Catalogue of topological electronic materials View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Tiantian Zhang, Yi Jiang, Zhida Song, He Huang, Yuqing He, Zhong Fang, Hongming Weng, Chen Fang

ABSTRACT

Topological electronic materials such as bismuth selenide, tantalum arsenide and sodium bismuthide show unconventional linear response in the bulk, as well as anomalous gapless states at their boundaries. They are of both fundamental and applied interest, with the potential for use in high-performance electronics and quantum computing. But their detection has so far been hindered by the difficulty of calculating topological invariant properties (or topological nodes), which requires both experience with materials and expertise with advanced theoretical tools. Here we introduce an effective, efficient and fully automated algorithm that diagnoses the nontrivial band topology in a large fraction of nonmagnetic materials. Our algorithm is based on recently developed exhaustive mappings between the symmetry representations of occupied bands and topological invariants. We sweep through a total of 39,519 materials available in a crystal database, and find that as many as 8,056 of them are topologically nontrivial. All results are available and searchable in a database with an interactive user interface. More... »

PAGES

475-479

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41586-019-0944-6

DOI

http://dx.doi.org/10.1038/s41586-019-0944-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112388964

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30814713


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China", 
            "University of Chinese Academy of Sciences, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Tiantian", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China", 
            "University of Chinese Academy of Sciences, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jiang", 
        "givenName": "Yi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China", 
            "University of Chinese Academy of Sciences, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Song", 
        "givenName": "Zhida", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computer Network Information Center", 
          "id": "https://www.grid.ac/institutes/grid.433146.7", 
          "name": [
            "Computer Network Information Center, Chinese Academy of Sciences, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "He", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computer Network Information Center", 
          "id": "https://www.grid.ac/institutes/grid.433146.7", 
          "name": [
            "University of Chinese Academy of Sciences, Beijing, China", 
            "Computer Network Information Center, Chinese Academy of Sciences, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "He", 
        "givenName": "Yuqing", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.9227.e", 
          "name": [
            "Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China", 
            "Kavli Institute for Theoretical Sciences, Chinese Academy of Sciences, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fang", 
        "givenName": "Zhong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.9227.e", 
          "name": [
            "Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China", 
            "Collaborative Innovation Center of Quantum Matter, Beijing, China", 
            "Songshan Lake Materials Laboratory, Dongguan, China", 
            "CAS Centre for Excellence in Topological Quantum Computation, Beijing, China", 
            "Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weng", 
        "givenName": "Hongming", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.9227.e", 
          "name": [
            "Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China", 
            "Kavli Institute for Theoretical Sciences, Chinese Academy of Sciences, Beijing, China", 
            "Songshan Lake Materials Laboratory, Dongguan, China", 
            "CAS Centre for Excellence in Topological Quantum Computation, Beijing, China", 
            "Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fang", 
        "givenName": "Chen", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevb.80.155131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000667695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.80.155131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000667695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.commatsci.2012.10.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001839014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.106803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003001378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.106803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003001378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.82.3045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004083979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.82.3045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004083979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature17410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006494425", 
          "https://doi.org/10.1038/nature17410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.91.155120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006881383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.91.155120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006881383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1234414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006904305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0927-0256(96)00008-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008708156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.140405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008952392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.140405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008952392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.195125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011668608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.195125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011668608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/08893110410001664882", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018140490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.92.081201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018650738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.92.081201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018650738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.195320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023105171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.195320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023105171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aad8609", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023598820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.235126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025189498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.235126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025189498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.205101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025277884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.205101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025277884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4812323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027518534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/9/9/356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030480828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.075119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030859492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.075119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030859492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1133734", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030957871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.76.045302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031979890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.76.045302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031979890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms8373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032808151", 
          "https://doi.org/10.1038/ncomms8373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.5.011029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034242879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.5.011029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034242879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/1/19/001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035146267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036898094", 
          "https://doi.org/10.1038/nphys1270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.096401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040169078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.096401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040169078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.6.021008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042203885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.6.021008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042203885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.146802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042249380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.146802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042249380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.83.1057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045115933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.83.1057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045115933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.91.161105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045334680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.91.161105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045334680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3149495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045986733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1256815", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048460404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048813040", 
          "https://doi.org/10.1038/ncomms1969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.106408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048994950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.106408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048994950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2015.07.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052222149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aaf5037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052574938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052859415", 
          "https://doi.org/10.1038/nphys3371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.47.558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060566310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.47.558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060566310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.49.14251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060570025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.49.14251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060570025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.11169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060581262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.11169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060581262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.88.035005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.88.035005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1089408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062448546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-017-00133-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090257216", 
          "https://doi.org/10.1038/s41467-017-00133-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aah6442", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090396060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aah6442", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090396060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature23268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090776897", 
          "https://doi.org/10.1038/nature23268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature23268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090776897", 
          "https://doi.org/10.1038/nature23268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s1600576717011712", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091917731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.119.206401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092758628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.119.206401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092758628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.96.245115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099785784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.96.245115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099785784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.119.246401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099785785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.119.246401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099785785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.119.246402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099785787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.119.246402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099785787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.7.041069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099919470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.7.041069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099919470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.90.015001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100580273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.90.015001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100580273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aan4596", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101390768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/sciadv.aat0346", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104345574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aan2802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105703468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aao1797", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106153974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-018-06010-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106352385", 
          "https://doi.org/10.1038/s41467-018-06010-w"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.8.031069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106988531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.8.031069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106988531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.8.031070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106988532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.8.031070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106988532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.98.155145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107911156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.98.155145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107911156"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "Topological electronic materials such as bismuth selenide, tantalum arsenide and sodium bismuthide show unconventional linear response in the bulk, as well as anomalous gapless states at their boundaries. They are of both fundamental and applied interest, with the potential for use in high-performance electronics and quantum computing. But their detection has so far been hindered by the difficulty of calculating topological invariant properties (or topological nodes), which requires both experience with materials and expertise with advanced theoretical tools. Here we introduce an effective, efficient and fully automated algorithm that diagnoses the nontrivial band topology in a large fraction of nonmagnetic materials. Our algorithm is based on recently developed exhaustive mappings between the symmetry representations of occupied bands and topological invariants. We sweep through a total of 39,519 materials available in a crystal database, and find that as many as 8,056 of them are topologically nontrivial. All results are available and searchable in a database with an interactive user interface.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41586-019-0944-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7745", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "566"
      }
    ], 
    "name": "Catalogue of topological electronic materials", 
    "pagination": "475-479", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1e109071b1f5976e6e2a95747287596184f71a86a33e114cfe925a0418fc54de"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30814713"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41586-019-0944-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112388964"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41586-019-0944-6", 
      "https://app.dimensions.ai/details/publication/pub.1112388964"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000353_0000000353/records_45372_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41586-019-0944-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41586-019-0944-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41586-019-0944-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41586-019-0944-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41586-019-0944-6'


 

This table displays all metadata directly associated to this object as RDF triples.

311 TRIPLES      21 PREDICATES      89 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41586-019-0944-6 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N812cef90f4284dd0a30f34324416a190
4 schema:citation sg:pub.10.1038/nature17410
5 sg:pub.10.1038/nature23268
6 sg:pub.10.1038/ncomms1969
7 sg:pub.10.1038/ncomms8373
8 sg:pub.10.1038/nphys1270
9 sg:pub.10.1038/nphys3371
10 sg:pub.10.1038/s41467-017-00133-2
11 sg:pub.10.1038/s41467-018-06010-w
12 https://doi.org/10.1016/0927-0256(96)00008-0
13 https://doi.org/10.1016/j.commatsci.2012.10.028
14 https://doi.org/10.1016/j.scriptamat.2015.07.021
15 https://doi.org/10.1063/1.3149495
16 https://doi.org/10.1063/1.4812323
17 https://doi.org/10.1080/08893110410001664882
18 https://doi.org/10.1088/0953-8984/1/19/001
19 https://doi.org/10.1088/1367-2630/9/9/356
20 https://doi.org/10.1103/physrevb.47.558
21 https://doi.org/10.1103/physrevb.49.14251
22 https://doi.org/10.1103/physrevb.54.11169
23 https://doi.org/10.1103/physrevb.76.045302
24 https://doi.org/10.1103/physrevb.78.195125
25 https://doi.org/10.1103/physrevb.80.155131
26 https://doi.org/10.1103/physrevb.83.205101
27 https://doi.org/10.1103/physrevb.84.075119
28 https://doi.org/10.1103/physrevb.84.235126
29 https://doi.org/10.1103/physrevb.85.195320
30 https://doi.org/10.1103/physrevb.91.155120
31 https://doi.org/10.1103/physrevb.91.161105
32 https://doi.org/10.1103/physrevb.92.081201
33 https://doi.org/10.1103/physrevb.96.245115
34 https://doi.org/10.1103/physrevb.98.155145
35 https://doi.org/10.1103/physrevlett.104.106408
36 https://doi.org/10.1103/physrevlett.108.140405
37 https://doi.org/10.1103/physrevlett.110.096401
38 https://doi.org/10.1103/physrevlett.119.206401
39 https://doi.org/10.1103/physrevlett.119.246401
40 https://doi.org/10.1103/physrevlett.119.246402
41 https://doi.org/10.1103/physrevlett.95.146802
42 https://doi.org/10.1103/physrevlett.98.106803
43 https://doi.org/10.1103/physrevx.5.011029
44 https://doi.org/10.1103/physrevx.6.021008
45 https://doi.org/10.1103/physrevx.7.041069
46 https://doi.org/10.1103/physrevx.8.031069
47 https://doi.org/10.1103/physrevx.8.031070
48 https://doi.org/10.1103/revmodphys.82.3045
49 https://doi.org/10.1103/revmodphys.83.1057
50 https://doi.org/10.1103/revmodphys.88.035005
51 https://doi.org/10.1103/revmodphys.90.015001
52 https://doi.org/10.1107/s1600576717011712
53 https://doi.org/10.1126/sciadv.aat0346
54 https://doi.org/10.1126/science.1089408
55 https://doi.org/10.1126/science.1133734
56 https://doi.org/10.1126/science.1234414
57 https://doi.org/10.1126/science.1256815
58 https://doi.org/10.1126/science.aad8609
59 https://doi.org/10.1126/science.aaf5037
60 https://doi.org/10.1126/science.aah6442
61 https://doi.org/10.1126/science.aan2802
62 https://doi.org/10.1126/science.aan4596
63 https://doi.org/10.1126/science.aao1797
64 schema:datePublished 2019-02
65 schema:datePublishedReg 2019-02-01
66 schema:description Topological electronic materials such as bismuth selenide, tantalum arsenide and sodium bismuthide show unconventional linear response in the bulk, as well as anomalous gapless states at their boundaries. They are of both fundamental and applied interest, with the potential for use in high-performance electronics and quantum computing. But their detection has so far been hindered by the difficulty of calculating topological invariant properties (or topological nodes), which requires both experience with materials and expertise with advanced theoretical tools. Here we introduce an effective, efficient and fully automated algorithm that diagnoses the nontrivial band topology in a large fraction of nonmagnetic materials. Our algorithm is based on recently developed exhaustive mappings between the symmetry representations of occupied bands and topological invariants. We sweep through a total of 39,519 materials available in a crystal database, and find that as many as 8,056 of them are topologically nontrivial. All results are available and searchable in a database with an interactive user interface.
67 schema:genre research_article
68 schema:inLanguage en
69 schema:isAccessibleForFree false
70 schema:isPartOf N3ddde02a26cf46128b19fd91293c8dce
71 N4b89440d837a4618be28c983f6a9006d
72 sg:journal.1018957
73 schema:name Catalogue of topological electronic materials
74 schema:pagination 475-479
75 schema:productId N271e074a572d4d4484ed4cd7eceb0371
76 N2e0e277927be444db3ca59a8af60a90f
77 N2f62bfdfc91f4e7b87d116ea114ea04b
78 N5f01f5890e0f493d8d6eb4a82afd34b0
79 N90497b21db8a4145ae9a7a0dc554e4fd
80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112388964
81 https://doi.org/10.1038/s41586-019-0944-6
82 schema:sdDatePublished 2019-04-11T11:14
83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
84 schema:sdPublisher N19d0f24be7b043569ac542bc89cbce8f
85 schema:url https://www.nature.com/articles/s41586-019-0944-6
86 sgo:license sg:explorer/license/
87 sgo:sdDataset articles
88 rdf:type schema:ScholarlyArticle
89 N09ae150fbde84b7785a71b0ebb5adb90 rdf:first N748accdfda6543b79657b9534ceca578
90 rdf:rest Nfe46108e24094907aeb712d7ba4f41d3
91 N19d0f24be7b043569ac542bc89cbce8f schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 N1e77a61c09574499ba7b422ca73b2b79 rdf:first N69023239c5044492b36f2cae6aa56536
94 rdf:rest rdf:nil
95 N271e074a572d4d4484ed4cd7eceb0371 schema:name readcube_id
96 schema:value 1e109071b1f5976e6e2a95747287596184f71a86a33e114cfe925a0418fc54de
97 rdf:type schema:PropertyValue
98 N2c14733ce3864c05ba51620ab5b8f276 rdf:first N731e4879548243d7b40e995eac978c98
99 rdf:rest N70ed027bf75e4b9389289349fa085cd5
100 N2e0e277927be444db3ca59a8af60a90f schema:name nlm_unique_id
101 schema:value 0410462
102 rdf:type schema:PropertyValue
103 N2f62bfdfc91f4e7b87d116ea114ea04b schema:name pubmed_id
104 schema:value 30814713
105 rdf:type schema:PropertyValue
106 N3172f6286d804ee1b063f8408f9261af schema:affiliation https://www.grid.ac/institutes/grid.9227.e
107 schema:familyName Weng
108 schema:givenName Hongming
109 rdf:type schema:Person
110 N3c6ab0f1eb3244138cfb712d844564f8 rdf:first N3172f6286d804ee1b063f8408f9261af
111 rdf:rest N1e77a61c09574499ba7b422ca73b2b79
112 N3ddde02a26cf46128b19fd91293c8dce schema:volumeNumber 566
113 rdf:type schema:PublicationVolume
114 N4b89440d837a4618be28c983f6a9006d schema:issueNumber 7745
115 rdf:type schema:PublicationIssue
116 N5f01f5890e0f493d8d6eb4a82afd34b0 schema:name doi
117 schema:value 10.1038/s41586-019-0944-6
118 rdf:type schema:PropertyValue
119 N69023239c5044492b36f2cae6aa56536 schema:affiliation https://www.grid.ac/institutes/grid.9227.e
120 schema:familyName Fang
121 schema:givenName Chen
122 rdf:type schema:Person
123 N70ed027bf75e4b9389289349fa085cd5 rdf:first Nd503c7869e6342168e27459e85d03919
124 rdf:rest Ncde586b40a864582b31517398bca567b
125 N731e4879548243d7b40e995eac978c98 schema:affiliation https://www.grid.ac/institutes/grid.410726.6
126 schema:familyName Jiang
127 schema:givenName Yi
128 rdf:type schema:Person
129 N748accdfda6543b79657b9534ceca578 schema:affiliation https://www.grid.ac/institutes/grid.433146.7
130 schema:familyName He
131 schema:givenName Yuqing
132 rdf:type schema:Person
133 N812cef90f4284dd0a30f34324416a190 rdf:first Nde9a071888974dbebcc20c7d383ccbd8
134 rdf:rest N2c14733ce3864c05ba51620ab5b8f276
135 N90497b21db8a4145ae9a7a0dc554e4fd schema:name dimensions_id
136 schema:value pub.1112388964
137 rdf:type schema:PropertyValue
138 Na3a3d96a91f642d6854545e0270b675d schema:affiliation https://www.grid.ac/institutes/grid.9227.e
139 schema:familyName Fang
140 schema:givenName Zhong
141 rdf:type schema:Person
142 Ncde586b40a864582b31517398bca567b rdf:first Nfa0eb9dfd805432aa7c2b291f6523dea
143 rdf:rest N09ae150fbde84b7785a71b0ebb5adb90
144 Nd503c7869e6342168e27459e85d03919 schema:affiliation https://www.grid.ac/institutes/grid.410726.6
145 schema:familyName Song
146 schema:givenName Zhida
147 rdf:type schema:Person
148 Nde9a071888974dbebcc20c7d383ccbd8 schema:affiliation https://www.grid.ac/institutes/grid.410726.6
149 schema:familyName Zhang
150 schema:givenName Tiantian
151 rdf:type schema:Person
152 Nfa0eb9dfd805432aa7c2b291f6523dea schema:affiliation https://www.grid.ac/institutes/grid.433146.7
153 schema:familyName Huang
154 schema:givenName He
155 rdf:type schema:Person
156 Nfe46108e24094907aeb712d7ba4f41d3 rdf:first Na3a3d96a91f642d6854545e0270b675d
157 rdf:rest N3c6ab0f1eb3244138cfb712d844564f8
158 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
159 schema:name Engineering
160 rdf:type schema:DefinedTerm
161 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
162 schema:name Materials Engineering
163 rdf:type schema:DefinedTerm
164 sg:journal.1018957 schema:issn 0090-0028
165 1476-4687
166 schema:name Nature
167 rdf:type schema:Periodical
168 sg:pub.10.1038/nature17410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006494425
169 https://doi.org/10.1038/nature17410
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/nature23268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090776897
172 https://doi.org/10.1038/nature23268
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/ncomms1969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048813040
175 https://doi.org/10.1038/ncomms1969
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/ncomms8373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032808151
178 https://doi.org/10.1038/ncomms8373
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/nphys1270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036898094
181 https://doi.org/10.1038/nphys1270
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/nphys3371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052859415
184 https://doi.org/10.1038/nphys3371
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/s41467-017-00133-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090257216
187 https://doi.org/10.1038/s41467-017-00133-2
188 rdf:type schema:CreativeWork
189 sg:pub.10.1038/s41467-018-06010-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1106352385
190 https://doi.org/10.1038/s41467-018-06010-w
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/0927-0256(96)00008-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008708156
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/j.commatsci.2012.10.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001839014
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/j.scriptamat.2015.07.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052222149
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1063/1.3149495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045986733
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1063/1.4812323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027518534
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1080/08893110410001664882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018140490
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1088/0953-8984/1/19/001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035146267
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1088/1367-2630/9/9/356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030480828
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1103/physrevb.47.558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060566310
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1103/physrevb.49.14251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060570025
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1103/physrevb.54.11169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060581262
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1103/physrevb.76.045302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031979890
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1103/physrevb.78.195125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011668608
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1103/physrevb.80.155131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000667695
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1103/physrevb.83.205101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025277884
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1103/physrevb.84.075119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030859492
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1103/physrevb.84.235126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025189498
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1103/physrevb.85.195320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023105171
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1103/physrevb.91.155120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006881383
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1103/physrevb.91.161105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045334680
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1103/physrevb.92.081201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018650738
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1103/physrevb.96.245115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099785784
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1103/physrevb.98.155145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107911156
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1103/physrevlett.104.106408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048994950
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1103/physrevlett.108.140405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008952392
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1103/physrevlett.110.096401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040169078
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1103/physrevlett.119.206401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092758628
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1103/physrevlett.119.246401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099785785
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1103/physrevlett.119.246402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099785787
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1103/physrevlett.95.146802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042249380
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1103/physrevlett.98.106803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003001378
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1103/physrevx.5.011029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034242879
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1103/physrevx.6.021008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042203885
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1103/physrevx.7.041069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099919470
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1103/physrevx.8.031069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106988531
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1103/physrevx.8.031070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106988532
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1103/revmodphys.82.3045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004083979
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1103/revmodphys.83.1057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045115933
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1103/revmodphys.88.035005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839811
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1103/revmodphys.90.015001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100580273
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1107/s1600576717011712 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091917731
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1126/sciadv.aat0346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104345574
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1126/science.1089408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062448546
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1126/science.1133734 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030957871
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1126/science.1234414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006904305
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1126/science.1256815 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048460404
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1126/science.aad8609 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023598820
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1126/science.aaf5037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052574938
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1126/science.aah6442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090396060
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1126/science.aan2802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105703468
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1126/science.aan4596 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101390768
293 rdf:type schema:CreativeWork
294 https://doi.org/10.1126/science.aao1797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106153974
295 rdf:type schema:CreativeWork
296 https://www.grid.ac/institutes/grid.410726.6 schema:alternateName University of Chinese Academy of Sciences
297 schema:name Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
298 University of Chinese Academy of Sciences, Beijing, China
299 rdf:type schema:Organization
300 https://www.grid.ac/institutes/grid.433146.7 schema:alternateName Computer Network Information Center
301 schema:name Computer Network Information Center, Chinese Academy of Sciences, Beijing, China
302 University of Chinese Academy of Sciences, Beijing, China
303 rdf:type schema:Organization
304 https://www.grid.ac/institutes/grid.9227.e schema:alternateName Chinese Academy of Sciences
305 schema:name Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
306 CAS Centre for Excellence in Topological Quantum Computation, Beijing, China
307 Collaborative Innovation Center of Quantum Matter, Beijing, China
308 Kavli Institute for Theoretical Sciences, Chinese Academy of Sciences, Beijing, China
309 Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing, China
310 Songshan Lake Materials Laboratory, Dongguan, China
311 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...