Atomic clock performance enabling geodesy below the centimetre level View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-11-28

AUTHORS

W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Schäffer, K. Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani, M. Schioppo, T. H. Yoon, A. D. Ludlow

ABSTRACT

The passage of time is tracked by counting oscillations of a frequency reference, such as Earth's revolutions or swings of a pendulum. By referencing atomic transitions, frequency (and thus time) can be measured more precisely than any other physical quantity, with the current generation of optical atomic clocks reporting fractional performance below the 10-17 level1-5. However, the theory of relativity prescribes that the passage of time is not absolute, but is affected by an observer's reference frame. Consequently, clock measurements exhibit sensitivity to relative velocity, acceleration and gravity potential. Here we demonstrate local optical clock measurements that surpass the current ability to account for the gravitational distortion of space-time across the surface of Earth. In two independent ytterbium optical lattice clocks, we demonstrate unprecedented values of three fundamental benchmarks of clock performance. In units of the clock frequency, we report systematic uncertainty of 1.4 × 10-18, measurement instability of 3.2 × 10-19 and reproducibility characterized by ten blinded frequency comparisons, yielding a frequency difference of [-7 ± (5)stat ± (8)sys] × 10-19, where 'stat' and 'sys' indicate statistical and systematic uncertainty, respectively. Although sensitivity to differences in gravity potential could degrade the performance of the clocks as terrestrial standards of time, this same sensitivity can be used as a very sensitive probe of geopotential5-9. Near the surface of Earth, clock comparisons at the 1 × 10-18 level provide a resolution of one centimetre along the direction of gravity, so the performance of these clocks should enable geodesy beyond the state-of-the-art level. These optical clocks could further be used to explore geophysical phenomena10, detect gravitational waves11, test general relativity12 and search for dark matter13-17. More... »

PAGES

1-4

References to SciGraph publications

  • 2015-12. Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty in NATURE COMMUNICATIONS
  • 2012-05. Delivering pulsed and phase stable light to atoms of an optical clock in APPLIED PHYSICS B
  • 2017-01. Ultrastable optical clock with two cold-atom ensembles in NATURE PHOTONICS
  • 2017-06. Determination of a high spatial resolution geopotential model using atomic clock comparisons in JOURNAL OF GEODESY
  • 2016-10. Geopotential measurements with synchronously linked optical lattice clocks in NATURE PHOTONICS
  • 2018-05. Geodesy and metrology with a transportable optical clock in NATURE PHYSICS
  • 2015-03. Cryogenic optical lattice clocks in NATURE PHOTONICS
  • 2016-04. Frequency ratio of Yb and Sr clocks with 5 × 10−17 uncertainty at 150 seconds averaging time in NATURE PHOTONICS
  • 2016-12-19. Experimental constraint on dark matter detection with optical atomic clocks in NATURE ASTRONOMY
  • 2018-05. Geodetic methods to determine the relativistic redshift at the level of 10-18 in the context of international timescales: a review and practical results in JOURNAL OF GEODESY
  • 2017-12. Search for domain wall dark matter with atomic clocks on board global positioning system satellites in NATURE COMMUNICATIONS
  • 2008-12. Optical lattice clocks with non-interacting bosons and fermions in NATURE PHYSICS
  • 2011-05. Frequency comparison of optical lattice clocks beyond the Dick limit in NATURE PHOTONICS
  • 2012-03. The US Gravimetric Geoid of 2009 (USGG2009): model development and evaluation in JOURNAL OF GEODESY
  • 2014-12. Hunting for topological dark matter with atomic clocks in NATURE PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41586-018-0738-2

    DOI

    http://dx.doi.org/10.1038/s41586-018-0738-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1110228513

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30487601


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Other Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Colorado System", 
              "id": "https://www.grid.ac/institutes/grid.266185.e", 
              "name": [
                "National Institute of Standards and Technology, Boulder, CO, USA", 
                "Department of Physics, University of Colorado, Boulder, CO, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "McGrew", 
            "givenName": "W. F.", 
            "id": "sg:person.07776567152.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07776567152.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Peking University", 
              "id": "https://www.grid.ac/institutes/grid.11135.37", 
              "name": [
                "National Institute of Standards and Technology, Boulder, CO, USA", 
                "State Key Laboratory of Advanced Optical Communication Systems and Networks, Institute of Quantum Electronics, School of Electronics Engineering and Computer Science, Peking University, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "X.", 
            "id": "sg:person.010214406054.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010214406054.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Colorado System", 
              "id": "https://www.grid.ac/institutes/grid.266185.e", 
              "name": [
                "National Institute of Standards and Technology, Boulder, CO, USA", 
                "Department of Physics, University of Colorado, Boulder, CO, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fasano", 
            "givenName": "R. J.", 
            "id": "sg:person.011371530152.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011371530152.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Copenhagen", 
              "id": "https://www.grid.ac/institutes/grid.5254.6", 
              "name": [
                "National Institute of Standards and Technology, Boulder, CO, USA", 
                "Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sch\u00e4ffer", 
            "givenName": "S. A.", 
            "id": "sg:person.012322070752.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012322070752.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institute of Standards and Technology", 
              "id": "https://www.grid.ac/institutes/grid.94225.38", 
              "name": [
                "National Institute of Standards and Technology, Boulder, CO, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Beloy", 
            "givenName": "K.", 
            "id": "sg:person.010025261763.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010025261763.69"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Colorado System", 
              "id": "https://www.grid.ac/institutes/grid.266185.e", 
              "name": [
                "National Institute of Standards and Technology, Boulder, CO, USA", 
                "Department of Physics, University of Colorado, Boulder, CO, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nicolodi", 
            "givenName": "D.", 
            "id": "sg:person.014233370263.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014233370263.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Georgia Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.213917.f", 
              "name": [
                "National Institute of Standards and Technology, Boulder, CO, USA", 
                "Georgia Tech Research Institute, Atlanta, GA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Brown", 
            "givenName": "R. C.", 
            "id": "sg:person.01171742700.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171742700.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Colorado System", 
              "id": "https://www.grid.ac/institutes/grid.266185.e", 
              "name": [
                "National Institute of Standards and Technology, Boulder, CO, USA", 
                "Department of Physics, University of Colorado, Boulder, CO, USA", 
                "Stable Laser Systems, Boulder, CO, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hinkley", 
            "givenName": "N.", 
            "id": "sg:person.015364425507.78", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015364425507.78"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Polytechnic University of Turin", 
              "id": "https://www.grid.ac/institutes/grid.4800.c", 
              "name": [
                "National Institute of Standards and Technology, Boulder, CO, USA", 
                "Istituto Nazionale di Ricerca Metrologica, Torino, Italy", 
                "Politecnico di Torino, Torino, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Milani", 
            "givenName": "G.", 
            "id": "sg:person.011374051737.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011374051737.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Physical Laboratory", 
              "id": "https://www.grid.ac/institutes/grid.410351.2", 
              "name": [
                "National Institute of Standards and Technology, Boulder, CO, USA", 
                "National Physical Laboratory (NPL), Teddington, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schioppo", 
            "givenName": "M.", 
            "id": "sg:person.01234712017.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234712017.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Korea University", 
              "id": "https://www.grid.ac/institutes/grid.222754.4", 
              "name": [
                "National Institute of Standards and Technology, Boulder, CO, USA", 
                "Department of Physics, Korea University, Seoul, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yoon", 
            "givenName": "T. H.", 
            "id": "sg:person.012764471152.98", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012764471152.98"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Colorado System", 
              "id": "https://www.grid.ac/institutes/grid.266185.e", 
              "name": [
                "National Institute of Standards and Technology, Boulder, CO, USA", 
                "Department of Physics, University of Colorado, Boulder, CO, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ludlow", 
            "givenName": "A. D.", 
            "id": "sg:person.0660310722.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660310722.74"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1103/physrevlett.104.070802", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000912572"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.104.070802", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000912572"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/2014gl062045", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003230057"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.91.173005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006236294"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.91.173005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006236294"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00190-016-0986-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009203909", 
              "https://doi.org/10.1007/s00190-016-0986-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00190-016-0986-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009203909", 
              "https://doi.org/10.1007/s00190-016-0986-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.113.260801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010144057"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.113.260801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010144057"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/rg018i002p00505", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013041658"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00340-012-4952-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013952528", 
              "https://doi.org/10.1007/s00340-012-4952-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2016.20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017634994", 
              "https://doi.org/10.1038/nphoton.2016.20"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00190-011-0506-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018357342", 
              "https://doi.org/10.1007/s00190-011-0506-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41550-016-0009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023403778", 
              "https://doi.org/10.1038/s41550-016-0009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2016.159", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024536580", 
              "https://doi.org/10.1038/nphoton.2016.159"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/gji/ggv246", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026346498"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.76.022510", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026855182"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.76.022510", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026855182"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.74.020502", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026948434"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.74.020502", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026948434"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.91.015015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027431483"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.91.015015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027431483"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.107.103902", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029234571"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.107.103902", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029234571"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys3137", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031572437", 
              "https://doi.org/10.1038/nphys3137"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2011.34", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034704649", 
              "https://doi.org/10.1038/nphoton.2011.34"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.91.052503", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037719320"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.91.052503", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037719320"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2016.231", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039201983", 
              "https://doi.org/10.1038/nphoton.2016.231"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0953-4075/43/7/074011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039389071"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.110.180802", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040115136"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.110.180802", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040115136"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms7896", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043862063", 
              "https://doi.org/10.1038/ncomms7896"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2015.5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048080898", 
              "https://doi.org/10.1038/nphoton.2015.5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys1108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048160415", 
              "https://doi.org/10.1038/nphys1108"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/378162", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058671214"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.72.033409", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060501531"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.72.033409", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060501531"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.94.124043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060714831"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.94.124043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060714831"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.103.063001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060755820"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.103.063001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060755820"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.116.063001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060764972"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.116.063001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060764972"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.117.061301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060766035"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.117.061301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060766035"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/58.869073", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061191875"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tuffc.2012.2209", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061810516"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1192720", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062462595"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1196442", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062462816"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1254978", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062470039"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/josab.20.000977", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065170731"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/josab.6.002257", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065177424"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/ol.19.001777", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065215405"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1681-7575/aa765c", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085795034"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.118.221102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085849228"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.118.221102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085849228"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.aam5538", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092105287"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.aam5538", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092105287"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-017-01440-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092381524", 
              "https://doi.org/10.1038/s41467-017-01440-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/freq.1995.483890", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094802831"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00190-017-1075-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099693292", 
              "https://doi.org/10.1007/s00190-017-1075-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.119.253001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099879359"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.119.253001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099879359"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41567-017-0042-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100951737", 
              "https://doi.org/10.1038/s41567-017-0042-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.120.183201", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103772427"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.120.183201", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103772427"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-11-28", 
        "datePublishedReg": "2018-11-28", 
        "description": "The passage of time is tracked by counting oscillations of a frequency reference, such as Earth's revolutions or swings of a pendulum. By referencing atomic transitions, frequency (and thus time) can be measured more precisely than any other physical quantity, with the current generation of optical atomic clocks reporting fractional performance below the 10-17 level1-5. However, the theory of relativity prescribes that the passage of time is not absolute, but is affected by an observer's reference frame. Consequently, clock measurements exhibit sensitivity to relative velocity, acceleration and gravity potential. Here we demonstrate local optical clock measurements that\u00a0surpass the current ability to account for the gravitational distortion of space-time across the surface of Earth. In two independent ytterbium optical lattice clocks, we demonstrate unprecedented values of three fundamental benchmarks of clock performance. In units of the clock frequency, we report systematic uncertainty of 1.4\u2009\u00d7\u200910-18, measurement instability of 3.2\u2009\u00d7\u200910-19 and reproducibility characterized by ten blinded frequency comparisons, yielding a frequency difference of [-7\u2009\u00b1\u2009(5)stat\u2009\u00b1\u2009(8)sys]\u2009\u00d7\u200910-19, where 'stat' and 'sys' indicate statistical and systematic uncertainty, respectively. Although sensitivity to differences in gravity potential could degrade the performance\u00a0of the clocks as terrestrial standards of time, this same sensitivity can be used as a very sensitive probe of geopotential5-9. Near the surface of Earth, clock comparisons at the 1\u2009\u00d7\u200910-18 level provide a resolution of one centimetre along the direction of\u00a0gravity, so the performance of these clocks should enable geodesy beyond the state-of-the-art level. These optical clocks could further be used to explore geophysical phenomena10, detect gravitational waves11, test general relativity12 and search for dark matter13-17.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41586-018-0738-2", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }
        ], 
        "name": "Atomic clock performance enabling geodesy below the centimetre level", 
        "pagination": "1-4", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "72a46f49ab2a01de613eaa41324af5a1b77c52a2a8b6e639e43c1325bd8a57de"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30487601"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0410462"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41586-018-0738-2"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1110228513"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41586-018-0738-2", 
          "https://app.dimensions.ai/details/publication/pub.1110228513"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T08:16", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000278_0000000278/records_79615_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/s41586-018-0738-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41586-018-0738-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41586-018-0738-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41586-018-0738-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41586-018-0738-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    329 TRIPLES      21 PREDICATES      74 URIs      18 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41586-018-0738-2 schema:about anzsrc-for:02
    2 anzsrc-for:0299
    3 schema:author N1daa3b8cab7d4221ae1304989a10cd0e
    4 schema:citation sg:pub.10.1007/s00190-011-0506-7
    5 sg:pub.10.1007/s00190-016-0986-6
    6 sg:pub.10.1007/s00190-017-1075-1
    7 sg:pub.10.1007/s00340-012-4952-6
    8 sg:pub.10.1038/ncomms7896
    9 sg:pub.10.1038/nphoton.2011.34
    10 sg:pub.10.1038/nphoton.2015.5
    11 sg:pub.10.1038/nphoton.2016.159
    12 sg:pub.10.1038/nphoton.2016.20
    13 sg:pub.10.1038/nphoton.2016.231
    14 sg:pub.10.1038/nphys1108
    15 sg:pub.10.1038/nphys3137
    16 sg:pub.10.1038/s41467-017-01440-4
    17 sg:pub.10.1038/s41550-016-0009
    18 sg:pub.10.1038/s41567-017-0042-3
    19 https://doi.org/10.1002/2014gl062045
    20 https://doi.org/10.1029/rg018i002p00505
    21 https://doi.org/10.1086/378162
    22 https://doi.org/10.1088/0953-4075/43/7/074011
    23 https://doi.org/10.1088/1681-7575/aa765c
    24 https://doi.org/10.1093/gji/ggv246
    25 https://doi.org/10.1103/physreva.72.033409
    26 https://doi.org/10.1103/physreva.74.020502
    27 https://doi.org/10.1103/physreva.76.022510
    28 https://doi.org/10.1103/physreva.91.052503
    29 https://doi.org/10.1103/physrevd.91.015015
    30 https://doi.org/10.1103/physrevd.94.124043
    31 https://doi.org/10.1103/physrevlett.103.063001
    32 https://doi.org/10.1103/physrevlett.104.070802
    33 https://doi.org/10.1103/physrevlett.107.103902
    34 https://doi.org/10.1103/physrevlett.110.180802
    35 https://doi.org/10.1103/physrevlett.113.260801
    36 https://doi.org/10.1103/physrevlett.116.063001
    37 https://doi.org/10.1103/physrevlett.117.061301
    38 https://doi.org/10.1103/physrevlett.118.221102
    39 https://doi.org/10.1103/physrevlett.119.253001
    40 https://doi.org/10.1103/physrevlett.120.183201
    41 https://doi.org/10.1103/physrevlett.91.173005
    42 https://doi.org/10.1109/58.869073
    43 https://doi.org/10.1109/freq.1995.483890
    44 https://doi.org/10.1109/tuffc.2012.2209
    45 https://doi.org/10.1126/science.1192720
    46 https://doi.org/10.1126/science.1196442
    47 https://doi.org/10.1126/science.1254978
    48 https://doi.org/10.1126/science.aam5538
    49 https://doi.org/10.1364/josab.20.000977
    50 https://doi.org/10.1364/josab.6.002257
    51 https://doi.org/10.1364/ol.19.001777
    52 schema:datePublished 2018-11-28
    53 schema:datePublishedReg 2018-11-28
    54 schema:description The passage of time is tracked by counting oscillations of a frequency reference, such as Earth's revolutions or swings of a pendulum. By referencing atomic transitions, frequency (and thus time) can be measured more precisely than any other physical quantity, with the current generation of optical atomic clocks reporting fractional performance below the 10<sup>-17</sup> level<sup>1-5</sup>. However, the theory of relativity prescribes that the passage of time is not absolute, but is affected by an observer's reference frame. Consequently, clock measurements exhibit sensitivity to relative velocity, acceleration and gravity potential. Here we demonstrate local optical clock measurements that surpass the current ability to account for the gravitational distortion of space-time across the surface of Earth. In two independent ytterbium optical lattice clocks, we demonstrate unprecedented values of three fundamental benchmarks of clock performance. In units of the clock frequency, we report systematic uncertainty of 1.4 × 10<sup>-18</sup>, measurement instability of 3.2 × 10<sup>-19</sup> and reproducibility characterized by ten blinded frequency comparisons, yielding a frequency difference of [-7 ± (5)<sub>stat</sub> ± (8)<sub>sys</sub>] × 10<sup>-19</sup>, where 'stat' and 'sys' indicate statistical and systematic uncertainty, respectively. Although sensitivity to differences in gravity potential could degrade the performance of the clocks as terrestrial standards of time, this same sensitivity can be used as a very sensitive probe of geopotential<sup>5-9</sup>. Near the surface of Earth, clock comparisons at the 1 × 10<sup>-18</sup> level provide a resolution of one centimetre along the direction of gravity, so the performance of these clocks should enable geodesy beyond the state-of-the-art level. These optical clocks could further be used to explore geophysical phenomena<sup>10</sup>, detect gravitational waves<sup>11</sup>, test general relativity<sup>12</sup> and search for dark matter<sup>13-17</sup>.
    55 schema:genre research_article
    56 schema:inLanguage en
    57 schema:isAccessibleForFree true
    58 schema:isPartOf sg:journal.1018957
    59 schema:name Atomic clock performance enabling geodesy below the centimetre level
    60 schema:pagination 1-4
    61 schema:productId N26fe1859266e495b85962412e27bdf96
    62 N8196198c812b42d68983d788117aec6c
    63 N9316233b736f422187161a374f646e2a
    64 N98067634437142b48bede0e75038579c
    65 Nd5454ace0c2444c29b21d1f6d7ae2e9d
    66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110228513
    67 https://doi.org/10.1038/s41586-018-0738-2
    68 schema:sdDatePublished 2019-04-11T08:16
    69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    70 schema:sdPublisher N4c813c032fb9429bb4d1798def3c7bbb
    71 schema:url https://www.nature.com/articles/s41586-018-0738-2
    72 sgo:license sg:explorer/license/
    73 sgo:sdDataset articles
    74 rdf:type schema:ScholarlyArticle
    75 N17ab6f0d13844e05b6fea58c5dfe8407 rdf:first sg:person.012322070752.50
    76 rdf:rest Na983fb4af36e4a50b5fa0b98c744f0bf
    77 N1daa3b8cab7d4221ae1304989a10cd0e rdf:first sg:person.07776567152.22
    78 rdf:rest Nd7337ec0c9f747f9926034c418a3a75f
    79 N26fe1859266e495b85962412e27bdf96 schema:name readcube_id
    80 schema:value 72a46f49ab2a01de613eaa41324af5a1b77c52a2a8b6e639e43c1325bd8a57de
    81 rdf:type schema:PropertyValue
    82 N388db7f992fc40e3b2911f4686434489 rdf:first sg:person.0660310722.74
    83 rdf:rest rdf:nil
    84 N4c813c032fb9429bb4d1798def3c7bbb schema:name Springer Nature - SN SciGraph project
    85 rdf:type schema:Organization
    86 N5969a7093c1040138b1246d384f8aefb rdf:first sg:person.014233370263.46
    87 rdf:rest Nf7977628801646a2b2dc3bbdac938675
    88 N8196198c812b42d68983d788117aec6c schema:name dimensions_id
    89 schema:value pub.1110228513
    90 rdf:type schema:PropertyValue
    91 N88c0d998d4af4116a21582b0556029dc rdf:first sg:person.011371530152.09
    92 rdf:rest N17ab6f0d13844e05b6fea58c5dfe8407
    93 N9316233b736f422187161a374f646e2a schema:name doi
    94 schema:value 10.1038/s41586-018-0738-2
    95 rdf:type schema:PropertyValue
    96 N98067634437142b48bede0e75038579c schema:name pubmed_id
    97 schema:value 30487601
    98 rdf:type schema:PropertyValue
    99 Na983fb4af36e4a50b5fa0b98c744f0bf rdf:first sg:person.010025261763.69
    100 rdf:rest N5969a7093c1040138b1246d384f8aefb
    101 Nd26fb46222ae483ea273fc99d60b4273 rdf:first sg:person.015364425507.78
    102 rdf:rest Ne5333feb45114a1caf805ecd76db2c2f
    103 Nd5454ace0c2444c29b21d1f6d7ae2e9d schema:name nlm_unique_id
    104 schema:value 0410462
    105 rdf:type schema:PropertyValue
    106 Nd7337ec0c9f747f9926034c418a3a75f rdf:first sg:person.010214406054.20
    107 rdf:rest N88c0d998d4af4116a21582b0556029dc
    108 Ne5333feb45114a1caf805ecd76db2c2f rdf:first sg:person.011374051737.51
    109 rdf:rest Nf6b5b57ad1d34203b6574813771018bb
    110 Ned2ee95a20724483ad40b62ccf7b2732 rdf:first sg:person.012764471152.98
    111 rdf:rest N388db7f992fc40e3b2911f4686434489
    112 Nf6b5b57ad1d34203b6574813771018bb rdf:first sg:person.01234712017.20
    113 rdf:rest Ned2ee95a20724483ad40b62ccf7b2732
    114 Nf7977628801646a2b2dc3bbdac938675 rdf:first sg:person.01171742700.20
    115 rdf:rest Nd26fb46222ae483ea273fc99d60b4273
    116 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    117 schema:name Physical Sciences
    118 rdf:type schema:DefinedTerm
    119 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
    120 schema:name Other Physical Sciences
    121 rdf:type schema:DefinedTerm
    122 sg:journal.1018957 schema:issn 0090-0028
    123 1476-4687
    124 schema:name Nature
    125 rdf:type schema:Periodical
    126 sg:person.010025261763.69 schema:affiliation https://www.grid.ac/institutes/grid.94225.38
    127 schema:familyName Beloy
    128 schema:givenName K.
    129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010025261763.69
    130 rdf:type schema:Person
    131 sg:person.010214406054.20 schema:affiliation https://www.grid.ac/institutes/grid.11135.37
    132 schema:familyName Zhang
    133 schema:givenName X.
    134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010214406054.20
    135 rdf:type schema:Person
    136 sg:person.011371530152.09 schema:affiliation https://www.grid.ac/institutes/grid.266185.e
    137 schema:familyName Fasano
    138 schema:givenName R. J.
    139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011371530152.09
    140 rdf:type schema:Person
    141 sg:person.011374051737.51 schema:affiliation https://www.grid.ac/institutes/grid.4800.c
    142 schema:familyName Milani
    143 schema:givenName G.
    144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011374051737.51
    145 rdf:type schema:Person
    146 sg:person.01171742700.20 schema:affiliation https://www.grid.ac/institutes/grid.213917.f
    147 schema:familyName Brown
    148 schema:givenName R. C.
    149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171742700.20
    150 rdf:type schema:Person
    151 sg:person.012322070752.50 schema:affiliation https://www.grid.ac/institutes/grid.5254.6
    152 schema:familyName Schäffer
    153 schema:givenName S. A.
    154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012322070752.50
    155 rdf:type schema:Person
    156 sg:person.01234712017.20 schema:affiliation https://www.grid.ac/institutes/grid.410351.2
    157 schema:familyName Schioppo
    158 schema:givenName M.
    159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234712017.20
    160 rdf:type schema:Person
    161 sg:person.012764471152.98 schema:affiliation https://www.grid.ac/institutes/grid.222754.4
    162 schema:familyName Yoon
    163 schema:givenName T. H.
    164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012764471152.98
    165 rdf:type schema:Person
    166 sg:person.014233370263.46 schema:affiliation https://www.grid.ac/institutes/grid.266185.e
    167 schema:familyName Nicolodi
    168 schema:givenName D.
    169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014233370263.46
    170 rdf:type schema:Person
    171 sg:person.015364425507.78 schema:affiliation https://www.grid.ac/institutes/grid.266185.e
    172 schema:familyName Hinkley
    173 schema:givenName N.
    174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015364425507.78
    175 rdf:type schema:Person
    176 sg:person.0660310722.74 schema:affiliation https://www.grid.ac/institutes/grid.266185.e
    177 schema:familyName Ludlow
    178 schema:givenName A. D.
    179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660310722.74
    180 rdf:type schema:Person
    181 sg:person.07776567152.22 schema:affiliation https://www.grid.ac/institutes/grid.266185.e
    182 schema:familyName McGrew
    183 schema:givenName W. F.
    184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07776567152.22
    185 rdf:type schema:Person
    186 sg:pub.10.1007/s00190-011-0506-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018357342
    187 https://doi.org/10.1007/s00190-011-0506-7
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1007/s00190-016-0986-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009203909
    190 https://doi.org/10.1007/s00190-016-0986-6
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1007/s00190-017-1075-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099693292
    193 https://doi.org/10.1007/s00190-017-1075-1
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1007/s00340-012-4952-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013952528
    196 https://doi.org/10.1007/s00340-012-4952-6
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1038/ncomms7896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043862063
    199 https://doi.org/10.1038/ncomms7896
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1038/nphoton.2011.34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034704649
    202 https://doi.org/10.1038/nphoton.2011.34
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1038/nphoton.2015.5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048080898
    205 https://doi.org/10.1038/nphoton.2015.5
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1038/nphoton.2016.159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024536580
    208 https://doi.org/10.1038/nphoton.2016.159
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1038/nphoton.2016.20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017634994
    211 https://doi.org/10.1038/nphoton.2016.20
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1038/nphoton.2016.231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039201983
    214 https://doi.org/10.1038/nphoton.2016.231
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1038/nphys1108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048160415
    217 https://doi.org/10.1038/nphys1108
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1038/nphys3137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031572437
    220 https://doi.org/10.1038/nphys3137
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1038/s41467-017-01440-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092381524
    223 https://doi.org/10.1038/s41467-017-01440-4
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1038/s41550-016-0009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023403778
    226 https://doi.org/10.1038/s41550-016-0009
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1038/s41567-017-0042-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100951737
    229 https://doi.org/10.1038/s41567-017-0042-3
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1002/2014gl062045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003230057
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1029/rg018i002p00505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013041658
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1086/378162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058671214
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1088/0953-4075/43/7/074011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039389071
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1088/1681-7575/aa765c schema:sameAs https://app.dimensions.ai/details/publication/pub.1085795034
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1093/gji/ggv246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026346498
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1103/physreva.72.033409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060501531
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1103/physreva.74.020502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026948434
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1103/physreva.76.022510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026855182
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1103/physreva.91.052503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037719320
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1103/physrevd.91.015015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027431483
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1103/physrevd.94.124043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060714831
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1103/physrevlett.103.063001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060755820
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.1103/physrevlett.104.070802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000912572
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1103/physrevlett.107.103902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029234571
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.1103/physrevlett.110.180802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040115136
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.1103/physrevlett.113.260801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010144057
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.1103/physrevlett.116.063001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060764972
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.1103/physrevlett.117.061301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060766035
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.1103/physrevlett.118.221102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085849228
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.1103/physrevlett.119.253001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099879359
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.1103/physrevlett.120.183201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103772427
    274 rdf:type schema:CreativeWork
    275 https://doi.org/10.1103/physrevlett.91.173005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006236294
    276 rdf:type schema:CreativeWork
    277 https://doi.org/10.1109/58.869073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061191875
    278 rdf:type schema:CreativeWork
    279 https://doi.org/10.1109/freq.1995.483890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094802831
    280 rdf:type schema:CreativeWork
    281 https://doi.org/10.1109/tuffc.2012.2209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061810516
    282 rdf:type schema:CreativeWork
    283 https://doi.org/10.1126/science.1192720 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062462595
    284 rdf:type schema:CreativeWork
    285 https://doi.org/10.1126/science.1196442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062462816
    286 rdf:type schema:CreativeWork
    287 https://doi.org/10.1126/science.1254978 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062470039
    288 rdf:type schema:CreativeWork
    289 https://doi.org/10.1126/science.aam5538 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092105287
    290 rdf:type schema:CreativeWork
    291 https://doi.org/10.1364/josab.20.000977 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065170731
    292 rdf:type schema:CreativeWork
    293 https://doi.org/10.1364/josab.6.002257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065177424
    294 rdf:type schema:CreativeWork
    295 https://doi.org/10.1364/ol.19.001777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065215405
    296 rdf:type schema:CreativeWork
    297 https://www.grid.ac/institutes/grid.11135.37 schema:alternateName Peking University
    298 schema:name National Institute of Standards and Technology, Boulder, CO, USA
    299 State Key Laboratory of Advanced Optical Communication Systems and Networks, Institute of Quantum Electronics, School of Electronics Engineering and Computer Science, Peking University, Beijing, China
    300 rdf:type schema:Organization
    301 https://www.grid.ac/institutes/grid.213917.f schema:alternateName Georgia Institute of Technology
    302 schema:name Georgia Tech Research Institute, Atlanta, GA, USA
    303 National Institute of Standards and Technology, Boulder, CO, USA
    304 rdf:type schema:Organization
    305 https://www.grid.ac/institutes/grid.222754.4 schema:alternateName Korea University
    306 schema:name Department of Physics, Korea University, Seoul, South Korea
    307 National Institute of Standards and Technology, Boulder, CO, USA
    308 rdf:type schema:Organization
    309 https://www.grid.ac/institutes/grid.266185.e schema:alternateName University of Colorado System
    310 schema:name Department of Physics, University of Colorado, Boulder, CO, USA
    311 National Institute of Standards and Technology, Boulder, CO, USA
    312 Stable Laser Systems, Boulder, CO, USA
    313 rdf:type schema:Organization
    314 https://www.grid.ac/institutes/grid.410351.2 schema:alternateName National Physical Laboratory
    315 schema:name National Institute of Standards and Technology, Boulder, CO, USA
    316 National Physical Laboratory (NPL), Teddington, UK
    317 rdf:type schema:Organization
    318 https://www.grid.ac/institutes/grid.4800.c schema:alternateName Polytechnic University of Turin
    319 schema:name Istituto Nazionale di Ricerca Metrologica, Torino, Italy
    320 National Institute of Standards and Technology, Boulder, CO, USA
    321 Politecnico di Torino, Torino, Italy
    322 rdf:type schema:Organization
    323 https://www.grid.ac/institutes/grid.5254.6 schema:alternateName University of Copenhagen
    324 schema:name National Institute of Standards and Technology, Boulder, CO, USA
    325 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
    326 rdf:type schema:Organization
    327 https://www.grid.ac/institutes/grid.94225.38 schema:alternateName National Institute of Standards and Technology
    328 schema:name National Institute of Standards and Technology, Boulder, CO, USA
    329 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...