Topological band engineering of graphene nanoribbons View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-08-08

AUTHORS

Daniel J. Rizzo, Gregory Veber, Ting Cao, Christopher Bronner, Ting Chen, Fangzhou Zhao, Henry Rodriguez, Steven G. Louie, Michael F. Crommie, Felix R. Fischer

ABSTRACT

Topological insulators are an emerging class of materials that host highly robust in-gap surface or interface states while maintaining an insulating bulk1,2. Most advances in this field have focused on topological insulators and related topological crystalline insulators3 in two dimensions4–6 and three dimensions7–10, but more recent theoretical work has predicted the existence of one-dimensional symmetry-protected topological phases in graphene nanoribbons (GNRs)11. The topological phase of these laterally confined, semiconducting strips of graphene is determined by their width, edge shape and terminating crystallographic unit cell and is characterized by a Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb{Z}}}_{2}$$\end{document} invariant12 (that is, an index of either 0 or 1, indicating two topological classes—similar to quasi-one-dimensional solitonic systems13–16). Interfaces between topologically distinct GNRs characterized by different values of Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb{Z}}}_{2}$$\end{document} are predicted to support half-filled, in-gap localized electronic states that could, in principle, be used as a tool for material engineering11. Here we present the rational design and experimental realization of a topologically engineered GNR superlattice that hosts a one-dimensional array of such states, thus generating otherwise inaccessible electronic structures. This strategy also enables new end states to be engineered directly into the termini of the one-dimensional GNR superlattice. Atomically precise topological GNR superlattices were synthesized from molecular precursors on a gold surface, Au(111), under ultrahigh-vacuum conditions and characterized by low-temperature scanning tunnelling microscopy and spectroscopy. Our experimental results and first-principles calculations reveal that the frontier band structure (the bands bracketing filled and empty states) of these GNR superlattices is defined purely by the coupling between adjacent topological interface states. This manifestation of non-trivial one-dimensional topological phases presents a route to band engineering in one-dimensional materials based on precise control of their electronic topology, and is a promising platform for studies of one-dimensional quantum spin physics. More... »

PAGES

204-208

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41586-018-0376-8

DOI

http://dx.doi.org/10.1038/s41586-018-0376-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105954009

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30089918


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Physics, University of California, Berkeley, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Department of Physics, University of California, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rizzo", 
        "givenName": "Daniel J.", 
        "id": "sg:person.01234022501.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234022501.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemistry, University of California, Berkeley, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Department of Chemistry, University of California, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Veber", 
        "givenName": "Gregory", 
        "id": "sg:person.011314370317.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011314370317.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Department of Physics, University of California, Berkeley, CA, USA", 
            "Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cao", 
        "givenName": "Ting", 
        "id": "sg:person.01103460461.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103460461.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, University of California, Berkeley, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Department of Physics, University of California, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bronner", 
        "givenName": "Christopher", 
        "id": "sg:person.01302135701.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302135701.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, University of California, Berkeley, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Department of Physics, University of California, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Ting", 
        "id": "sg:person.01253236401.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253236401.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, University of California, Berkeley, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Department of Physics, University of California, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Fangzhou", 
        "id": "sg:person.013014570553.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013014570553.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, University of California, Berkeley, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Department of Physics, University of California, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rodriguez", 
        "givenName": "Henry", 
        "id": "sg:person.016124101150.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016124101150.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Department of Physics, University of California, Berkeley, CA, USA", 
            "Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Louie", 
        "givenName": "Steven G.", 
        "id": "sg:person.01146660016.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146660016.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kavli Energy NanoSciences Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.494610.e", 
          "name": [
            "Department of Physics, University of California, Berkeley, CA, USA", 
            "Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA", 
            "Kavli Energy NanoSciences Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Crommie", 
        "givenName": "Michael F.", 
        "id": "sg:person.01046572263.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046572263.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kavli Energy NanoSciences Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.494610.e", 
          "name": [
            "Department of Chemistry, University of California, Berkeley, CA, USA", 
            "Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA", 
            "Kavli Energy NanoSciences Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fischer", 
        "givenName": "Felix R.", 
        "id": "sg:person.01314535210.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314535210.06"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ncomms10177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019614812", 
          "https://doi.org/10.1038/ncomms10177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys4026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083695141", 
          "https://doi.org/10.1038/nphys4026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06843", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045802727", 
          "https://doi.org/10.1038/nature06843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2014.307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019000652", 
          "https://doi.org/10.1038/nnano.2014.307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2017.155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091912041", 
          "https://doi.org/10.1038/nnano.2017.155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2014.184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014287703", 
          "https://doi.org/10.1038/nnano.2014.184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042615843", 
          "https://doi.org/10.1038/nature09211"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-08-08", 
    "datePublishedReg": "2018-08-08", 
    "description": "Topological insulators are an emerging class of materials that host highly robust in-gap surface or interface states while maintaining an insulating bulk1,2. Most advances in this field have focused on topological insulators and related topological crystalline insulators3 in two dimensions4\u20136 and three dimensions7\u201310, but more recent theoretical work has predicted the existence of one-dimensional symmetry-protected topological phases in graphene nanoribbons (GNRs)11. The topological phase of these laterally confined, semiconducting strips of graphene is determined by their width, edge shape and terminating crystallographic unit cell and is characterized by a Z2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${{\\mathbb{Z}}}_{2}$$\\end{document} invariant12 (that is, an index of either 0 or 1, indicating two topological classes\u2014similar to quasi-one-dimensional solitonic systems13\u201316). Interfaces between topologically distinct GNRs characterized by different\u00a0values of Z2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${{\\mathbb{Z}}}_{2}$$\\end{document} are predicted to support half-filled, in-gap localized electronic states that could, in principle, be used as a tool for material engineering11. Here we present the rational design and experimental realization of a topologically engineered GNR superlattice that hosts a one-dimensional array of such states, thus generating otherwise inaccessible electronic structures. This strategy also enables new end states to be engineered directly into the termini of the one-dimensional GNR superlattice. Atomically precise topological GNR superlattices were synthesized from molecular precursors on a gold surface, Au(111), under ultrahigh-vacuum conditions and characterized by low-temperature scanning tunnelling microscopy and spectroscopy. Our experimental results and first-principles calculations reveal that the frontier band structure\u00a0(the bands bracketing filled and empty states) of these GNR superlattices is defined purely by the coupling between adjacent topological interface states. This manifestation of non-trivial one-dimensional topological phases presents a route to band engineering in one-dimensional materials based on precise control of their electronic topology, and is a promising platform for studies of one-dimensional quantum spin physics.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41586-018-0376-8", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7717", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "560"
      }
    ], 
    "keywords": [
      "topological phases", 
      "topological insulators", 
      "band engineering", 
      "graphene nanoribbons", 
      "low-temperature scanning tunneling microscopy", 
      "one-dimensional symmetry-protected topological phases", 
      "interface states", 
      "one-dimensional topological phases", 
      "topological interface states", 
      "symmetry-protected topological phases", 
      "ultrahigh vacuum conditions", 
      "scanning tunneling microscopy", 
      "strips of graphene", 
      "first-principles calculations", 
      "spin physics", 
      "experimental realization", 
      "one-dimensional array", 
      "one-dimensional materials", 
      "electronic states", 
      "band structure", 
      "recent theoretical work", 
      "tunneling microscopy", 
      "GaP surface", 
      "such states", 
      "electronic structure", 
      "class of materials", 
      "superlattices", 
      "crystallographic unit cell", 
      "insulator", 
      "promising platform", 
      "nanoribbons", 
      "theoretical work", 
      "molecular precursors", 
      "gold surface", 
      "unit cell", 
      "end states", 
      "precise control", 
      "electronic topology", 
      "physics", 
      "state", 
      "edge shape", 
      "insulating", 
      "graphene", 
      "spectroscopy", 
      "GNR", 
      "coupling", 
      "surface", 
      "experimental results", 
      "phase", 
      "calculations", 
      "width", 
      "microscopy", 
      "structure", 
      "field", 
      "realization", 
      "crystalline", 
      "array", 
      "gap", 
      "materials", 
      "interface", 
      "shape", 
      "existence", 
      "rational design", 
      "most advances", 
      "principles", 
      "engineering", 
      "work", 
      "strips", 
      "precursors", 
      "values", 
      "route", 
      "results", 
      "topology", 
      "platform", 
      "conditions", 
      "advances", 
      "design", 
      "tool", 
      "class", 
      "study", 
      "manifestations", 
      "cells", 
      "control", 
      "strategies", 
      "terminus"
    ], 
    "name": "Topological band engineering of graphene nanoribbons", 
    "pagination": "204-208", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105954009"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41586-018-0376-8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30089918"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41586-018-0376-8", 
      "https://app.dimensions.ai/details/publication/pub.1105954009"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_763.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41586-018-0376-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41586-018-0376-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41586-018-0376-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41586-018-0376-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41586-018-0376-8'


 

This table displays all metadata directly associated to this object as RDF triples.

249 TRIPLES      21 PREDICATES      117 URIs      102 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41586-018-0376-8 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N9a01cd7edc9942a1b09078d09f8202a1
4 schema:citation sg:pub.10.1038/nature06843
5 sg:pub.10.1038/nature09211
6 sg:pub.10.1038/ncomms10177
7 sg:pub.10.1038/nnano.2014.184
8 sg:pub.10.1038/nnano.2014.307
9 sg:pub.10.1038/nnano.2017.155
10 sg:pub.10.1038/nphys4026
11 schema:datePublished 2018-08-08
12 schema:datePublishedReg 2018-08-08
13 schema:description Topological insulators are an emerging class of materials that host highly robust in-gap surface or interface states while maintaining an insulating bulk1,2. Most advances in this field have focused on topological insulators and related topological crystalline insulators3 in two dimensions4–6 and three dimensions7–10, but more recent theoretical work has predicted the existence of one-dimensional symmetry-protected topological phases in graphene nanoribbons (GNRs)11. The topological phase of these laterally confined, semiconducting strips of graphene is determined by their width, edge shape and terminating crystallographic unit cell and is characterized by a Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb{Z}}}_{2}$$\end{document} invariant12 (that is, an index of either 0 or 1, indicating two topological classes—similar to quasi-one-dimensional solitonic systems13–16). Interfaces between topologically distinct GNRs characterized by different values of Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb{Z}}}_{2}$$\end{document} are predicted to support half-filled, in-gap localized electronic states that could, in principle, be used as a tool for material engineering11. Here we present the rational design and experimental realization of a topologically engineered GNR superlattice that hosts a one-dimensional array of such states, thus generating otherwise inaccessible electronic structures. This strategy also enables new end states to be engineered directly into the termini of the one-dimensional GNR superlattice. Atomically precise topological GNR superlattices were synthesized from molecular precursors on a gold surface, Au(111), under ultrahigh-vacuum conditions and characterized by low-temperature scanning tunnelling microscopy and spectroscopy. Our experimental results and first-principles calculations reveal that the frontier band structure (the bands bracketing filled and empty states) of these GNR superlattices is defined purely by the coupling between adjacent topological interface states. This manifestation of non-trivial one-dimensional topological phases presents a route to band engineering in one-dimensional materials based on precise control of their electronic topology, and is a promising platform for studies of one-dimensional quantum spin physics.
14 schema:genre article
15 schema:isAccessibleForFree true
16 schema:isPartOf N13aae5b0dee04037aa9a3d661573b0c0
17 Nf81ec76dc360426892e40538799d0211
18 sg:journal.1018957
19 schema:keywords GNR
20 GaP surface
21 advances
22 array
23 band engineering
24 band structure
25 calculations
26 cells
27 class
28 class of materials
29 conditions
30 control
31 coupling
32 crystalline
33 crystallographic unit cell
34 design
35 edge shape
36 electronic states
37 electronic structure
38 electronic topology
39 end states
40 engineering
41 existence
42 experimental realization
43 experimental results
44 field
45 first-principles calculations
46 gap
47 gold surface
48 graphene
49 graphene nanoribbons
50 insulating
51 insulator
52 interface
53 interface states
54 low-temperature scanning tunneling microscopy
55 manifestations
56 materials
57 microscopy
58 molecular precursors
59 most advances
60 nanoribbons
61 one-dimensional array
62 one-dimensional materials
63 one-dimensional symmetry-protected topological phases
64 one-dimensional topological phases
65 phase
66 physics
67 platform
68 precise control
69 precursors
70 principles
71 promising platform
72 rational design
73 realization
74 recent theoretical work
75 results
76 route
77 scanning tunneling microscopy
78 shape
79 spectroscopy
80 spin physics
81 state
82 strategies
83 strips
84 strips of graphene
85 structure
86 study
87 such states
88 superlattices
89 surface
90 symmetry-protected topological phases
91 terminus
92 theoretical work
93 tool
94 topological insulators
95 topological interface states
96 topological phases
97 topology
98 tunneling microscopy
99 ultrahigh vacuum conditions
100 unit cell
101 values
102 width
103 work
104 schema:name Topological band engineering of graphene nanoribbons
105 schema:pagination 204-208
106 schema:productId N38af7713545a46879d18091d29894ba7
107 N74a5e812ba90441c82cef7d6d7b3a602
108 Nc15ff078bbd442e3a657dfad9a366767
109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105954009
110 https://doi.org/10.1038/s41586-018-0376-8
111 schema:sdDatePublished 2022-12-01T06:37
112 schema:sdLicense https://scigraph.springernature.com/explorer/license/
113 schema:sdPublisher Ne98afd53ce6442b6ae8366be482263fc
114 schema:url https://doi.org/10.1038/s41586-018-0376-8
115 sgo:license sg:explorer/license/
116 sgo:sdDataset articles
117 rdf:type schema:ScholarlyArticle
118 N13aae5b0dee04037aa9a3d661573b0c0 schema:issueNumber 7717
119 rdf:type schema:PublicationIssue
120 N14cf56f91b6b496f8564b5245a567a77 rdf:first sg:person.016124101150.20
121 rdf:rest N3f9aef8f5fb74053825361aab12e2ef4
122 N25139db898f94df9a4ce03e51cbd7ba5 rdf:first sg:person.01302135701.56
123 rdf:rest N3e931162a9dc434fb56767f95af580ef
124 N38af7713545a46879d18091d29894ba7 schema:name dimensions_id
125 schema:value pub.1105954009
126 rdf:type schema:PropertyValue
127 N3e931162a9dc434fb56767f95af580ef rdf:first sg:person.01253236401.81
128 rdf:rest Nc1423d809f7b471baf791053c172d57e
129 N3f9aef8f5fb74053825361aab12e2ef4 rdf:first sg:person.01146660016.40
130 rdf:rest N87dce3560aa647019b495ce031d87e06
131 N5679cde64aca406087f79e2e75218376 rdf:first sg:person.01314535210.06
132 rdf:rest rdf:nil
133 N74a5e812ba90441c82cef7d6d7b3a602 schema:name pubmed_id
134 schema:value 30089918
135 rdf:type schema:PropertyValue
136 N87dce3560aa647019b495ce031d87e06 rdf:first sg:person.01046572263.84
137 rdf:rest N5679cde64aca406087f79e2e75218376
138 N95ab989cec094f39a3660c2673654cea rdf:first sg:person.01103460461.72
139 rdf:rest N25139db898f94df9a4ce03e51cbd7ba5
140 N9a01cd7edc9942a1b09078d09f8202a1 rdf:first sg:person.01234022501.26
141 rdf:rest Nb390fd4bd5f2493eb7c0b3dab8224fc8
142 Nb390fd4bd5f2493eb7c0b3dab8224fc8 rdf:first sg:person.011314370317.02
143 rdf:rest N95ab989cec094f39a3660c2673654cea
144 Nc1423d809f7b471baf791053c172d57e rdf:first sg:person.013014570553.89
145 rdf:rest N14cf56f91b6b496f8564b5245a567a77
146 Nc15ff078bbd442e3a657dfad9a366767 schema:name doi
147 schema:value 10.1038/s41586-018-0376-8
148 rdf:type schema:PropertyValue
149 Ne98afd53ce6442b6ae8366be482263fc schema:name Springer Nature - SN SciGraph project
150 rdf:type schema:Organization
151 Nf81ec76dc360426892e40538799d0211 schema:volumeNumber 560
152 rdf:type schema:PublicationVolume
153 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
154 schema:name Engineering
155 rdf:type schema:DefinedTerm
156 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
157 schema:name Materials Engineering
158 rdf:type schema:DefinedTerm
159 sg:journal.1018957 schema:issn 0028-0836
160 1476-4687
161 schema:name Nature
162 schema:publisher Springer Nature
163 rdf:type schema:Periodical
164 sg:person.01046572263.84 schema:affiliation grid-institutes:grid.494610.e
165 schema:familyName Crommie
166 schema:givenName Michael F.
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046572263.84
168 rdf:type schema:Person
169 sg:person.01103460461.72 schema:affiliation grid-institutes:grid.184769.5
170 schema:familyName Cao
171 schema:givenName Ting
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103460461.72
173 rdf:type schema:Person
174 sg:person.011314370317.02 schema:affiliation grid-institutes:grid.47840.3f
175 schema:familyName Veber
176 schema:givenName Gregory
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011314370317.02
178 rdf:type schema:Person
179 sg:person.01146660016.40 schema:affiliation grid-institutes:grid.184769.5
180 schema:familyName Louie
181 schema:givenName Steven G.
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146660016.40
183 rdf:type schema:Person
184 sg:person.01234022501.26 schema:affiliation grid-institutes:grid.47840.3f
185 schema:familyName Rizzo
186 schema:givenName Daniel J.
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234022501.26
188 rdf:type schema:Person
189 sg:person.01253236401.81 schema:affiliation grid-institutes:grid.47840.3f
190 schema:familyName Chen
191 schema:givenName Ting
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253236401.81
193 rdf:type schema:Person
194 sg:person.013014570553.89 schema:affiliation grid-institutes:grid.47840.3f
195 schema:familyName Zhao
196 schema:givenName Fangzhou
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013014570553.89
198 rdf:type schema:Person
199 sg:person.01302135701.56 schema:affiliation grid-institutes:grid.47840.3f
200 schema:familyName Bronner
201 schema:givenName Christopher
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302135701.56
203 rdf:type schema:Person
204 sg:person.01314535210.06 schema:affiliation grid-institutes:grid.494610.e
205 schema:familyName Fischer
206 schema:givenName Felix R.
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314535210.06
208 rdf:type schema:Person
209 sg:person.016124101150.20 schema:affiliation grid-institutes:grid.47840.3f
210 schema:familyName Rodriguez
211 schema:givenName Henry
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016124101150.20
213 rdf:type schema:Person
214 sg:pub.10.1038/nature06843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045802727
215 https://doi.org/10.1038/nature06843
216 rdf:type schema:CreativeWork
217 sg:pub.10.1038/nature09211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042615843
218 https://doi.org/10.1038/nature09211
219 rdf:type schema:CreativeWork
220 sg:pub.10.1038/ncomms10177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019614812
221 https://doi.org/10.1038/ncomms10177
222 rdf:type schema:CreativeWork
223 sg:pub.10.1038/nnano.2014.184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014287703
224 https://doi.org/10.1038/nnano.2014.184
225 rdf:type schema:CreativeWork
226 sg:pub.10.1038/nnano.2014.307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019000652
227 https://doi.org/10.1038/nnano.2014.307
228 rdf:type schema:CreativeWork
229 sg:pub.10.1038/nnano.2017.155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091912041
230 https://doi.org/10.1038/nnano.2017.155
231 rdf:type schema:CreativeWork
232 sg:pub.10.1038/nphys4026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083695141
233 https://doi.org/10.1038/nphys4026
234 rdf:type schema:CreativeWork
235 grid-institutes:grid.184769.5 schema:alternateName Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
236 schema:name Department of Physics, University of California, Berkeley, CA, USA
237 Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
238 rdf:type schema:Organization
239 grid-institutes:grid.47840.3f schema:alternateName Department of Chemistry, University of California, Berkeley, CA, USA
240 Department of Physics, University of California, Berkeley, CA, USA
241 schema:name Department of Chemistry, University of California, Berkeley, CA, USA
242 Department of Physics, University of California, Berkeley, CA, USA
243 rdf:type schema:Organization
244 grid-institutes:grid.494610.e schema:alternateName Kavli Energy NanoSciences Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, CA, USA
245 schema:name Department of Chemistry, University of California, Berkeley, CA, USA
246 Department of Physics, University of California, Berkeley, CA, USA
247 Kavli Energy NanoSciences Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, CA, USA
248 Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
249 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...