Electric-field-tuned topological phase transition in ultrathin Na3Bi View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

James L. Collins, Anton Tadich, Weikang Wu, Lidia C. Gomes, Joao N. B. Rodrigues, Chang Liu, Jack Hellerstedt, Hyejin Ryu, Shujie Tang, Sung-Kwan Mo, Shaffique Adam, Shengyuan A. Yang, Michael S. Fuhrer, Mark T. Edmonds

ABSTRACT

The electric-field-induced quantum phase transition from topological to conventional insulator has been proposed as the basis of a topological field effect transistor1-4. In this scheme, 'on' is the ballistic flow of charge and spin along dissipationless edges of a two-dimensional quantum spin Hall insulator5-9, and 'off' is produced by applying an electric field that converts the exotic insulator to a conventional insulator with no conductive channels. Such a topological transistor is promising for low-energy logic circuits4, which would necessitate electric-field-switched materials with conventional and topological bandgaps much greater than the thermal energy at room temperature, substantially greater than proposed so far6-8. Topological Dirac semimetals are promising systems in which to look for topological field-effect switching, as they lie at the boundary between conventional and topological phases3,10-16. Here we use scanning tunnelling microscopy and spectroscopy and angle-resolved photoelectron spectroscopy to show that mono- and bilayer films of the topological Dirac semimetal3,17 Na3Bi are two-dimensional topological insulators with bulk bandgaps greater than 300 millielectronvolts owing to quantum confinement in the absence of electric field. On application of electric field by doping with potassium or by close approach of the scanning tunnelling microscope tip, the Stark effect completely closes the bandgap and re-opens it as a conventional gap of 90 millielectronvolts. The large bandgaps in both the conventional and quantum spin Hall phases, much greater than the thermal energy at room temperature (25 millielectronvolts), suggest that ultrathin Na3Bi is suitable for room-temperature topological transistor operation. More... »

PAGES

390-394

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41586-018-0788-5

DOI

http://dx.doi.org/10.1038/s41586-018-0788-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110423611

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30532002


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Monash University", 
          "id": "https://www.grid.ac/institutes/grid.1002.3", 
          "name": [
            "School of Physics and Astronomy, Monash University, Clayton, Victoria, Australia", 
            "Monash Centre for Atomically Thin Materials, Monash University, Clayton, Victoria, Australia", 
            "ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Clayton, Victoria, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Collins", 
        "givenName": "James L.", 
        "id": "sg:person.012001017261.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012001017261.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Australian Synchrotron", 
          "id": "https://www.grid.ac/institutes/grid.248753.f", 
          "name": [
            "ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Clayton, Victoria, Australia", 
            "Australian Synchrotron, Clayton, Victoria, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tadich", 
        "givenName": "Anton", 
        "id": "sg:person.01243455562.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243455562.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Singapore University of Technology and Design", 
          "id": "https://www.grid.ac/institutes/grid.263662.5", 
          "name": [
            "Research Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Weikang", 
        "id": "sg:person.07474276657.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07474276657.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Illinois at Urbana Champaign", 
          "id": "https://www.grid.ac/institutes/grid.35403.31", 
          "name": [
            "Department of Physics and Centre for Advanced 2D Materials, National University of Singapore, Singapore, Singapore", 
            "National Centre for Supercomputing Applications, University of Illinois at Urbana-Champaign, Champaign, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gomes", 
        "givenName": "Lidia C.", 
        "id": "sg:person.012734223515.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012734223515.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Illinois at Urbana Champaign", 
          "id": "https://www.grid.ac/institutes/grid.35403.31", 
          "name": [
            "Department of Physics and Centre for Advanced 2D Materials, National University of Singapore, Singapore, Singapore", 
            "Institute for Condensed Matter Theory and Department of Physics, University of Illinois at Urbana-Champaign, Champaign, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rodrigues", 
        "givenName": "Joao N. B.", 
        "id": "sg:person.0604674530.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604674530.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Monash University", 
          "id": "https://www.grid.ac/institutes/grid.1002.3", 
          "name": [
            "School of Physics and Astronomy, Monash University, Clayton, Victoria, Australia", 
            "Monash Centre for Atomically Thin Materials, Monash University, Clayton, Victoria, Australia", 
            "ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Clayton, Victoria, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Chang", 
        "id": "sg:person.01236726117.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236726117.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Academy of Sciences of the Czech Republic", 
          "id": "https://www.grid.ac/institutes/grid.418095.1", 
          "name": [
            "School of Physics and Astronomy, Monash University, Clayton, Victoria, Australia", 
            "Monash Centre for Atomically Thin Materials, Monash University, Clayton, Victoria, Australia", 
            "Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hellerstedt", 
        "givenName": "Jack", 
        "id": "sg:person.01310100362.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310100362.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Institute of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.35541.36", 
          "name": [
            "Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA", 
            "Center for Spintronics, Korea Institute of Science and Technology, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ryu", 
        "givenName": "Hyejin", 
        "id": "sg:person.01010056754.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010056754.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lawrence Berkeley National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tang", 
        "givenName": "Shujie", 
        "id": "sg:person.01103247527.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103247527.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lawrence Berkeley National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mo", 
        "givenName": "Sung-Kwan", 
        "id": "sg:person.01301726663.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301726663.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale-NUS College", 
          "id": "https://www.grid.ac/institutes/grid.463064.3", 
          "name": [
            "Department of Physics and Centre for Advanced 2D Materials, National University of Singapore, Singapore, Singapore", 
            "Yale-NUS College, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Adam", 
        "givenName": "Shaffique", 
        "id": "sg:person.0630776216.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0630776216.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing Normal University", 
          "id": "https://www.grid.ac/institutes/grid.260474.3", 
          "name": [
            "Research Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore, Singapore", 
            "Centre for Quantum Transport and Thermal Energy Science, School of Physics and Technology, Nanjing Normal University, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Shengyuan A.", 
        "id": "sg:person.0766456020.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766456020.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Monash University", 
          "id": "https://www.grid.ac/institutes/grid.1002.3", 
          "name": [
            "School of Physics and Astronomy, Monash University, Clayton, Victoria, Australia", 
            "Monash Centre for Atomically Thin Materials, Monash University, Clayton, Victoria, Australia", 
            "ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Clayton, Victoria, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fuhrer", 
        "givenName": "Michael S.", 
        "id": "sg:person.01200656557.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200656557.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Monash University", 
          "id": "https://www.grid.ac/institutes/grid.1002.3", 
          "name": [
            "School of Physics and Astronomy, Monash University, Clayton, Victoria, Australia", 
            "Monash Centre for Atomically Thin Materials, Monash University, Clayton, Victoria, Australia", 
            "ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Clayton, Victoria, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Edmonds", 
        "givenName": "Mark T.", 
        "id": "sg:person.01231146535.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231146535.58"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmat3990", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002373186", 
          "https://doi.org/10.1038/nmat3990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4890940", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005772770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.65.035109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007967752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.65.035109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007967752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.035108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010324908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.035108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010324908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0039-6028(89)90548-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011146203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0039-6028(89)90548-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011146203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4608/15/4/009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012753177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.027603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016127489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.027603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016127489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.195320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023105171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.195320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023105171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2213970", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024746138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1130681", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030731383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.075119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030859492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.075119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030859492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1148047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034685599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040205131", 
          "https://doi.org/10.1038/nmat3828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/58/9/002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041771640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep14639", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043185091", 
          "https://doi.org/10.1038/srep14639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043686943", 
          "https://doi.org/10.1038/nature08105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043686943", 
          "https://doi.org/10.1038/nature08105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.75.473", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045026742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.75.473", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045026742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1256815", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048460404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.progsurf.2006.07.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048632538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-09280-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051861176", 
          "https://doi.org/10.1007/978-3-662-09280-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-09280-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051861176", 
          "https://doi.org/10.1007/978-3-662-09280-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms14184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053962393", 
          "https://doi.org/10.1038/ncomms14184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.6b00638", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055121390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsami.6b03312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055130209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.37.10395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060544921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.37.10395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060544921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.17953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060573414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.17953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060573414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.155109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060638637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.155109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060638637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.226401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060755486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.226401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060755486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1245085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062469056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.95.075404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083717411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.95.075404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083717411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1621352114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084152957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2017.43", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084509217", 
          "https://doi.org/10.1038/nnano.2017.43"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2017.43", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084509217", 
          "https://doi.org/10.1038/nnano.2017.43"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys4091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084758018", 
          "https://doi.org/10.1038/nphys4091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys4091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084758018", 
          "https://doi.org/10.1038/nphys4091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms14474", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084923869", 
          "https://doi.org/10.1038/ncomms14474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys4174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086221753", 
          "https://doi.org/10.1038/nphys4174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys4174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086221753", 
          "https://doi.org/10.1038/nphys4174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.95.235141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090240433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.95.235141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090240433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aai8142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090391250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cpc.2017.09.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092272383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aam9175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092748672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/sciadv.aao6661", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099924328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.120.016801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100180224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.120.016801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100180224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aan6003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100432288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aan6003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100432288"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "The electric-field-induced quantum phase transition from topological to conventional insulator has been proposed as the basis of a topological field effect transistor1-4. In this scheme, 'on' is the ballistic flow of charge and spin along dissipationless edges of a two-dimensional quantum spin Hall insulator5-9, and 'off' is produced by applying an electric field that converts the exotic insulator to a conventional insulator with no conductive channels. Such a topological transistor is promising for low-energy logic circuits4, which would necessitate electric-field-switched materials with conventional and topological bandgaps much greater than the thermal energy at room temperature, substantially greater than proposed so far6-8. Topological Dirac semimetals are promising systems in which to look for topological field-effect switching, as they lie at the boundary between conventional and topological phases3,10-16. Here we use scanning tunnelling microscopy and spectroscopy and angle-resolved photoelectron spectroscopy to show that mono- and bilayer films of the topological Dirac semimetal3,17 Na3Bi are two-dimensional topological insulators with bulk bandgaps greater than 300\u00a0millielectronvolts owing to quantum confinement in the absence of electric field. On application of electric field by doping with potassium or by close approach of the scanning tunnelling microscope tip, the Stark effect completely closes the bandgap and re-opens it as a conventional gap of 90\u00a0millielectronvolts. The large bandgaps in both the conventional and quantum spin Hall phases, much greater than the thermal energy at room temperature (25\u00a0millielectronvolts), suggest that ultrathin Na3Bi is suitable for room-temperature topological transistor operation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41586-018-0788-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3563479", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5129213", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5128068", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6711718", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7736", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "564"
      }
    ], 
    "name": "Electric-field-tuned topological phase transition in ultrathin Na3Bi", 
    "pagination": "390-394", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0d50e1887e2643f1dbf8250cd172a54680fafd694edca1058117be847458d82c"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30532002"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41586-018-0788-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110423611"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41586-018-0788-5", 
      "https://app.dimensions.ai/details/publication/pub.1110423611"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000309_0000000309/records_106286_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41586-018-0788-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41586-018-0788-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41586-018-0788-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41586-018-0788-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41586-018-0788-5'


 

This table displays all metadata directly associated to this object as RDF triples.

338 TRIPLES      21 PREDICATES      71 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41586-018-0788-5 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N9afa830482264fbca23eebc77fa9f1f3
4 schema:citation sg:pub.10.1007/978-3-662-09280-4
5 sg:pub.10.1038/nature08105
6 sg:pub.10.1038/ncomms14184
7 sg:pub.10.1038/ncomms14474
8 sg:pub.10.1038/nmat3828
9 sg:pub.10.1038/nmat3990
10 sg:pub.10.1038/nnano.2017.43
11 sg:pub.10.1038/nphys4091
12 sg:pub.10.1038/nphys4174
13 sg:pub.10.1038/srep14639
14 https://doi.org/10.1016/0039-6028(89)90548-7
15 https://doi.org/10.1016/j.cpc.2017.09.033
16 https://doi.org/10.1016/j.progsurf.2006.07.004
17 https://doi.org/10.1021/acs.nanolett.6b00638
18 https://doi.org/10.1021/acsami.6b03312
19 https://doi.org/10.1063/1.2213970
20 https://doi.org/10.1063/1.4890940
21 https://doi.org/10.1073/pnas.1621352114
22 https://doi.org/10.1088/0034-4885/58/9/002
23 https://doi.org/10.1088/0305-4608/15/4/009
24 https://doi.org/10.1103/physrevb.37.10395
25 https://doi.org/10.1103/physrevb.50.17953
26 https://doi.org/10.1103/physrevb.65.035109
27 https://doi.org/10.1103/physrevb.83.035108
28 https://doi.org/10.1103/physrevb.84.075119
29 https://doi.org/10.1103/physrevb.85.155109
30 https://doi.org/10.1103/physrevb.85.195320
31 https://doi.org/10.1103/physrevb.95.075404
32 https://doi.org/10.1103/physrevb.95.235141
33 https://doi.org/10.1103/physrevlett.102.226401
34 https://doi.org/10.1103/physrevlett.113.027603
35 https://doi.org/10.1103/physrevlett.120.016801
36 https://doi.org/10.1103/physrevlett.77.3865
37 https://doi.org/10.1103/revmodphys.75.473
38 https://doi.org/10.1126/sciadv.aao6661
39 https://doi.org/10.1126/science.1130681
40 https://doi.org/10.1126/science.1148047
41 https://doi.org/10.1126/science.1245085
42 https://doi.org/10.1126/science.1256815
43 https://doi.org/10.1126/science.aai8142
44 https://doi.org/10.1126/science.aam9175
45 https://doi.org/10.1126/science.aan6003
46 schema:datePublished 2018-12
47 schema:datePublishedReg 2018-12-01
48 schema:description The electric-field-induced quantum phase transition from topological to conventional insulator has been proposed as the basis of a topological field effect transistor<sup>1-4</sup>. In this scheme, 'on' is the ballistic flow of charge and spin along dissipationless edges of a two-dimensional quantum spin Hall insulator<sup>5-9</sup>, and 'off' is produced by applying an electric field that converts the exotic insulator to a conventional insulator with no conductive channels. Such a topological transistor is promising for low-energy logic circuits<sup>4</sup>, which would necessitate electric-field-switched materials with conventional and topological bandgaps much greater than the thermal energy at room temperature, substantially greater than proposed so far<sup>6-8</sup>. Topological Dirac semimetals are promising systems in which to look for topological field-effect switching, as they lie at the boundary between conventional and topological phases<sup>3,10-16</sup>. Here we use scanning tunnelling microscopy and spectroscopy and angle-resolved photoelectron spectroscopy to show that mono- and bilayer films of the topological Dirac semimetal<sup>3,17</sup> Na<sub>3</sub>Bi are two-dimensional topological insulators with bulk bandgaps greater than 300 millielectronvolts owing to quantum confinement in the absence of electric field. On application of electric field by doping with potassium or by close approach of the scanning tunnelling microscope tip, the Stark effect completely closes the bandgap and re-opens it as a conventional gap of 90 millielectronvolts. The large bandgaps in both the conventional and quantum spin Hall phases, much greater than the thermal energy at room temperature (25 millielectronvolts), suggest that ultrathin Na<sub>3</sub>Bi is suitable for room-temperature topological transistor operation.
49 schema:genre research_article
50 schema:inLanguage en
51 schema:isAccessibleForFree false
52 schema:isPartOf N712de8dfc1514234a0ab862a9aa5519c
53 N802d90d5ceff4d6081dac344950b862a
54 sg:journal.1018957
55 schema:name Electric-field-tuned topological phase transition in ultrathin Na3Bi
56 schema:pagination 390-394
57 schema:productId N6434520131b44e4d8733edb542fb30f4
58 Nb1a4d538f01b413cbf34be8ceedf92a0
59 Ndb8ab952a4ab4e6f8f48eedd8160c822
60 Nf3ffb3eb70ec4e1ba537d2830ee24e79
61 Nf560bdb4039f48b3a34704ca95b85b7a
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110423611
63 https://doi.org/10.1038/s41586-018-0788-5
64 schema:sdDatePublished 2019-04-11T08:31
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher Nafd0ca6c55d843d2ac37f569068ed2ad
67 schema:url https://www.nature.com/articles/s41586-018-0788-5
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N019276736ef040f79b29ebe5f714a3bd rdf:first sg:person.0766456020.26
72 rdf:rest N6e92228e579b4187a5229d814ce3c1fd
73 N0ba0b2e119094a6cba5d99be5b5815b9 rdf:first sg:person.0630776216.98
74 rdf:rest N019276736ef040f79b29ebe5f714a3bd
75 N22b723d996de44e59fea5e771d427456 rdf:first sg:person.07474276657.80
76 rdf:rest N705ac270583b4bd8a07a82a36ffaa44f
77 N4a807555103c4cce95b73896dc16d6fa rdf:first sg:person.01243455562.37
78 rdf:rest N22b723d996de44e59fea5e771d427456
79 N6434520131b44e4d8733edb542fb30f4 schema:name dimensions_id
80 schema:value pub.1110423611
81 rdf:type schema:PropertyValue
82 N695a479b48b048b18ea42e306bb0e89c rdf:first sg:person.01310100362.20
83 rdf:rest N96ffbb24d7a748608c62fc10c24df6ea
84 N6ac1c75ad6ce4c64923bcaa32dc7cff6 rdf:first sg:person.0604674530.54
85 rdf:rest N7478b5dd01954814b41c774291b632a4
86 N6e92228e579b4187a5229d814ce3c1fd rdf:first sg:person.01200656557.13
87 rdf:rest Nabafa60a67a44897ac9a18ae29dece05
88 N705ac270583b4bd8a07a82a36ffaa44f rdf:first sg:person.012734223515.08
89 rdf:rest N6ac1c75ad6ce4c64923bcaa32dc7cff6
90 N712de8dfc1514234a0ab862a9aa5519c schema:volumeNumber 564
91 rdf:type schema:PublicationVolume
92 N7478b5dd01954814b41c774291b632a4 rdf:first sg:person.01236726117.16
93 rdf:rest N695a479b48b048b18ea42e306bb0e89c
94 N802d90d5ceff4d6081dac344950b862a schema:issueNumber 7736
95 rdf:type schema:PublicationIssue
96 N88b4e6114c16437fa77e4cebf90d37f1 rdf:first sg:person.01301726663.20
97 rdf:rest N0ba0b2e119094a6cba5d99be5b5815b9
98 N96ffbb24d7a748608c62fc10c24df6ea rdf:first sg:person.01010056754.09
99 rdf:rest Nccd2585f328c4b64babb825ac78651a2
100 N9afa830482264fbca23eebc77fa9f1f3 rdf:first sg:person.012001017261.27
101 rdf:rest N4a807555103c4cce95b73896dc16d6fa
102 Nabafa60a67a44897ac9a18ae29dece05 rdf:first sg:person.01231146535.58
103 rdf:rest rdf:nil
104 Nafd0ca6c55d843d2ac37f569068ed2ad schema:name Springer Nature - SN SciGraph project
105 rdf:type schema:Organization
106 Nb1a4d538f01b413cbf34be8ceedf92a0 schema:name readcube_id
107 schema:value 0d50e1887e2643f1dbf8250cd172a54680fafd694edca1058117be847458d82c
108 rdf:type schema:PropertyValue
109 Nccd2585f328c4b64babb825ac78651a2 rdf:first sg:person.01103247527.03
110 rdf:rest N88b4e6114c16437fa77e4cebf90d37f1
111 Ndb8ab952a4ab4e6f8f48eedd8160c822 schema:name nlm_unique_id
112 schema:value 0410462
113 rdf:type schema:PropertyValue
114 Nf3ffb3eb70ec4e1ba537d2830ee24e79 schema:name doi
115 schema:value 10.1038/s41586-018-0788-5
116 rdf:type schema:PropertyValue
117 Nf560bdb4039f48b3a34704ca95b85b7a schema:name pubmed_id
118 schema:value 30532002
119 rdf:type schema:PropertyValue
120 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
121 schema:name Engineering
122 rdf:type schema:DefinedTerm
123 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
124 schema:name Materials Engineering
125 rdf:type schema:DefinedTerm
126 sg:grant.3563479 http://pending.schema.org/fundedItem sg:pub.10.1038/s41586-018-0788-5
127 rdf:type schema:MonetaryGrant
128 sg:grant.5128068 http://pending.schema.org/fundedItem sg:pub.10.1038/s41586-018-0788-5
129 rdf:type schema:MonetaryGrant
130 sg:grant.5129213 http://pending.schema.org/fundedItem sg:pub.10.1038/s41586-018-0788-5
131 rdf:type schema:MonetaryGrant
132 sg:grant.6711718 http://pending.schema.org/fundedItem sg:pub.10.1038/s41586-018-0788-5
133 rdf:type schema:MonetaryGrant
134 sg:journal.1018957 schema:issn 0090-0028
135 1476-4687
136 schema:name Nature
137 rdf:type schema:Periodical
138 sg:person.01010056754.09 schema:affiliation https://www.grid.ac/institutes/grid.35541.36
139 schema:familyName Ryu
140 schema:givenName Hyejin
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010056754.09
142 rdf:type schema:Person
143 sg:person.01103247527.03 schema:affiliation https://www.grid.ac/institutes/grid.184769.5
144 schema:familyName Tang
145 schema:givenName Shujie
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103247527.03
147 rdf:type schema:Person
148 sg:person.012001017261.27 schema:affiliation https://www.grid.ac/institutes/grid.1002.3
149 schema:familyName Collins
150 schema:givenName James L.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012001017261.27
152 rdf:type schema:Person
153 sg:person.01200656557.13 schema:affiliation https://www.grid.ac/institutes/grid.1002.3
154 schema:familyName Fuhrer
155 schema:givenName Michael S.
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200656557.13
157 rdf:type schema:Person
158 sg:person.01231146535.58 schema:affiliation https://www.grid.ac/institutes/grid.1002.3
159 schema:familyName Edmonds
160 schema:givenName Mark T.
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231146535.58
162 rdf:type schema:Person
163 sg:person.01236726117.16 schema:affiliation https://www.grid.ac/institutes/grid.1002.3
164 schema:familyName Liu
165 schema:givenName Chang
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236726117.16
167 rdf:type schema:Person
168 sg:person.01243455562.37 schema:affiliation https://www.grid.ac/institutes/grid.248753.f
169 schema:familyName Tadich
170 schema:givenName Anton
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243455562.37
172 rdf:type schema:Person
173 sg:person.012734223515.08 schema:affiliation https://www.grid.ac/institutes/grid.35403.31
174 schema:familyName Gomes
175 schema:givenName Lidia C.
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012734223515.08
177 rdf:type schema:Person
178 sg:person.01301726663.20 schema:affiliation https://www.grid.ac/institutes/grid.184769.5
179 schema:familyName Mo
180 schema:givenName Sung-Kwan
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301726663.20
182 rdf:type schema:Person
183 sg:person.01310100362.20 schema:affiliation https://www.grid.ac/institutes/grid.418095.1
184 schema:familyName Hellerstedt
185 schema:givenName Jack
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310100362.20
187 rdf:type schema:Person
188 sg:person.0604674530.54 schema:affiliation https://www.grid.ac/institutes/grid.35403.31
189 schema:familyName Rodrigues
190 schema:givenName Joao N. B.
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604674530.54
192 rdf:type schema:Person
193 sg:person.0630776216.98 schema:affiliation https://www.grid.ac/institutes/grid.463064.3
194 schema:familyName Adam
195 schema:givenName Shaffique
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0630776216.98
197 rdf:type schema:Person
198 sg:person.07474276657.80 schema:affiliation https://www.grid.ac/institutes/grid.263662.5
199 schema:familyName Wu
200 schema:givenName Weikang
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07474276657.80
202 rdf:type schema:Person
203 sg:person.0766456020.26 schema:affiliation https://www.grid.ac/institutes/grid.260474.3
204 schema:familyName Yang
205 schema:givenName Shengyuan A.
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766456020.26
207 rdf:type schema:Person
208 sg:pub.10.1007/978-3-662-09280-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051861176
209 https://doi.org/10.1007/978-3-662-09280-4
210 rdf:type schema:CreativeWork
211 sg:pub.10.1038/nature08105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043686943
212 https://doi.org/10.1038/nature08105
213 rdf:type schema:CreativeWork
214 sg:pub.10.1038/ncomms14184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053962393
215 https://doi.org/10.1038/ncomms14184
216 rdf:type schema:CreativeWork
217 sg:pub.10.1038/ncomms14474 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084923869
218 https://doi.org/10.1038/ncomms14474
219 rdf:type schema:CreativeWork
220 sg:pub.10.1038/nmat3828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040205131
221 https://doi.org/10.1038/nmat3828
222 rdf:type schema:CreativeWork
223 sg:pub.10.1038/nmat3990 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002373186
224 https://doi.org/10.1038/nmat3990
225 rdf:type schema:CreativeWork
226 sg:pub.10.1038/nnano.2017.43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084509217
227 https://doi.org/10.1038/nnano.2017.43
228 rdf:type schema:CreativeWork
229 sg:pub.10.1038/nphys4091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084758018
230 https://doi.org/10.1038/nphys4091
231 rdf:type schema:CreativeWork
232 sg:pub.10.1038/nphys4174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086221753
233 https://doi.org/10.1038/nphys4174
234 rdf:type schema:CreativeWork
235 sg:pub.10.1038/srep14639 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043185091
236 https://doi.org/10.1038/srep14639
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1016/0039-6028(89)90548-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011146203
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1016/j.cpc.2017.09.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092272383
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1016/j.progsurf.2006.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048632538
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1021/acs.nanolett.6b00638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055121390
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1021/acsami.6b03312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055130209
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1063/1.2213970 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024746138
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1063/1.4890940 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005772770
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1073/pnas.1621352114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084152957
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1088/0034-4885/58/9/002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041771640
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1088/0305-4608/15/4/009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012753177
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1103/physrevb.37.10395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060544921
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1103/physrevb.50.17953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060573414
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1103/physrevb.65.035109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007967752
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1103/physrevb.83.035108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010324908
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1103/physrevb.84.075119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030859492
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1103/physrevb.85.155109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060638637
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1103/physrevb.85.195320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023105171
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1103/physrevb.95.075404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083717411
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1103/physrevb.95.235141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090240433
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1103/physrevlett.102.226401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060755486
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1103/physrevlett.113.027603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016127489
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1103/physrevlett.120.016801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100180224
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1103/physrevlett.77.3865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814179
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1103/revmodphys.75.473 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045026742
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1126/sciadv.aao6661 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099924328
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1126/science.1130681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030731383
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1126/science.1148047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034685599
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1126/science.1245085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062469056
293 rdf:type schema:CreativeWork
294 https://doi.org/10.1126/science.1256815 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048460404
295 rdf:type schema:CreativeWork
296 https://doi.org/10.1126/science.aai8142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090391250
297 rdf:type schema:CreativeWork
298 https://doi.org/10.1126/science.aam9175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092748672
299 rdf:type schema:CreativeWork
300 https://doi.org/10.1126/science.aan6003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100432288
301 rdf:type schema:CreativeWork
302 https://www.grid.ac/institutes/grid.1002.3 schema:alternateName Monash University
303 schema:name ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Clayton, Victoria, Australia
304 Monash Centre for Atomically Thin Materials, Monash University, Clayton, Victoria, Australia
305 School of Physics and Astronomy, Monash University, Clayton, Victoria, Australia
306 rdf:type schema:Organization
307 https://www.grid.ac/institutes/grid.184769.5 schema:alternateName Lawrence Berkeley National Laboratory
308 schema:name Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
309 rdf:type schema:Organization
310 https://www.grid.ac/institutes/grid.248753.f schema:alternateName Australian Synchrotron
311 schema:name ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Clayton, Victoria, Australia
312 Australian Synchrotron, Clayton, Victoria, Australia
313 rdf:type schema:Organization
314 https://www.grid.ac/institutes/grid.260474.3 schema:alternateName Nanjing Normal University
315 schema:name Centre for Quantum Transport and Thermal Energy Science, School of Physics and Technology, Nanjing Normal University, Nanjing, China
316 Research Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore, Singapore
317 rdf:type schema:Organization
318 https://www.grid.ac/institutes/grid.263662.5 schema:alternateName Singapore University of Technology and Design
319 schema:name Research Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore, Singapore
320 rdf:type schema:Organization
321 https://www.grid.ac/institutes/grid.35403.31 schema:alternateName University of Illinois at Urbana Champaign
322 schema:name Department of Physics and Centre for Advanced 2D Materials, National University of Singapore, Singapore, Singapore
323 Institute for Condensed Matter Theory and Department of Physics, University of Illinois at Urbana-Champaign, Champaign, IL, USA
324 National Centre for Supercomputing Applications, University of Illinois at Urbana-Champaign, Champaign, IL, USA
325 rdf:type schema:Organization
326 https://www.grid.ac/institutes/grid.35541.36 schema:alternateName Korea Institute of Science and Technology
327 schema:name Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
328 Center for Spintronics, Korea Institute of Science and Technology, Seoul, South Korea
329 rdf:type schema:Organization
330 https://www.grid.ac/institutes/grid.418095.1 schema:alternateName Academy of Sciences of the Czech Republic
331 schema:name Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
332 Monash Centre for Atomically Thin Materials, Monash University, Clayton, Victoria, Australia
333 School of Physics and Astronomy, Monash University, Clayton, Victoria, Australia
334 rdf:type schema:Organization
335 https://www.grid.ac/institutes/grid.463064.3 schema:alternateName Yale-NUS College
336 schema:name Department of Physics and Centre for Advanced 2D Materials, National University of Singapore, Singapore, Singapore
337 Yale-NUS College, Singapore, Singapore
338 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...