Random anti-lasing through coherent perfect absorption in a disordered medium View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-04

AUTHORS

Kevin Pichler, Matthias Kühmayer, Julian Böhm, Andre Brandstötter, Philipp Ambichl, Ulrich Kuhl, Stefan Rotter

ABSTRACT

Non-Hermitian wave engineering is a recent and fast-moving field that examines both fundamental and application-oriented phenomena1-7. One such phenomenon is coherent perfect absorption8-11-an effect commonly referred to as 'anti-lasing' because it corresponds to the time-reversed process of coherent emission of radiation at the lasing threshold (where all radiation losses are exactly balanced by the optical gain). Coherent perfect absorbers (CPAs) have been experimentally realized in several setups10-18, with the notable exception of a CPA in a disordered medium (a medium without engineered structure). Such a 'random CPA' would be the time-reverse of a 'random laser'19,20, in which light is resonantly enhanced by multiple scattering inside a disorder. Because of the complexity of this scattering process, the light field emitted by a random laser is also spatially complex and not focused like a regular laser beam. Realizing a random CPA (or 'random anti-laser') is therefore challenging because it requires the equivalent of time-reversing such a light field in all its degrees of freedom to create coherent radiation that is perfectly absorbed when impinging on a disordered medium. Here we use microwave technology to build a random anti-laser and demonstrate its ability to absorb suitably engineered incoming radiation fields with near-perfect efficiency. Because our approach to determining these field patterns is based solely on far-field measurements of the scattering properties of a disordered medium, it could be suitable for other applications in which waves need to be perfectly focused, routed or absorbed. More... »

PAGES

351-355

Journal

TITLE

Nature

ISSUE

7748

VOLUME

567

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41586-019-0971-3

DOI

http://dx.doi.org/10.1038/s41586-019-0971-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112506927

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30833737


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "TU Wien", 
          "id": "https://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Institute for Theoretical Physics, Vienna University of Technology (TU Wien), Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pichler", 
        "givenName": "Kevin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "TU Wien", 
          "id": "https://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Institute for Theoretical Physics, Vienna University of Technology (TU Wien), Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "K\u00fchmayer", 
        "givenName": "Matthias", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut de Physique de Nice", 
          "id": "https://www.grid.ac/institutes/grid.497397.7", 
          "name": [
            "Institut de Physique de Nice, Universit\u00e9 C\u00f4te d\u2019Azur, CNRS, Nice, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "B\u00f6hm", 
        "givenName": "Julian", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "TU Wien", 
          "id": "https://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Institute for Theoretical Physics, Vienna University of Technology (TU Wien), Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brandst\u00f6tter", 
        "givenName": "Andre", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "TU Wien", 
          "id": "https://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Institute for Theoretical Physics, Vienna University of Technology (TU Wien), Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ambichl", 
        "givenName": "Philipp", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut de Physique de Nice", 
          "id": "https://www.grid.ac/institutes/grid.497397.7", 
          "name": [
            "Institut de Physique de Nice, Universit\u00e9 C\u00f4te d\u2019Azur, CNRS, Nice, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kuhl", 
        "givenName": "Ulrich", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "TU Wien", 
          "id": "https://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Institute for Theoretical Physics, Vienna University of Technology (TU Wien), Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rotter", 
        "givenName": "Stefan", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nphys971", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000774313", 
          "https://doi.org/10.1038/nphys971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms8031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001239690", 
          "https://doi.org/10.1038/ncomms8031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1134824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001247189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.053901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007292245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.053901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007292245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:cjop.0000044002.05657.04", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010220572", 
          "https://doi.org/10.1023/b:cjop.0000044002.05657.04"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-1684(96)00093-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013538322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.82.031801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014970649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.82.031801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014970649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/70/6/r03", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016488528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2016.216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024486024", 
          "https://doi.org/10.1038/nphoton.2016.216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0959-7174/13/3/201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024673097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/45/44/444016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036667640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep06693", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041964685", 
          "https://doi.org/10.1038/srep06693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2012.88", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043438037", 
          "https://doi.org/10.1038/nphoton.2012.88"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.163901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060758874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.163901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060758874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.143903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060762665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.143903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060762665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.74", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060822442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.74", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060822442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1200735", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062464351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.20.002246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065199086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.21.027652", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065205609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.31.002045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065224031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.118.044101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083799740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.118.044101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083799740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep43574", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084131494", 
          "https://doi.org/10.1038/srep43574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.89.015005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084199341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.89.015005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084199341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8121/aa793a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086005363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/natrevmats.2017.64", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092054820", 
          "https://doi.org/10.1038/natrevmats.2017.64"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41566-017-0031-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092730335", 
          "https://doi.org/10.1038/s41566-017-0031-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511976186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098709685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys4323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100199930", 
          "https://doi.org/10.1038/nphys4323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys4323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100199930", 
          "https://doi.org/10.1038/nphys4323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/120/64001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101230040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1801175115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104521091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-018-30287-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106133533", 
          "https://doi.org/10.1038/s41598-018-30287-y"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-04", 
    "datePublishedReg": "2019-03-04", 
    "description": "Non-Hermitian wave engineering is a recent and fast-moving field that examines both fundamental and application-oriented phenomena1-7. One such phenomenon is coherent perfect absorption8-11-an effect commonly referred to as 'anti-lasing' because it corresponds to the time-reversed process of coherent emission of radiation at the lasing threshold (where all radiation losses are exactly balanced by the optical gain). Coherent perfect absorbers (CPAs) have been experimentally realized in several setups10-18, with the notable exception of a CPA in a disordered medium (a medium without engineered structure). Such a 'random CPA' would be the time-reverse of a 'random laser'19,20, in which light is resonantly enhanced by multiple scattering inside a disorder. Because of the complexity of this scattering process, the light field emitted by a random laser is also spatially complex and not focused like a regular laser beam. Realizing a random CPA (or 'random anti-laser') is therefore challenging because it requires\u00a0the equivalent of time-reversing such a light field in all its degrees of freedom to create coherent radiation that is perfectly absorbed when impinging on a disordered medium. Here we use microwave technology to build a random anti-laser and demonstrate its ability to absorb suitably engineered incoming radiation fields with near-perfect efficiency. Because our approach to determining these field patterns is based solely on far-field measurements of the scattering properties of a disordered medium, it could be suitable for other applications in which waves need to be perfectly focused, routed or absorbed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41586-019-0971-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7748", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "567"
      }
    ], 
    "name": "Random anti-lasing through coherent perfect absorption in a disordered medium", 
    "pagination": "351-355", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "36e8457d54da8d8b9f7a62054b1a3193374fd49b06f2ddc723431c7be29ee6e5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30833737"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41586-019-0971-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112506927"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41586-019-0971-3", 
      "https://app.dimensions.ai/details/publication/pub.1112506927"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87091_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41586-019-0971-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41586-019-0971-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41586-019-0971-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41586-019-0971-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41586-019-0971-3'


 

This table displays all metadata directly associated to this object as RDF triples.

211 TRIPLES      21 PREDICATES      59 URIs      20 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41586-019-0971-3 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N37ee993487f946a09dd1d433fc01ca97
4 schema:citation sg:pub.10.1023/b:cjop.0000044002.05657.04
5 sg:pub.10.1038/natrevmats.2017.64
6 sg:pub.10.1038/ncomms8031
7 sg:pub.10.1038/nphoton.2012.88
8 sg:pub.10.1038/nphoton.2016.216
9 sg:pub.10.1038/nphys4323
10 sg:pub.10.1038/nphys971
11 sg:pub.10.1038/s41566-017-0031-1
12 sg:pub.10.1038/s41598-018-30287-y
13 sg:pub.10.1038/srep06693
14 sg:pub.10.1038/srep43574
15 https://doi.org/10.1016/0165-1684(96)00093-x
16 https://doi.org/10.1017/cbo9780511976186
17 https://doi.org/10.1073/pnas.1801175115
18 https://doi.org/10.1088/0034-4885/70/6/r03
19 https://doi.org/10.1088/0959-7174/13/3/201
20 https://doi.org/10.1088/1751-8113/45/44/444016
21 https://doi.org/10.1088/1751-8121/aa793a
22 https://doi.org/10.1103/physreva.82.031801
23 https://doi.org/10.1103/physrevlett.105.053901
24 https://doi.org/10.1103/physrevlett.107.163901
25 https://doi.org/10.1103/physrevlett.112.143903
26 https://doi.org/10.1103/physrevlett.118.044101
27 https://doi.org/10.1103/physrevlett.85.74
28 https://doi.org/10.1103/revmodphys.89.015005
29 https://doi.org/10.1126/science.1134824
30 https://doi.org/10.1126/science.1200735
31 https://doi.org/10.1209/0295-5075/120/64001
32 https://doi.org/10.1364/oe.20.002246
33 https://doi.org/10.1364/oe.21.027652
34 https://doi.org/10.1364/ol.31.002045
35 schema:datePublished 2019-03-04
36 schema:datePublishedReg 2019-03-04
37 schema:description Non-Hermitian wave engineering is a recent and fast-moving field that examines both fundamental and application-oriented phenomena<sup>1-7</sup>. One such phenomenon is coherent perfect absorption<sup>8-11</sup>-an effect commonly referred to as 'anti-lasing' because it corresponds to the time-reversed process of coherent emission of radiation at the lasing threshold (where all radiation losses are exactly balanced by the optical gain). Coherent perfect absorbers (CPAs) have been experimentally realized in several setups<sup>10-18</sup>, with the notable exception of a CPA in a disordered medium (a medium without engineered structure). Such a 'random CPA' would be the time-reverse of a 'random laser'<sup>19,20</sup>, in which light is resonantly enhanced by multiple scattering inside a disorder. Because of the complexity of this scattering process, the light field emitted by a random laser is also spatially complex and not focused like a regular laser beam. Realizing a random CPA (or 'random anti-laser') is therefore challenging because it requires the equivalent of time-reversing such a light field in all its degrees of freedom to create coherent radiation that is perfectly absorbed when impinging on a disordered medium. Here we use microwave technology to build a random anti-laser and demonstrate its ability to absorb suitably engineered incoming radiation fields with near-perfect efficiency. Because our approach to determining these field patterns is based solely on far-field measurements of the scattering properties of a disordered medium, it could be suitable for other applications in which waves need to be perfectly focused, routed or absorbed.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree false
41 schema:isPartOf N0a6ed85d8ee247fa8d3fd5567a57c5aa
42 Nc4f0c7790b8d4dcd810cf87e71bd7d94
43 sg:journal.1018957
44 schema:name Random anti-lasing through coherent perfect absorption in a disordered medium
45 schema:pagination 351-355
46 schema:productId N0632b1832f2b4dd88bde21a1e7bd5472
47 N47efad3c5a7b443b9d41aa753fddf7ac
48 N82878fe106de45ea921e71d8903f0a3e
49 N870ccb5a0d124301a672900097c55e1f
50 Nf1f52ab865524b23947a72adf6d70e1b
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112506927
52 https://doi.org/10.1038/s41586-019-0971-3
53 schema:sdDatePublished 2019-04-11T12:23
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher Nf52007d0edfa48a2ae1b688251e8b557
56 schema:url https://www.nature.com/articles/s41586-019-0971-3
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N0632b1832f2b4dd88bde21a1e7bd5472 schema:name dimensions_id
61 schema:value pub.1112506927
62 rdf:type schema:PropertyValue
63 N0a6ed85d8ee247fa8d3fd5567a57c5aa schema:volumeNumber 567
64 rdf:type schema:PublicationVolume
65 N37ee993487f946a09dd1d433fc01ca97 rdf:first Nb2b8234990a14458a2dd881356c1bb70
66 rdf:rest Nae5a11d3a7344a34993d4ade4c1b4df0
67 N3c79c327bf09433593e3be9ed57484ce schema:affiliation https://www.grid.ac/institutes/grid.497397.7
68 schema:familyName Böhm
69 schema:givenName Julian
70 rdf:type schema:Person
71 N47efad3c5a7b443b9d41aa753fddf7ac schema:name nlm_unique_id
72 schema:value 0410462
73 rdf:type schema:PropertyValue
74 N6a6ced25cc4b46d5800ddda852114e22 rdf:first Nc724cab606cf458db5bba54235d4cf81
75 rdf:rest N7b2cca2cc1ec4784bb521f27c7148584
76 N78244c07614b476aa116aa36449d9f0e schema:affiliation https://www.grid.ac/institutes/grid.497397.7
77 schema:familyName Kuhl
78 schema:givenName Ulrich
79 rdf:type schema:Person
80 N7b2cca2cc1ec4784bb521f27c7148584 rdf:first N78244c07614b476aa116aa36449d9f0e
81 rdf:rest Nb73799047ad54cbab266ab481fb48683
82 N7e4a682963b84d76a1cae25983cbe9df rdf:first N3c79c327bf09433593e3be9ed57484ce
83 rdf:rest Nb39ce4c0d45e416182cd970202ad1a90
84 N82878fe106de45ea921e71d8903f0a3e schema:name pubmed_id
85 schema:value 30833737
86 rdf:type schema:PropertyValue
87 N870ccb5a0d124301a672900097c55e1f schema:name doi
88 schema:value 10.1038/s41586-019-0971-3
89 rdf:type schema:PropertyValue
90 Nae5a11d3a7344a34993d4ade4c1b4df0 rdf:first Nf9f5cc889e2243f79addcd6ffbef5867
91 rdf:rest N7e4a682963b84d76a1cae25983cbe9df
92 Nb2b8234990a14458a2dd881356c1bb70 schema:affiliation https://www.grid.ac/institutes/grid.5329.d
93 schema:familyName Pichler
94 schema:givenName Kevin
95 rdf:type schema:Person
96 Nb39ce4c0d45e416182cd970202ad1a90 rdf:first Nfdff913f0ece4fdba311f8d6f16b083b
97 rdf:rest N6a6ced25cc4b46d5800ddda852114e22
98 Nb73799047ad54cbab266ab481fb48683 rdf:first Nba188fc583aa49a58e3e76e488b5ef60
99 rdf:rest rdf:nil
100 Nba188fc583aa49a58e3e76e488b5ef60 schema:affiliation https://www.grid.ac/institutes/grid.5329.d
101 schema:familyName Rotter
102 schema:givenName Stefan
103 rdf:type schema:Person
104 Nc4f0c7790b8d4dcd810cf87e71bd7d94 schema:issueNumber 7748
105 rdf:type schema:PublicationIssue
106 Nc724cab606cf458db5bba54235d4cf81 schema:affiliation https://www.grid.ac/institutes/grid.5329.d
107 schema:familyName Ambichl
108 schema:givenName Philipp
109 rdf:type schema:Person
110 Nf1f52ab865524b23947a72adf6d70e1b schema:name readcube_id
111 schema:value 36e8457d54da8d8b9f7a62054b1a3193374fd49b06f2ddc723431c7be29ee6e5
112 rdf:type schema:PropertyValue
113 Nf52007d0edfa48a2ae1b688251e8b557 schema:name Springer Nature - SN SciGraph project
114 rdf:type schema:Organization
115 Nf9f5cc889e2243f79addcd6ffbef5867 schema:affiliation https://www.grid.ac/institutes/grid.5329.d
116 schema:familyName Kühmayer
117 schema:givenName Matthias
118 rdf:type schema:Person
119 Nfdff913f0ece4fdba311f8d6f16b083b schema:affiliation https://www.grid.ac/institutes/grid.5329.d
120 schema:familyName Brandstötter
121 schema:givenName Andre
122 rdf:type schema:Person
123 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
124 schema:name Physical Sciences
125 rdf:type schema:DefinedTerm
126 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
127 schema:name Other Physical Sciences
128 rdf:type schema:DefinedTerm
129 sg:journal.1018957 schema:issn 0090-0028
130 1476-4687
131 schema:name Nature
132 rdf:type schema:Periodical
133 sg:pub.10.1023/b:cjop.0000044002.05657.04 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010220572
134 https://doi.org/10.1023/b:cjop.0000044002.05657.04
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/natrevmats.2017.64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092054820
137 https://doi.org/10.1038/natrevmats.2017.64
138 rdf:type schema:CreativeWork
139 sg:pub.10.1038/ncomms8031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001239690
140 https://doi.org/10.1038/ncomms8031
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/nphoton.2012.88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043438037
143 https://doi.org/10.1038/nphoton.2012.88
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/nphoton.2016.216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024486024
146 https://doi.org/10.1038/nphoton.2016.216
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/nphys4323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100199930
149 https://doi.org/10.1038/nphys4323
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/nphys971 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000774313
152 https://doi.org/10.1038/nphys971
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/s41566-017-0031-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092730335
155 https://doi.org/10.1038/s41566-017-0031-1
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/s41598-018-30287-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1106133533
158 https://doi.org/10.1038/s41598-018-30287-y
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/srep06693 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041964685
161 https://doi.org/10.1038/srep06693
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/srep43574 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084131494
164 https://doi.org/10.1038/srep43574
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/0165-1684(96)00093-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013538322
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1017/cbo9780511976186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098709685
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1073/pnas.1801175115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104521091
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1088/0034-4885/70/6/r03 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016488528
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1088/0959-7174/13/3/201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024673097
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1088/1751-8113/45/44/444016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036667640
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1088/1751-8121/aa793a schema:sameAs https://app.dimensions.ai/details/publication/pub.1086005363
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1103/physreva.82.031801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014970649
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1103/physrevlett.105.053901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007292245
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1103/physrevlett.107.163901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060758874
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1103/physrevlett.112.143903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060762665
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1103/physrevlett.118.044101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083799740
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1103/physrevlett.85.74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060822442
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1103/revmodphys.89.015005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084199341
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1126/science.1134824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001247189
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1126/science.1200735 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062464351
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1209/0295-5075/120/64001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101230040
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1364/oe.20.002246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065199086
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1364/oe.21.027652 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065205609
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1364/ol.31.002045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065224031
205 rdf:type schema:CreativeWork
206 https://www.grid.ac/institutes/grid.497397.7 schema:alternateName Institut de Physique de Nice
207 schema:name Institut de Physique de Nice, Université Côte d’Azur, CNRS, Nice, France
208 rdf:type schema:Organization
209 https://www.grid.ac/institutes/grid.5329.d schema:alternateName TU Wien
210 schema:name Institute for Theoretical Physics, Vienna University of Technology (TU Wien), Vienna, Austria
211 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...