Quantum Hall effect based on Weyl orbits in Cd3As2 View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12-17

AUTHORS

Cheng Zhang, Yi Zhang, Xiang Yuan, Shiheng Lu, Jinglei Zhang, Awadhesh Narayan, Yanwen Liu, Huiqin Zhang, Zhuoliang Ni, Ran Liu, Eun Sang Choi, Alexey Suslov, Stefano Sanvito, Li Pi, Hai-Zhou Lu, Andrew C. Potter, Faxian Xiu

ABSTRACT

Discovered decades ago, the quantum Hall effect remains one of the most studied phenomena in condensed matter physics and is relevant for research areas such as topological phases, strong electron correlations and quantum computing1–5. The quantized electron transport that is characteristic of the quantum Hall effect typically originates from chiral edge states—ballistic conducting channels that emerge when two-dimensional electron systems are subjected to large magnetic fields2. However, whether the quantum Hall effect can be extended to higher dimensions without simply stacking two-dimensional systems is unknown. Here we report evidence of a new type of quantum Hall effect, based on Weyl orbits in nanostructures of the three-dimensional topological semimetal Cd3As2. The Weyl orbits consist of Fermi arcs (open arc-like surface states) on opposite surfaces of the sample connected by one-dimensional chiral Landau levels along the magnetic field through the bulk6,7. This transport through the bulk results in an additional contribution (compared to stacked two-dimensional systems and which depends on the sample thickness) to the quantum phase of the Weyl orbit. Consequently, chiral states can emerge even in the bulk. To measure these quantum phase shifts and search for the associated chiral modes in the bulk, we conduct transport experiments using wedge-shaped Cd3As2 nanostructures with variable thickness. We find that the quantum Hall transport is strongly modulated by the sample thickness. The dependence of the Landau levels on the magnitude and direction of the magnetic field and on the sample thickness agrees with theoretical predictions based on the modified Lifshitz–Onsager relation for the Weyl orbits. Nanostructures of topological semimetals thus provide a way of exploring quantum Hall physics in three-dimensional materials with enhanced tunability. More... »

PAGES

331-336

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41586-018-0798-3

DOI

http://dx.doi.org/10.1038/s41586-018-0798-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110584126

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30559378


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Collaborative Innovation Center of Advanced Microstructures, Nanjing, China", 
          "id": "http://www.grid.ac/institutes/grid.509497.6", 
          "name": [
            "State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, China", 
            "Collaborative Innovation Center of Advanced Microstructures, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Cheng", 
        "id": "sg:person.01102457727.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01102457727.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Cornell University, Ithaca, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Department of Physics, Cornell University, Ithaca, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Yi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Collaborative Innovation Center of Advanced Microstructures, Nanjing, China", 
          "id": "http://www.grid.ac/institutes/grid.509497.6", 
          "name": [
            "State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, China", 
            "Collaborative Innovation Center of Advanced Microstructures, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yuan", 
        "givenName": "Xiang", 
        "id": "sg:person.01315541377.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315541377.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Collaborative Innovation Center of Advanced Microstructures, Nanjing, China", 
          "id": "http://www.grid.ac/institutes/grid.509497.6", 
          "name": [
            "State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, China", 
            "Collaborative Innovation Center of Advanced Microstructures, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Shiheng", 
        "id": "sg:person.016424713235.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016424713235.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of the Chinese Academy of Sciences, Hefei, China", 
          "id": "http://www.grid.ac/institutes/grid.467854.c", 
          "name": [
            "Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of the Chinese Academy of Sciences, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Jinglei", 
        "id": "sg:person.0713171416.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713171416.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Materials Theory, ETH Zurich, Zurich, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "Materials Theory, ETH Zurich, Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Narayan", 
        "givenName": "Awadhesh", 
        "id": "sg:person.015441771552.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015441771552.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Collaborative Innovation Center of Advanced Microstructures, Nanjing, China", 
          "id": "http://www.grid.ac/institutes/grid.509497.6", 
          "name": [
            "State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, China", 
            "Collaborative Innovation Center of Advanced Microstructures, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Yanwen", 
        "id": "sg:person.01371365542.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371365542.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Collaborative Innovation Center of Advanced Microstructures, Nanjing, China", 
          "id": "http://www.grid.ac/institutes/grid.509497.6", 
          "name": [
            "State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, China", 
            "Collaborative Innovation Center of Advanced Microstructures, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Huiqin", 
        "id": "sg:person.011512060077.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011512060077.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Collaborative Innovation Center of Advanced Microstructures, Nanjing, China", 
          "id": "http://www.grid.ac/institutes/grid.509497.6", 
          "name": [
            "State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, China", 
            "Collaborative Innovation Center of Advanced Microstructures, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ni", 
        "givenName": "Zhuoliang", 
        "id": "sg:person.015002756111.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015002756111.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Collaborative Innovation Center of Advanced Microstructures, Nanjing, China", 
          "id": "http://www.grid.ac/institutes/grid.509497.6", 
          "name": [
            "State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, China", 
            "Collaborative Innovation Center of Advanced Microstructures, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Ran", 
        "id": "sg:person.015356533767.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015356533767.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National High Magnetic Field Laboratory, Tallahassee, FL, USA", 
          "id": "http://www.grid.ac/institutes/grid.481548.4", 
          "name": [
            "National High Magnetic Field Laboratory, Tallahassee, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choi", 
        "givenName": "Eun Sang", 
        "id": "sg:person.0635107016.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635107016.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National High Magnetic Field Laboratory, Tallahassee, FL, USA", 
          "id": "http://www.grid.ac/institutes/grid.481548.4", 
          "name": [
            "National High Magnetic Field Laboratory, Tallahassee, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suslov", 
        "givenName": "Alexey", 
        "id": "sg:person.0722751424.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722751424.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Physics and CRANN Institute, Trinity College, Dublin, Ireland", 
          "id": "http://www.grid.ac/institutes/grid.8217.c", 
          "name": [
            "School of Physics and CRANN Institute, Trinity College, Dublin, Ireland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sanvito", 
        "givenName": "Stefano", 
        "id": "sg:person.0603257451.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603257451.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of the Chinese Academy of Sciences, Hefei, China", 
          "id": "http://www.grid.ac/institutes/grid.467854.c", 
          "name": [
            "Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of the Chinese Academy of Sciences, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pi", 
        "givenName": "Li", 
        "id": "sg:person.01065252511.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065252511.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shenzhen Key Laboratory of Quantum Science and Engineering, Shenzhen, China", 
          "id": "http://www.grid.ac/institutes/grid.263817.9", 
          "name": [
            "Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen, China", 
            "Shenzhen Key Laboratory of Quantum Science and Engineering, Shenzhen, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Hai-Zhou", 
        "id": "sg:person.0611467470.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611467470.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, The University of Texas at Austin, Austin, TX, USA", 
          "id": "http://www.grid.ac/institutes/grid.89336.37", 
          "name": [
            "Department of Physics, The University of Texas at Austin, Austin, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Potter", 
        "givenName": "Andrew C.", 
        "id": "sg:person.01315147434.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315147434.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.8547.e", 
          "name": [
            "State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, China", 
            "Collaborative Innovation Center of Advanced Microstructures, Nanjing, China", 
            "Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xiu", 
        "givenName": "Faxian", 
        "id": "sg:person.0624003041.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624003041.67"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature18276", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041418715", 
          "https://doi.org/10.1038/nature18276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3990", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002373186", 
          "https://doi.org/10.1038/nmat3990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037502472", 
          "https://doi.org/10.1038/nphys1689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms13741", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038534142", 
          "https://doi.org/10.1038/ncomms13741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms4786", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004886457", 
          "https://doi.org/10.1038/ncomms4786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep23741", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019978787", 
          "https://doi.org/10.1038/srep23741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms12516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023629303", 
          "https://doi.org/10.1038/ncomms12516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-017-01438-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092429225", 
          "https://doi.org/10.1038/s41467-017-01438-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-017-02423-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099864873", 
          "https://doi.org/10.1038/s41467-017-02423-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms6161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000431298", 
          "https://doi.org/10.1038/ncomms6161"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12-17", 
    "datePublishedReg": "2018-12-17", 
    "description": "Discovered decades ago, the quantum Hall effect remains one of the most studied phenomena in condensed matter physics and is relevant for research areas such as topological phases, strong electron correlations and quantum computing1\u20135. The quantized electron transport that is characteristic of the quantum Hall effect typically originates from chiral edge states\u2014ballistic conducting channels that emerge when two-dimensional electron systems are subjected to large magnetic fields2. However, whether the quantum Hall effect can be extended to higher dimensions without simply stacking two-dimensional systems is unknown. Here we report evidence of a new type of quantum Hall effect, based on Weyl orbits in nanostructures of the three-dimensional topological semimetal Cd3As2. The Weyl orbits consist of Fermi arcs (open arc-like surface states) on opposite surfaces of the sample connected by one-dimensional chiral Landau levels along the magnetic field through the bulk6,7. This transport through the bulk results in an additional contribution (compared to stacked two-dimensional systems and which depends on the sample thickness) to the quantum phase of the Weyl orbit. Consequently, chiral states can emerge even in the bulk. To measure these quantum phase shifts and search for the associated chiral modes in the bulk, we conduct transport experiments using wedge-shaped Cd3As2 nanostructures with variable thickness. We find that the quantum Hall transport is strongly modulated by the sample thickness. The dependence of the Landau levels on the magnitude and direction of the magnetic field and on the sample thickness agrees with theoretical predictions based on the modified Lifshitz\u2013Onsager relation for the Weyl orbits. Nanostructures of topological semimetals thus provide a way of exploring quantum Hall physics in three-dimensional materials with enhanced tunability.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41586-018-0798-3", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6933299", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7739", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "565"
      }
    ], 
    "keywords": [
      "quantum Hall effect", 
      "Hall effect", 
      "Weyl orbits", 
      "Landau levels", 
      "magnetic field", 
      "two-dimensional electron system", 
      "quantum Hall physics", 
      "quantum phase shift", 
      "quantum Hall transport", 
      "strong electron correlations", 
      "chiral Landau levels", 
      "sample thickness", 
      "Hall physics", 
      "quantum phases", 
      "two-dimensional systems", 
      "matter physics", 
      "Fermi arcs", 
      "topological semimetals", 
      "electron systems", 
      "topological phases", 
      "Hall transport", 
      "electron correlation", 
      "chiral modes", 
      "chiral states", 
      "three-dimensional materials", 
      "phase shift", 
      "enhanced tunability", 
      "conducting channels", 
      "electron transport", 
      "theoretical predictions", 
      "Cd3As2", 
      "bulk results", 
      "transport experiments", 
      "orbit", 
      "nanostructures", 
      "physics", 
      "opposite surface", 
      "additional contribution", 
      "semimetals", 
      "tunability", 
      "bulk", 
      "field", 
      "thickness", 
      "new type", 
      "transport", 
      "variable thickness", 
      "studied phenomena", 
      "dependence", 
      "phase", 
      "higher dimensions", 
      "mode", 
      "shift", 
      "surface", 
      "state", 
      "magnitude", 
      "phenomenon", 
      "arc", 
      "channels", 
      "experiments", 
      "direction", 
      "effect", 
      "system", 
      "materials", 
      "contribution", 
      "prediction", 
      "samples", 
      "dimensions", 
      "correlation", 
      "research area", 
      "results", 
      "relation", 
      "way", 
      "levels", 
      "types", 
      "decades", 
      "evidence", 
      "area"
    ], 
    "name": "Quantum Hall effect based on Weyl orbits in Cd3As2", 
    "pagination": "331-336", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110584126"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41586-018-0798-3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30559378"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41586-018-0798-3", 
      "https://app.dimensions.ai/details/publication/pub.1110584126"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_769.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41586-018-0798-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41586-018-0798-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41586-018-0798-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41586-018-0798-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41586-018-0798-3'


 

This table displays all metadata directly associated to this object as RDF triples.

323 TRIPLES      21 PREDICATES      113 URIs      94 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41586-018-0798-3 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 anzsrc-for:0204
4 schema:author N3b018f535ec84d309a4e5120208af0fa
5 schema:citation sg:pub.10.1038/nature18276
6 sg:pub.10.1038/ncomms12516
7 sg:pub.10.1038/ncomms13741
8 sg:pub.10.1038/ncomms4786
9 sg:pub.10.1038/ncomms6161
10 sg:pub.10.1038/nmat3990
11 sg:pub.10.1038/nphys1689
12 sg:pub.10.1038/s41467-017-01438-y
13 sg:pub.10.1038/s41467-017-02423-1
14 sg:pub.10.1038/srep23741
15 schema:datePublished 2018-12-17
16 schema:datePublishedReg 2018-12-17
17 schema:description Discovered decades ago, the quantum Hall effect remains one of the most studied phenomena in condensed matter physics and is relevant for research areas such as topological phases, strong electron correlations and quantum computing1–5. The quantized electron transport that is characteristic of the quantum Hall effect typically originates from chiral edge states—ballistic conducting channels that emerge when two-dimensional electron systems are subjected to large magnetic fields2. However, whether the quantum Hall effect can be extended to higher dimensions without simply stacking two-dimensional systems is unknown. Here we report evidence of a new type of quantum Hall effect, based on Weyl orbits in nanostructures of the three-dimensional topological semimetal Cd3As2. The Weyl orbits consist of Fermi arcs (open arc-like surface states) on opposite surfaces of the sample connected by one-dimensional chiral Landau levels along the magnetic field through the bulk6,7. This transport through the bulk results in an additional contribution (compared to stacked two-dimensional systems and which depends on the sample thickness) to the quantum phase of the Weyl orbit. Consequently, chiral states can emerge even in the bulk. To measure these quantum phase shifts and search for the associated chiral modes in the bulk, we conduct transport experiments using wedge-shaped Cd3As2 nanostructures with variable thickness. We find that the quantum Hall transport is strongly modulated by the sample thickness. The dependence of the Landau levels on the magnitude and direction of the magnetic field and on the sample thickness agrees with theoretical predictions based on the modified Lifshitz–Onsager relation for the Weyl orbits. Nanostructures of topological semimetals thus provide a way of exploring quantum Hall physics in three-dimensional materials with enhanced tunability.
18 schema:genre article
19 schema:isAccessibleForFree false
20 schema:isPartOf N09a6c3a7f16c4084ae614a66402a589b
21 N8e004d53d4a741e6b9d5a87403d60657
22 sg:journal.1018957
23 schema:keywords Cd3As2
24 Fermi arcs
25 Hall effect
26 Hall physics
27 Hall transport
28 Landau levels
29 Weyl orbits
30 additional contribution
31 arc
32 area
33 bulk
34 bulk results
35 channels
36 chiral Landau levels
37 chiral modes
38 chiral states
39 conducting channels
40 contribution
41 correlation
42 decades
43 dependence
44 dimensions
45 direction
46 effect
47 electron correlation
48 electron systems
49 electron transport
50 enhanced tunability
51 evidence
52 experiments
53 field
54 higher dimensions
55 levels
56 magnetic field
57 magnitude
58 materials
59 matter physics
60 mode
61 nanostructures
62 new type
63 opposite surface
64 orbit
65 phase
66 phase shift
67 phenomenon
68 physics
69 prediction
70 quantum Hall effect
71 quantum Hall physics
72 quantum Hall transport
73 quantum phase shift
74 quantum phases
75 relation
76 research area
77 results
78 sample thickness
79 samples
80 semimetals
81 shift
82 state
83 strong electron correlations
84 studied phenomena
85 surface
86 system
87 theoretical predictions
88 thickness
89 three-dimensional materials
90 topological phases
91 topological semimetals
92 transport
93 transport experiments
94 tunability
95 two-dimensional electron system
96 two-dimensional systems
97 types
98 variable thickness
99 way
100 schema:name Quantum Hall effect based on Weyl orbits in Cd3As2
101 schema:pagination 331-336
102 schema:productId N78de04f1fc7247a6b8bc823ce43932d4
103 Ne6535ff28fb7419080813c958704e6d1
104 Nfebe9b6465404abc90f77a0cdc5a63f6
105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110584126
106 https://doi.org/10.1038/s41586-018-0798-3
107 schema:sdDatePublished 2022-10-01T06:44
108 schema:sdLicense https://scigraph.springernature.com/explorer/license/
109 schema:sdPublisher N3e3c963597804d7ba7fef6db3b4f4768
110 schema:url https://doi.org/10.1038/s41586-018-0798-3
111 sgo:license sg:explorer/license/
112 sgo:sdDataset articles
113 rdf:type schema:ScholarlyArticle
114 N09a6c3a7f16c4084ae614a66402a589b schema:issueNumber 7739
115 rdf:type schema:PublicationIssue
116 N0b2262d447f74df6a5f9bc22d1324e02 rdf:first sg:person.015441771552.21
117 rdf:rest N19d8f6a928c5414787139145f20b815f
118 N19d8f6a928c5414787139145f20b815f rdf:first sg:person.01371365542.63
119 rdf:rest N6619fba74bac4336961669dd40d0a4a3
120 N3381289c43164d2bb431775c0feccf24 rdf:first sg:person.0713171416.05
121 rdf:rest N0b2262d447f74df6a5f9bc22d1324e02
122 N3563f4391a6c4dec9e405f4ea7a309ae rdf:first sg:person.01315147434.34
123 rdf:rest N6f9742e1235f43c7a659ef9c5f086079
124 N3904ff3921eb4ec98555c258f8e90729 rdf:first N6188cdca7ffa4a0ba6bee966e17da3f8
125 rdf:rest Nbdcd18a37bbf4a8380aa0074a3fd1245
126 N3b018f535ec84d309a4e5120208af0fa rdf:first sg:person.01102457727.13
127 rdf:rest N3904ff3921eb4ec98555c258f8e90729
128 N3e3c963597804d7ba7fef6db3b4f4768 schema:name Springer Nature - SN SciGraph project
129 rdf:type schema:Organization
130 N4d5c859cbf8349d2ba177057a208eaa9 rdf:first sg:person.0603257451.47
131 rdf:rest N5fe300bb9a8a4cf7848a0b992358ad8a
132 N501a140fd7ac431b8bcdd17b1c7f60fc rdf:first sg:person.015356533767.30
133 rdf:rest Nc8dbd7be7a73471f98f1af53108e47b4
134 N5fe300bb9a8a4cf7848a0b992358ad8a rdf:first sg:person.01065252511.17
135 rdf:rest Nb9c5af4f50e247a5a449c9b8f2e62b82
136 N6188cdca7ffa4a0ba6bee966e17da3f8 schema:affiliation grid-institutes:grid.5386.8
137 schema:familyName Zhang
138 schema:givenName Yi
139 rdf:type schema:Person
140 N66045c7c094c4ec3acef2666ca5ddcef rdf:first sg:person.0722751424.39
141 rdf:rest N4d5c859cbf8349d2ba177057a208eaa9
142 N6619fba74bac4336961669dd40d0a4a3 rdf:first sg:person.011512060077.42
143 rdf:rest N80eabafaff36439991d340c3b9ef30f7
144 N6f9742e1235f43c7a659ef9c5f086079 rdf:first sg:person.0624003041.67
145 rdf:rest rdf:nil
146 N78de04f1fc7247a6b8bc823ce43932d4 schema:name dimensions_id
147 schema:value pub.1110584126
148 rdf:type schema:PropertyValue
149 N80eabafaff36439991d340c3b9ef30f7 rdf:first sg:person.015002756111.21
150 rdf:rest N501a140fd7ac431b8bcdd17b1c7f60fc
151 N8e004d53d4a741e6b9d5a87403d60657 schema:volumeNumber 565
152 rdf:type schema:PublicationVolume
153 Nb9c5af4f50e247a5a449c9b8f2e62b82 rdf:first sg:person.0611467470.52
154 rdf:rest N3563f4391a6c4dec9e405f4ea7a309ae
155 Nbdcd18a37bbf4a8380aa0074a3fd1245 rdf:first sg:person.01315541377.13
156 rdf:rest Nc629c88170cf4adab8b713570dc3bc0a
157 Nc629c88170cf4adab8b713570dc3bc0a rdf:first sg:person.016424713235.15
158 rdf:rest N3381289c43164d2bb431775c0feccf24
159 Nc8dbd7be7a73471f98f1af53108e47b4 rdf:first sg:person.0635107016.86
160 rdf:rest N66045c7c094c4ec3acef2666ca5ddcef
161 Ne6535ff28fb7419080813c958704e6d1 schema:name pubmed_id
162 schema:value 30559378
163 rdf:type schema:PropertyValue
164 Nfebe9b6465404abc90f77a0cdc5a63f6 schema:name doi
165 schema:value 10.1038/s41586-018-0798-3
166 rdf:type schema:PropertyValue
167 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
168 schema:name Physical Sciences
169 rdf:type schema:DefinedTerm
170 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
171 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
172 rdf:type schema:DefinedTerm
173 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
174 schema:name Condensed Matter Physics
175 rdf:type schema:DefinedTerm
176 sg:grant.6933299 http://pending.schema.org/fundedItem sg:pub.10.1038/s41586-018-0798-3
177 rdf:type schema:MonetaryGrant
178 sg:journal.1018957 schema:issn 0028-0836
179 1476-4687
180 schema:name Nature
181 schema:publisher Springer Nature
182 rdf:type schema:Periodical
183 sg:person.01065252511.17 schema:affiliation grid-institutes:grid.467854.c
184 schema:familyName Pi
185 schema:givenName Li
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065252511.17
187 rdf:type schema:Person
188 sg:person.01102457727.13 schema:affiliation grid-institutes:grid.509497.6
189 schema:familyName Zhang
190 schema:givenName Cheng
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01102457727.13
192 rdf:type schema:Person
193 sg:person.011512060077.42 schema:affiliation grid-institutes:grid.509497.6
194 schema:familyName Zhang
195 schema:givenName Huiqin
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011512060077.42
197 rdf:type schema:Person
198 sg:person.01315147434.34 schema:affiliation grid-institutes:grid.89336.37
199 schema:familyName Potter
200 schema:givenName Andrew C.
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315147434.34
202 rdf:type schema:Person
203 sg:person.01315541377.13 schema:affiliation grid-institutes:grid.509497.6
204 schema:familyName Yuan
205 schema:givenName Xiang
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315541377.13
207 rdf:type schema:Person
208 sg:person.01371365542.63 schema:affiliation grid-institutes:grid.509497.6
209 schema:familyName Liu
210 schema:givenName Yanwen
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371365542.63
212 rdf:type schema:Person
213 sg:person.015002756111.21 schema:affiliation grid-institutes:grid.509497.6
214 schema:familyName Ni
215 schema:givenName Zhuoliang
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015002756111.21
217 rdf:type schema:Person
218 sg:person.015356533767.30 schema:affiliation grid-institutes:grid.509497.6
219 schema:familyName Liu
220 schema:givenName Ran
221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015356533767.30
222 rdf:type schema:Person
223 sg:person.015441771552.21 schema:affiliation grid-institutes:grid.5801.c
224 schema:familyName Narayan
225 schema:givenName Awadhesh
226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015441771552.21
227 rdf:type schema:Person
228 sg:person.016424713235.15 schema:affiliation grid-institutes:grid.509497.6
229 schema:familyName Lu
230 schema:givenName Shiheng
231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016424713235.15
232 rdf:type schema:Person
233 sg:person.0603257451.47 schema:affiliation grid-institutes:grid.8217.c
234 schema:familyName Sanvito
235 schema:givenName Stefano
236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603257451.47
237 rdf:type schema:Person
238 sg:person.0611467470.52 schema:affiliation grid-institutes:grid.263817.9
239 schema:familyName Lu
240 schema:givenName Hai-Zhou
241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611467470.52
242 rdf:type schema:Person
243 sg:person.0624003041.67 schema:affiliation grid-institutes:grid.8547.e
244 schema:familyName Xiu
245 schema:givenName Faxian
246 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624003041.67
247 rdf:type schema:Person
248 sg:person.0635107016.86 schema:affiliation grid-institutes:grid.481548.4
249 schema:familyName Choi
250 schema:givenName Eun Sang
251 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635107016.86
252 rdf:type schema:Person
253 sg:person.0713171416.05 schema:affiliation grid-institutes:grid.467854.c
254 schema:familyName Zhang
255 schema:givenName Jinglei
256 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713171416.05
257 rdf:type schema:Person
258 sg:person.0722751424.39 schema:affiliation grid-institutes:grid.481548.4
259 schema:familyName Suslov
260 schema:givenName Alexey
261 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722751424.39
262 rdf:type schema:Person
263 sg:pub.10.1038/nature18276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041418715
264 https://doi.org/10.1038/nature18276
265 rdf:type schema:CreativeWork
266 sg:pub.10.1038/ncomms12516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023629303
267 https://doi.org/10.1038/ncomms12516
268 rdf:type schema:CreativeWork
269 sg:pub.10.1038/ncomms13741 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038534142
270 https://doi.org/10.1038/ncomms13741
271 rdf:type schema:CreativeWork
272 sg:pub.10.1038/ncomms4786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004886457
273 https://doi.org/10.1038/ncomms4786
274 rdf:type schema:CreativeWork
275 sg:pub.10.1038/ncomms6161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000431298
276 https://doi.org/10.1038/ncomms6161
277 rdf:type schema:CreativeWork
278 sg:pub.10.1038/nmat3990 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002373186
279 https://doi.org/10.1038/nmat3990
280 rdf:type schema:CreativeWork
281 sg:pub.10.1038/nphys1689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037502472
282 https://doi.org/10.1038/nphys1689
283 rdf:type schema:CreativeWork
284 sg:pub.10.1038/s41467-017-01438-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1092429225
285 https://doi.org/10.1038/s41467-017-01438-y
286 rdf:type schema:CreativeWork
287 sg:pub.10.1038/s41467-017-02423-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099864873
288 https://doi.org/10.1038/s41467-017-02423-1
289 rdf:type schema:CreativeWork
290 sg:pub.10.1038/srep23741 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019978787
291 https://doi.org/10.1038/srep23741
292 rdf:type schema:CreativeWork
293 grid-institutes:grid.263817.9 schema:alternateName Shenzhen Key Laboratory of Quantum Science and Engineering, Shenzhen, China
294 schema:name Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen, China
295 Shenzhen Key Laboratory of Quantum Science and Engineering, Shenzhen, China
296 rdf:type schema:Organization
297 grid-institutes:grid.467854.c schema:alternateName Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of the Chinese Academy of Sciences, Hefei, China
298 schema:name Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of the Chinese Academy of Sciences, Hefei, China
299 rdf:type schema:Organization
300 grid-institutes:grid.481548.4 schema:alternateName National High Magnetic Field Laboratory, Tallahassee, FL, USA
301 schema:name National High Magnetic Field Laboratory, Tallahassee, FL, USA
302 rdf:type schema:Organization
303 grid-institutes:grid.509497.6 schema:alternateName Collaborative Innovation Center of Advanced Microstructures, Nanjing, China
304 schema:name Collaborative Innovation Center of Advanced Microstructures, Nanjing, China
305 State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, China
306 rdf:type schema:Organization
307 grid-institutes:grid.5386.8 schema:alternateName Department of Physics, Cornell University, Ithaca, NY, USA
308 schema:name Department of Physics, Cornell University, Ithaca, NY, USA
309 rdf:type schema:Organization
310 grid-institutes:grid.5801.c schema:alternateName Materials Theory, ETH Zurich, Zurich, Switzerland
311 schema:name Materials Theory, ETH Zurich, Zurich, Switzerland
312 rdf:type schema:Organization
313 grid-institutes:grid.8217.c schema:alternateName School of Physics and CRANN Institute, Trinity College, Dublin, Ireland
314 schema:name School of Physics and CRANN Institute, Trinity College, Dublin, Ireland
315 rdf:type schema:Organization
316 grid-institutes:grid.8547.e schema:alternateName Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai, China
317 schema:name Collaborative Innovation Center of Advanced Microstructures, Nanjing, China
318 Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai, China
319 State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, China
320 rdf:type schema:Organization
321 grid-institutes:grid.89336.37 schema:alternateName Department of Physics, The University of Texas at Austin, Austin, TX, USA
322 schema:name Department of Physics, The University of Texas at Austin, Austin, TX, USA
323 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...