Verified quantum information scrambling View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

K. A. Landsman, C. Figgatt, T. Schuster, N. M. Linke, B. Yoshida, N. Y. Yao, C. Monroe

ABSTRACT

Quantum scrambling is the dispersal of local information into many-body quantum entanglements and correlations distributed throughout an entire system. This concept accompanies the dynamics of thermalization in closed quantum systems, and has recently emerged as a powerful tool for characterizing chaos in black holes1-4. However, the direct experimental measurement of quantum scrambling is difficult, owing to the exponential complexity of ergodic many-body entangled states. One way to characterize quantum scrambling is to measure an out-of-time-ordered correlation function (OTOC); however, because scrambling leads to their decay, OTOCs do not generally discriminate between quantum scrambling and ordinary decoherence. Here we implement a quantum circuit that provides a positive test for the scrambling features of a given unitary process5,6. This approach conditionally teleports a quantum state through the circuit, providing an unambiguous test for whether scrambling has occurred, while simultaneously measuring an OTOC. We engineer quantum scrambling processes through a tunable three-qubit unitary operation as part of a seven-qubit circuit on an ion trap quantum computer. Measured teleportation fidelities are typically about 80 per cent, and enable us to experimentally bound the scrambling-induced decay of the corresponding OTOC measurement. More... »

PAGES

61-65

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41586-019-0952-6

DOI

http://dx.doi.org/10.1038/s41586-019-0952-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112568250

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30842638


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Maryland, College Park", 
          "id": "https://www.grid.ac/institutes/grid.164295.d", 
          "name": [
            "Joint Quantum Institute, Department of Physics and Joint Center for Quantum Information and Computer Science, University of Maryland, College Park, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Landsman", 
        "givenName": "K. A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Maryland, College Park", 
          "id": "https://www.grid.ac/institutes/grid.164295.d", 
          "name": [
            "Joint Quantum Institute, Department of Physics and Joint Center for Quantum Information and Computer Science, University of Maryland, College Park, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Figgatt", 
        "givenName": "C.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "https://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Department of Physics, University of California Berkeley, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schuster", 
        "givenName": "T.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Maryland, College Park", 
          "id": "https://www.grid.ac/institutes/grid.164295.d", 
          "name": [
            "Joint Quantum Institute, Department of Physics and Joint Center for Quantum Information and Computer Science, University of Maryland, College Park, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Linke", 
        "givenName": "N. M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Perimeter Institute", 
          "id": "https://www.grid.ac/institutes/grid.420198.6", 
          "name": [
            "Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yoshida", 
        "givenName": "B.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lawrence Berkeley National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Department of Physics, University of California Berkeley, Berkeley, CA, USA", 
            "Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yao", 
        "givenName": "N. Y.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Maryland, College Park", 
          "id": "https://www.grid.ac/institutes/grid.164295.d", 
          "name": [
            "Joint Quantum Institute, Department of Physics and Joint Center for Quantum Information and Computer Science, University of Maryland, College Park, MD, USA", 
            "IonQ Inc., College Park, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Monroe", 
        "givenName": "C.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1146/annurev-conmatphys-031214-014726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005301775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.1835", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010005233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.1835", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010005233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep03(2015)051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011152113", 
          "https://doi.org/10.1007/jhep03(2015)051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.70.1895", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013951720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.70.1895", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013951720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature18648", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015199953", 
          "https://doi.org/10.1038/nature18648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep02(2016)004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018472781", 
          "https://doi.org/10.1007/jhep02(2016)004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019688596", 
          "https://doi.org/10.1038/nphys2275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep03(2014)067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019690545", 
          "https://doi.org/10.1007/jhep03(2014)067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/epl/i2005-10424-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021297898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2007/09/120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023220297", 
          "https://doi.org/10.1088/1126-6708/2007/09/120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.77.012307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024396683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.77.012307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024396683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prop.201300020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026727593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep08(2016)106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027546612", 
          "https://doi.org/10.1007/jhep08(2016)106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep08(2016)106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027546612", 
          "https://doi.org/10.1007/jhep08(2016)106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2003/04/021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028201206", 
          "https://doi.org/10.1088/1126-6708/2003/04/021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.190502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042275601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.190502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042275601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1026654312961", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042716891", 
          "https://doi.org/10.1023/a:1026654312961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.71.1291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042796535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.71.1291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042796535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.76.052314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048071525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.76.052314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048071525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/237814.237866", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053319325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.94.040302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060516755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.94.040302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060516755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.14.2460", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060684315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.14.2460", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060684315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1208001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062464845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prop.201700034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085212178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.95.134302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085232147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.95.134302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085232147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys4119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085463614", 
          "https://doi.org/10.1038/nphys4119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys4119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085463614", 
          "https://doi.org/10.1038/nphys4119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.7.031011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090809109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.7.031011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090809109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.96.106008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092674220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.96.106008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092674220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep12(2017)151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100109136", 
          "https://doi.org/10.1007/jhep12(2017)151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.120.070501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101010372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.120.070501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101010372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.97.042105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103344149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.97.042105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103344149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.97.062113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104635405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.97.062113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104635405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.9.011006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111319973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.9.011006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111319973"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "Quantum scrambling is the dispersal of local information into many-body quantum entanglements and correlations distributed throughout an entire system. This concept accompanies the dynamics of thermalization in closed quantum systems, and has recently emerged as a powerful tool for characterizing chaos in black holes1-4. However, the direct experimental measurement of quantum scrambling is difficult, owing to the exponential complexity of ergodic many-body entangled states. One way to characterize quantum scrambling is to measure an out-of-time-ordered correlation function (OTOC); however, because scrambling leads to their decay, OTOCs do not generally discriminate between quantum scrambling and ordinary decoherence. Here we implement a quantum circuit that provides a positive test for the scrambling features of a given unitary process5,6. This approach conditionally teleports a quantum state through the circuit, providing an unambiguous test for whether scrambling has occurred, while simultaneously measuring an OTOC. We engineer quantum scrambling processes through a tunable three-qubit unitary operation as part of a seven-qubit circuit on an ion trap quantum computer. Measured teleportation fidelities are typically about 80 per cent, and enable us to experimentally bound the scrambling-induced decay of the corresponding OTOC measurement.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41586-019-0952-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7746", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "567"
      }
    ], 
    "name": "Verified quantum information scrambling", 
    "pagination": "61-65", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0ff61039a63cec29dc8a7175e675a01d41ff0d0eb702accba2257ee9d18861c8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30842638"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41586-019-0952-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112568250"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41586-019-0952-6", 
      "https://app.dimensions.ai/details/publication/pub.1112568250"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29183_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41586-019-0952-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41586-019-0952-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41586-019-0952-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41586-019-0952-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41586-019-0952-6'


 

This table displays all metadata directly associated to this object as RDF triples.

222 TRIPLES      21 PREDICATES      61 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41586-019-0952-6 schema:about anzsrc-for:02
2 anzsrc-for:0206
3 schema:author N13a44ecba8654d378f683d14b1e4829c
4 schema:citation sg:pub.10.1007/jhep02(2016)004
5 sg:pub.10.1007/jhep03(2014)067
6 sg:pub.10.1007/jhep03(2015)051
7 sg:pub.10.1007/jhep08(2016)106
8 sg:pub.10.1007/jhep12(2017)151
9 sg:pub.10.1023/a:1026654312961
10 sg:pub.10.1038/nature18648
11 sg:pub.10.1038/nphys2275
12 sg:pub.10.1038/nphys4119
13 sg:pub.10.1088/1126-6708/2003/04/021
14 sg:pub.10.1088/1126-6708/2007/09/120
15 https://doi.org/10.1002/prop.201300020
16 https://doi.org/10.1002/prop.201700034
17 https://doi.org/10.1103/physreva.76.052314
18 https://doi.org/10.1103/physreva.77.012307
19 https://doi.org/10.1103/physreva.94.040302
20 https://doi.org/10.1103/physreva.97.042105
21 https://doi.org/10.1103/physreva.97.062113
22 https://doi.org/10.1103/physrevb.95.134302
23 https://doi.org/10.1103/physrevd.14.2460
24 https://doi.org/10.1103/physrevd.96.106008
25 https://doi.org/10.1103/physrevlett.112.190502
26 https://doi.org/10.1103/physrevlett.120.070501
27 https://doi.org/10.1103/physrevlett.70.1895
28 https://doi.org/10.1103/physrevlett.71.1291
29 https://doi.org/10.1103/physrevlett.82.1835
30 https://doi.org/10.1103/physrevx.7.031011
31 https://doi.org/10.1103/physrevx.9.011006
32 https://doi.org/10.1126/science.1208001
33 https://doi.org/10.1145/237814.237866
34 https://doi.org/10.1146/annurev-conmatphys-031214-014726
35 https://doi.org/10.1209/epl/i2005-10424-4
36 schema:datePublished 2019-03
37 schema:datePublishedReg 2019-03-01
38 schema:description Quantum scrambling is the dispersal of local information into many-body quantum entanglements and correlations distributed throughout an entire system. This concept accompanies the dynamics of thermalization in closed quantum systems, and has recently emerged as a powerful tool for characterizing chaos in black holes<sup>1-4</sup>. However, the direct experimental measurement of quantum scrambling is difficult, owing to the exponential complexity of ergodic many-body entangled states. One way to characterize quantum scrambling is to measure an out-of-time-ordered correlation function (OTOC); however, because scrambling leads to their decay, OTOCs do not generally discriminate between quantum scrambling and ordinary decoherence. Here we implement a quantum circuit that provides a positive test for the scrambling features of a given unitary process<sup>5,6</sup>. This approach conditionally teleports a quantum state through the circuit, providing an unambiguous test for whether scrambling has occurred, while simultaneously measuring an OTOC. We engineer quantum scrambling processes through a tunable three-qubit unitary operation as part of a seven-qubit circuit on an ion trap quantum computer. Measured teleportation fidelities are typically about 80 per cent, and enable us to experimentally bound the scrambling-induced decay of the corresponding OTOC measurement.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree false
42 schema:isPartOf N5d2aeb074a5e40af8f38aa1ac9635f4e
43 Nc7d78629bad346c199aa5e1f16e9c236
44 sg:journal.1018957
45 schema:name Verified quantum information scrambling
46 schema:pagination 61-65
47 schema:productId N2380cbb7f0cc4bfca38c15677e507998
48 N96f4c0fba0834b09a8d3e6cd28fd354f
49 Nb25c66eb0f3d4795a43efa730aa1a7ff
50 Nd2c8057bfbbe47378a914bc60ec9bb33
51 Ne8474af8760b4269a3501191c63f2eac
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112568250
53 https://doi.org/10.1038/s41586-019-0952-6
54 schema:sdDatePublished 2019-04-11T11:51
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher Nf1961985a9ee4529acc7c01ece8ed913
57 schema:url https://www.nature.com/articles/s41586-019-0952-6
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N13a44ecba8654d378f683d14b1e4829c rdf:first N7883e352fab34c209e29043070d6bc98
62 rdf:rest Nb26aa41a565d4b358b190b5c0397798d
63 N1b8c1501abc34c0c930b63a84937fbf5 rdf:first Nb9db1dd2a68746469dd53de74179574b
64 rdf:rest N9d2395ad71ac41bd8882f56928cda6fd
65 N2380cbb7f0cc4bfca38c15677e507998 schema:name dimensions_id
66 schema:value pub.1112568250
67 rdf:type schema:PropertyValue
68 N31264647e3af42f6b25d9800f744c2f5 schema:affiliation https://www.grid.ac/institutes/grid.420198.6
69 schema:familyName Yoshida
70 schema:givenName B.
71 rdf:type schema:Person
72 N5d2aeb074a5e40af8f38aa1ac9635f4e schema:issueNumber 7746
73 rdf:type schema:PublicationIssue
74 N69bcc506010e41c8899dfbce97e9b338 rdf:first N31264647e3af42f6b25d9800f744c2f5
75 rdf:rest N1b8c1501abc34c0c930b63a84937fbf5
76 N6b806410a9934861af28b33cd797be9d schema:affiliation https://www.grid.ac/institutes/grid.164295.d
77 schema:familyName Figgatt
78 schema:givenName C.
79 rdf:type schema:Person
80 N7883e352fab34c209e29043070d6bc98 schema:affiliation https://www.grid.ac/institutes/grid.164295.d
81 schema:familyName Landsman
82 schema:givenName K. A.
83 rdf:type schema:Person
84 N88c82ddfd5a8425eb3bda9024e0ab82e schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
85 schema:familyName Schuster
86 schema:givenName T.
87 rdf:type schema:Person
88 N96f4c0fba0834b09a8d3e6cd28fd354f schema:name doi
89 schema:value 10.1038/s41586-019-0952-6
90 rdf:type schema:PropertyValue
91 N9b9a3a4debd6495e810d4ad91a88a8fe rdf:first Nfffe8c5cad634856a9a6251af7d44b8f
92 rdf:rest N69bcc506010e41c8899dfbce97e9b338
93 N9d2395ad71ac41bd8882f56928cda6fd rdf:first Ned484d3e9ad64e12b12c69cf69ed9ac3
94 rdf:rest rdf:nil
95 Nb25c66eb0f3d4795a43efa730aa1a7ff schema:name pubmed_id
96 schema:value 30842638
97 rdf:type schema:PropertyValue
98 Nb26aa41a565d4b358b190b5c0397798d rdf:first N6b806410a9934861af28b33cd797be9d
99 rdf:rest Nfe0e954e59174d9ba3468bbd4d436e73
100 Nb9db1dd2a68746469dd53de74179574b schema:affiliation https://www.grid.ac/institutes/grid.184769.5
101 schema:familyName Yao
102 schema:givenName N. Y.
103 rdf:type schema:Person
104 Nc7d78629bad346c199aa5e1f16e9c236 schema:volumeNumber 567
105 rdf:type schema:PublicationVolume
106 Nd2c8057bfbbe47378a914bc60ec9bb33 schema:name nlm_unique_id
107 schema:value 0410462
108 rdf:type schema:PropertyValue
109 Ne8474af8760b4269a3501191c63f2eac schema:name readcube_id
110 schema:value 0ff61039a63cec29dc8a7175e675a01d41ff0d0eb702accba2257ee9d18861c8
111 rdf:type schema:PropertyValue
112 Ned484d3e9ad64e12b12c69cf69ed9ac3 schema:affiliation https://www.grid.ac/institutes/grid.164295.d
113 schema:familyName Monroe
114 schema:givenName C.
115 rdf:type schema:Person
116 Nf1961985a9ee4529acc7c01ece8ed913 schema:name Springer Nature - SN SciGraph project
117 rdf:type schema:Organization
118 Nfe0e954e59174d9ba3468bbd4d436e73 rdf:first N88c82ddfd5a8425eb3bda9024e0ab82e
119 rdf:rest N9b9a3a4debd6495e810d4ad91a88a8fe
120 Nfffe8c5cad634856a9a6251af7d44b8f schema:affiliation https://www.grid.ac/institutes/grid.164295.d
121 schema:familyName Linke
122 schema:givenName N. M.
123 rdf:type schema:Person
124 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
125 schema:name Physical Sciences
126 rdf:type schema:DefinedTerm
127 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
128 schema:name Quantum Physics
129 rdf:type schema:DefinedTerm
130 sg:journal.1018957 schema:issn 0090-0028
131 1476-4687
132 schema:name Nature
133 rdf:type schema:Periodical
134 sg:pub.10.1007/jhep02(2016)004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018472781
135 https://doi.org/10.1007/jhep02(2016)004
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/jhep03(2014)067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019690545
138 https://doi.org/10.1007/jhep03(2014)067
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/jhep03(2015)051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011152113
141 https://doi.org/10.1007/jhep03(2015)051
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/jhep08(2016)106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027546612
144 https://doi.org/10.1007/jhep08(2016)106
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/jhep12(2017)151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100109136
147 https://doi.org/10.1007/jhep12(2017)151
148 rdf:type schema:CreativeWork
149 sg:pub.10.1023/a:1026654312961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042716891
150 https://doi.org/10.1023/a:1026654312961
151 rdf:type schema:CreativeWork
152 sg:pub.10.1038/nature18648 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015199953
153 https://doi.org/10.1038/nature18648
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/nphys2275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019688596
156 https://doi.org/10.1038/nphys2275
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/nphys4119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085463614
159 https://doi.org/10.1038/nphys4119
160 rdf:type schema:CreativeWork
161 sg:pub.10.1088/1126-6708/2003/04/021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028201206
162 https://doi.org/10.1088/1126-6708/2003/04/021
163 rdf:type schema:CreativeWork
164 sg:pub.10.1088/1126-6708/2007/09/120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023220297
165 https://doi.org/10.1088/1126-6708/2007/09/120
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1002/prop.201300020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026727593
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1002/prop.201700034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085212178
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1103/physreva.76.052314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048071525
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1103/physreva.77.012307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024396683
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/physreva.94.040302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060516755
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1103/physreva.97.042105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103344149
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1103/physreva.97.062113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104635405
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1103/physrevb.95.134302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085232147
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1103/physrevd.14.2460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060684315
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1103/physrevd.96.106008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092674220
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1103/physrevlett.112.190502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042275601
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1103/physrevlett.120.070501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101010372
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1103/physrevlett.70.1895 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013951720
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1103/physrevlett.71.1291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042796535
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1103/physrevlett.82.1835 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010005233
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1103/physrevx.7.031011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090809109
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1103/physrevx.9.011006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111319973
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1126/science.1208001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062464845
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1145/237814.237866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053319325
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1146/annurev-conmatphys-031214-014726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005301775
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1209/epl/i2005-10424-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021297898
208 rdf:type schema:CreativeWork
209 https://www.grid.ac/institutes/grid.164295.d schema:alternateName University of Maryland, College Park
210 schema:name IonQ Inc., College Park, MD, USA
211 Joint Quantum Institute, Department of Physics and Joint Center for Quantum Information and Computer Science, University of Maryland, College Park, MD, USA
212 rdf:type schema:Organization
213 https://www.grid.ac/institutes/grid.184769.5 schema:alternateName Lawrence Berkeley National Laboratory
214 schema:name Department of Physics, University of California Berkeley, Berkeley, CA, USA
215 Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
216 rdf:type schema:Organization
217 https://www.grid.ac/institutes/grid.420198.6 schema:alternateName Perimeter Institute
218 schema:name Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada
219 rdf:type schema:Organization
220 https://www.grid.ac/institutes/grid.47840.3f schema:alternateName University of California, Berkeley
221 schema:name Department of Physics, University of California Berkeley, Berkeley, CA, USA
222 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...