SWI/SNF complex RSC3 contains 16 subunits, including the ATP-dependent DNA translocase Sth14,5. RSC removes nucleosomes from promoter regions6,7 and positions the specialized +1 and \u22121 nucleosomes that flank NDRs8,9. Here we present the cryo-electron microscopy structure of RSC in complex with a nucleosome substrate. The structure reveals that RSC forms five protein modules and suggests key features of the remodelling mechanism. The body module serves as a scaffold for the four flexible modules that we call DNA-interacting, ATPase, arm and actin-related protein (ARP) modules. The DNA-interacting module binds extra-nucleosomal DNA and is involved in the recognition of promoter DNA elements8,10,11 that influence RSC functionality12. The ATPase and arm modules sandwich the nucleosome disc with the Snf2 ATP-coupling (SnAC) domain and the finger helix, respectively. The translocase motor of the ATPase module engages with the edge of the nucleosome at superhelical location +2. The mobile ARP module may modulate translocase\u2013nucleosome interactions to regulate RSC activity5. The RSC\u2013nucleosome structure provides a basis for understanding NDR formation and the structure and function of human SWI/SNF complexes that are frequently mutated in cancer13.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41586-020-2088-0", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.5493708", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0028-0836", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7799", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "579"
          }
        ], 
        "keywords": [
          "protein modules", 
          "human SWI/SNF complex", 
          "ATP-dependent DNA translocase", 
          "cryo-electron microscopy structure", 
          "SWI/SNF complex", 
          "chromatin-remodelling complex", 
          "active promoter region", 
          "yeast Saccharomyces cerevisiae", 
          "superhelical location", 
          "NDR formation", 
          "DNA translocase", 
          "ATPase module", 
          "finger helix", 
          "SNF complex", 
          "microscopy structure", 
          "nucleosome substrates", 
          "promoter DNA", 
          "Saccharomyces cerevisiae", 
          "promoter region", 
          "nucleosomes", 
          "remodelling mechanism", 
          "ARP module", 
          "DNA", 
          "ATPase", 
          "complexes", 
          "translocase", 
          "RSC", 
          "cerevisiae", 
          "family function", 
          "RSC3", 
          "promoter", 
          "subunits", 
          "helix", 
          "body module", 
          "function", 
          "domain", 
          "formation", 
          "structure", 
          "scaffolds", 
          "mechanism", 
          "substrate", 
          "key features", 
          "interaction", 
          "region", 
          "module", 
          "flexible modules", 
          "basis", 
          "arm module", 
          "recognition", 
          "location", 
          "arm", 
          "position", 
          "features", 
          "flank", 
          "disk", 
          "edge", 
          "motor"
        ], 
        "name": "Structure of SWI/SNF chromatin remodeller RSC bound to a nucleosome", 
        "pagination": "448-451", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1125547786"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41586-020-2088-0"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "32188943"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41586-020-2088-0", 
          "https://app.dimensions.ai/details/publication/pub.1125547786"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T17:10", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_863.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41586-020-2088-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41586-020-2088-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41586-020-2088-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41586-020-2088-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41586-020-2088-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    316 TRIPLES      21 PREDICATES      119 URIs      91 LITERALS      24 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41586-020-2088-0 schema:about N00dd9540972a416790b4c52f13448cbd
    2 N215f8149677b4ed494c4818446de4263
    3 N2a79273348774abe847631b71daac792
    4 N31b64a66b3de4d549c1b1349686e756f
    5 N3860ec30bdcb4bd69af0e2f0c6195c06
    6 N3961401e308d49ac83ab9eb02cd96550
    7 N3d1c0aeccbb64b80b728b0ee97264fe5
    8 N5126f4585c1347dd85a41a444357e944
    9 N51658ac647794b3997c0902abb45b68b
    10 N659cafc2635241dbbbfc5474ccf3a851
    11 N846ac98381f14f908395392afa4dadbb
    12 Nd63831b57e2746318ccf5ee0f51647e1
    13 Ndd172c0122d64aadb82b229ef8091b86
    14 Ne4b1ea89395947f8baf09974cd4f67e9
    15 Ne72b79e18b73435589eeb152d22b06d0
    16 Nf1cf0e62a1cf4ae6b1529b4209a4a88f
    17 Nff69feafd6f147d88ee9caf8b4ddc98d
    18 anzsrc-for:06
    19 anzsrc-for:0601
    20 schema:author Nd98eabca69bc406894170d033618a516
    21 schema:citation sg:pub.10.1007/bf02153794
    22 sg:pub.10.1007/s00438-004-0999-3
    23 sg:pub.10.1038/13732
    24 sg:pub.10.1038/81971
    25 sg:pub.10.1038/cr.2010.43
    26 sg:pub.10.1038/nature11142
    27 sg:pub.10.1038/nature14495
    28 sg:pub.10.1038/nature24046
    29 sg:pub.10.1038/nmeth.2099
    30 sg:pub.10.1038/nmeth1139
    31 sg:pub.10.1038/nrm.2017.26
    32 sg:pub.10.1038/nsmb.1403
    33 sg:pub.10.1038/nsmb.1524
    34 sg:pub.10.1038/nsmb973
    35 sg:pub.10.1038/s41586-018-0021-6
    36 sg:pub.10.1038/s41586-018-0029-y
    37 sg:pub.10.1038/s41586-019-1029-2
    38 sg:pub.10.1038/s41592-019-0580-y
    39 sg:pub.10.1038/s41594-019-0199-9
    40 sg:pub.10.1385/1-59259-681-9:1
    41 schema:datePublished 2020-03-11
    42 schema:datePublishedReg 2020-03-11
    43 schema:description Chromatin-remodelling complexes of the SWI/SNF family function in the formation of nucleosome-depleted, transcriptionally active promoter regions (NDRs)1,2. In the yeast Saccharomyces cerevisiae, the essential SWI/SNF complex RSC3 contains 16 subunits, including the ATP-dependent DNA translocase Sth14,5. RSC removes nucleosomes from promoter regions6,7 and positions the specialized +1 and −1 nucleosomes that flank NDRs8,9. Here we present the cryo-electron microscopy structure of RSC in complex with a nucleosome substrate. The structure reveals that RSC forms five protein modules and suggests key features of the remodelling mechanism. The body module serves as a scaffold for the four flexible modules that we call DNA-interacting, ATPase, arm and actin-related protein (ARP) modules. The DNA-interacting module binds extra-nucleosomal DNA and is involved in the recognition of promoter DNA elements8,10,11 that influence RSC functionality12. The ATPase and arm modules sandwich the nucleosome disc with the Snf2 ATP-coupling (SnAC) domain and the finger helix, respectively. The translocase motor of the ATPase module engages with the edge of the nucleosome at superhelical location +2. The mobile ARP module may modulate translocase–nucleosome interactions to regulate RSC activity5. The RSC–nucleosome structure provides a basis for understanding NDR formation and the structure and function of human SWI/SNF complexes that are frequently mutated in cancer13.
    44 schema:genre article
    45 schema:isAccessibleForFree true
    46 schema:isPartOf N8fb6c650b801443c8818a2ce9f136261
    47 Ne7adcce3c6c24ffe94e30a98dfe6a5aa
    48 sg:journal.1018957
    49 schema:keywords ARP module
    50 ATP-dependent DNA translocase
    51 ATPase
    52 ATPase module
    53 DNA
    54 DNA translocase
    55 NDR formation
    56 RSC
    57 RSC3
    58 SNF complex
    59 SWI/SNF complex
    60 Saccharomyces cerevisiae
    61 active promoter region
    62 arm
    63 arm module
    64 basis
    65 body module
    66 cerevisiae
    67 chromatin-remodelling complex
    68 complexes
    69 cryo-electron microscopy structure
    70 disk
    71 domain
    72 edge
    73 family function
    74 features
    75 finger helix
    76 flank
    77 flexible modules
    78 formation
    79 function
    80 helix
    81 human SWI/SNF complex
    82 interaction
    83 key features
    84 location
    85 mechanism
    86 microscopy structure
    87 module
    88 motor
    89 nucleosome substrates
    90 nucleosomes
    91 position
    92 promoter
    93 promoter DNA
    94 promoter region
    95 protein modules
    96 recognition
    97 region
    98 remodelling mechanism
    99 scaffolds
    100 structure
    101 substrate
    102 subunits
    103 superhelical location
    104 translocase
    105 yeast Saccharomyces cerevisiae
    106 schema:name Structure of SWI/SNF chromatin remodeller RSC bound to a nucleosome
    107 schema:pagination 448-451
    108 schema:productId N0276ebb333ff4bb6969488095a92cf1a
    109 N91f51f436e3c487facea28d090a9b01a
    110 Ne03107abb0b245a8aaa9bf924460fb1a
    111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125547786
    112 https://doi.org/10.1038/s41586-020-2088-0
    113 schema:sdDatePublished 2022-08-04T17:10
    114 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    115 schema:sdPublisher N8d4a98a1c92e45de9ba954ec83a69795
    116 schema:url https://doi.org/10.1038/s41586-020-2088-0
    117 sgo:license sg:explorer/license/
    118 sgo:sdDataset articles
    119 rdf:type schema:ScholarlyArticle
    120 N00dd9540972a416790b4c52f13448cbd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name Protein Subunits
    122 rdf:type schema:DefinedTerm
    123 N0276ebb333ff4bb6969488095a92cf1a schema:name dimensions_id
    124 schema:value pub.1125547786
    125 rdf:type schema:PropertyValue
    126 N215f8149677b4ed494c4818446de4263 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    127 schema:name Saccharomyces cerevisiae
    128 rdf:type schema:DefinedTerm
    129 N2a79273348774abe847631b71daac792 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    130 schema:name Humans
    131 rdf:type schema:DefinedTerm
    132 N31b64a66b3de4d549c1b1349686e756f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    133 schema:name Saccharomyces cerevisiae Proteins
    134 rdf:type schema:DefinedTerm
    135 N3860ec30bdcb4bd69af0e2f0c6195c06 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    136 schema:name Animals
    137 rdf:type schema:DefinedTerm
    138 N3961401e308d49ac83ab9eb02cd96550 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    139 schema:name Nucleosomes
    140 rdf:type schema:DefinedTerm
    141 N3d1c0aeccbb64b80b728b0ee97264fe5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    142 schema:name Xenopus laevis
    143 rdf:type schema:DefinedTerm
    144 N46faf3958d57447e9811296370177305 rdf:first sg:person.0657740105.05
    145 rdf:rest Neb439d7551874bb8a0ee045da8e2d93f
    146 N5126f4585c1347dd85a41a444357e944 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    147 schema:name Cell Cycle Proteins
    148 rdf:type schema:DefinedTerm
    149 N51658ac647794b3997c0902abb45b68b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    150 schema:name Adenosine Triphosphatases
    151 rdf:type schema:DefinedTerm
    152 N659cafc2635241dbbbfc5474ccf3a851 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    153 schema:name Nuclear Proteins
    154 rdf:type schema:DefinedTerm
    155 N846ac98381f14f908395392afa4dadbb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    156 schema:name Multiprotein Complexes
    157 rdf:type schema:DefinedTerm
    158 N8d4a98a1c92e45de9ba954ec83a69795 schema:name Springer Nature - SN SciGraph project
    159 rdf:type schema:Organization
    160 N8fb6c650b801443c8818a2ce9f136261 schema:issueNumber 7799
    161 rdf:type schema:PublicationIssue
    162 N91f51f436e3c487facea28d090a9b01a schema:name pubmed_id
    163 schema:value 32188943
    164 rdf:type schema:PropertyValue
    165 Ncfffc90625ef460f9ca568167c298948 rdf:first sg:person.011460541117.19
    166 rdf:rest N46faf3958d57447e9811296370177305
    167 Nd63831b57e2746318ccf5ee0f51647e1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    168 schema:name Models, Molecular
    169 rdf:type schema:DefinedTerm
    170 Nd98eabca69bc406894170d033618a516 rdf:first sg:person.01164216217.90
    171 rdf:rest Ne2a9badb1f584263b8a1f4a2c6a034a3
    172 Ndd172c0122d64aadb82b229ef8091b86 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    173 schema:name Mice
    174 rdf:type schema:DefinedTerm
    175 Ne03107abb0b245a8aaa9bf924460fb1a schema:name doi
    176 schema:value 10.1038/s41586-020-2088-0
    177 rdf:type schema:PropertyValue
    178 Ne2a9badb1f584263b8a1f4a2c6a034a3 rdf:first sg:person.0751564643.29
    179 rdf:rest Ncfffc90625ef460f9ca568167c298948
    180 Ne4b1ea89395947f8baf09974cd4f67e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    181 schema:name Drosophila melanogaster
    182 rdf:type schema:DefinedTerm
    183 Ne502d2863f6942578ef2b488b23a3dbc rdf:first sg:person.01045113153.17
    184 rdf:rest rdf:nil
    185 Ne72b79e18b73435589eeb152d22b06d0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    186 schema:name Biological Transport
    187 rdf:type schema:DefinedTerm
    188 Ne7adcce3c6c24ffe94e30a98dfe6a5aa schema:volumeNumber 579
    189 rdf:type schema:PublicationVolume
    190 Ne9a50715f9f04a1198913684641b85a0 rdf:first sg:person.01264764341.85
    191 rdf:rest Ne502d2863f6942578ef2b488b23a3dbc
    192 Neb439d7551874bb8a0ee045da8e2d93f rdf:first sg:person.07417541233.11
    193 rdf:rest Ne9a50715f9f04a1198913684641b85a0
    194 Nf1cf0e62a1cf4ae6b1529b4209a4a88f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    195 schema:name Cryoelectron Microscopy
    196 rdf:type schema:DefinedTerm
    197 Nff69feafd6f147d88ee9caf8b4ddc98d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    198 schema:name Amino Acid Sequence
    199 rdf:type schema:DefinedTerm
    200 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    201 schema:name Biological Sciences
    202 rdf:type schema:DefinedTerm
    203 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    204 schema:name Biochemistry and Cell Biology
    205 rdf:type schema:DefinedTerm
    206 sg:grant.5493708 http://pending.schema.org/fundedItem sg:pub.10.1038/s41586-020-2088-0
    207 rdf:type schema:MonetaryGrant
    208 sg:journal.1018957 schema:issn 0028-0836
    209 1476-4687
    210 schema:name Nature
    211 schema:publisher Springer Nature
    212 rdf:type schema:Periodical
    213 sg:person.01045113153.17 schema:affiliation grid-institutes:grid.418140.8
    214 schema:familyName Cramer
    215 schema:givenName Patrick
    216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01045113153.17
    217 rdf:type schema:Person
    218 sg:person.011460541117.19 schema:affiliation grid-institutes:grid.418140.8
    219 schema:familyName Wang
    220 schema:givenName Haibo
    221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011460541117.19
    222 rdf:type schema:Person
    223 sg:person.01164216217.90 schema:affiliation grid-institutes:grid.418140.8
    224 schema:familyName Wagner
    225 schema:givenName Felix R.
    226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164216217.90
    227 rdf:type schema:Person
    228 sg:person.01264764341.85 schema:affiliation grid-institutes:grid.411984.1
    229 schema:familyName Urlaub
    230 schema:givenName Henning
    231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264764341.85
    232 rdf:type schema:Person
    233 sg:person.0657740105.05 schema:affiliation grid-institutes:grid.418140.8
    234 schema:familyName Stützer
    235 schema:givenName Alexandra
    236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657740105.05
    237 rdf:type schema:Person
    238 sg:person.07417541233.11 schema:affiliation grid-institutes:grid.418140.8
    239 schema:familyName Tegunov
    240 schema:givenName Dimitry
    241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07417541233.11
    242 rdf:type schema:Person
    243 sg:person.0751564643.29 schema:affiliation grid-institutes:grid.418140.8
    244 schema:familyName Dienemann
    245 schema:givenName Christian
    246 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751564643.29
    247 rdf:type schema:Person
    248 sg:pub.10.1007/bf02153794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044920043
    249 https://doi.org/10.1007/bf02153794
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1007/s00438-004-0999-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029892896
    252 https://doi.org/10.1007/s00438-004-0999-3
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1038/13732 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045828427
    255 https://doi.org/10.1038/13732
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1038/81971 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033450120
    258 https://doi.org/10.1038/81971
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1038/cr.2010.43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015019171
    261 https://doi.org/10.1038/cr.2010.43
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1038/nature11142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048157440
    264 https://doi.org/10.1038/nature11142
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1038/nature14495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048301144
    267 https://doi.org/10.1038/nature14495
    268 rdf:type schema:CreativeWork
    269 sg:pub.10.1038/nature24046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092152718
    270 https://doi.org/10.1038/nature24046
    271 rdf:type schema:CreativeWork
    272 sg:pub.10.1038/nmeth.2099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025908454
    273 https://doi.org/10.1038/nmeth.2099
    274 rdf:type schema:CreativeWork
    275 sg:pub.10.1038/nmeth1139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010210484
    276 https://doi.org/10.1038/nmeth1139
    277 rdf:type schema:CreativeWork
    278 sg:pub.10.1038/nrm.2017.26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085427015
    279 https://doi.org/10.1038/nrm.2017.26
    280 rdf:type schema:CreativeWork
    281 sg:pub.10.1038/nsmb.1403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004697177
    282 https://doi.org/10.1038/nsmb.1403
    283 rdf:type schema:CreativeWork
    284 sg:pub.10.1038/nsmb.1524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023874029
    285 https://doi.org/10.1038/nsmb.1524
    286 rdf:type schema:CreativeWork
    287 sg:pub.10.1038/nsmb973 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007163617
    288 https://doi.org/10.1038/nsmb973
    289 rdf:type schema:CreativeWork
    290 sg:pub.10.1038/s41586-018-0021-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103212957
    291 https://doi.org/10.1038/s41586-018-0021-6
    292 rdf:type schema:CreativeWork
    293 sg:pub.10.1038/s41586-018-0029-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1103215194
    294 https://doi.org/10.1038/s41586-018-0029-y
    295 rdf:type schema:CreativeWork
    296 sg:pub.10.1038/s41586-019-1029-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112734627
    297 https://doi.org/10.1038/s41586-019-1029-2
    298 rdf:type schema:CreativeWork
    299 sg:pub.10.1038/s41592-019-0580-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1121550754
    300 https://doi.org/10.1038/s41592-019-0580-y
    301 rdf:type schema:CreativeWork
    302 sg:pub.10.1038/s41594-019-0199-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112768621
    303 https://doi.org/10.1038/s41594-019-0199-9
    304 rdf:type schema:CreativeWork
    305 sg:pub.10.1385/1-59259-681-9:1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029829810
    306 https://doi.org/10.1385/1-59259-681-9:1
    307 rdf:type schema:CreativeWork
    308 grid-institutes:grid.411984.1 schema:alternateName University Medical Center Göttingen, Institute of Clinical Chemistry, Bioanalytics Group, Göttingen, Germany
    309 schema:name Max Planck Institute for Biophysical Chemistry, Bioanalytical Mass Spectrometry, Göttingen, Germany
    310 University Medical Center Göttingen, Institute of Clinical Chemistry, Bioanalytics Group, Göttingen, Germany
    311 rdf:type schema:Organization
    312 grid-institutes:grid.418140.8 schema:alternateName Max Planck Institute for Biophysical Chemistry, Bioanalytical Mass Spectrometry, Göttingen, Germany
    313 Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany
    314 schema:name Max Planck Institute for Biophysical Chemistry, Bioanalytical Mass Spectrometry, Göttingen, Germany
    315 Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany
    316 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...