Complex silica composite nanomaterials templated with DNA origami View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-07-16

AUTHORS

Xiaoguo Liu, Fei Zhang, Xinxin Jing, Muchen Pan, Pi Liu, Wei Li, Bowen Zhu, Jiang Li, Hong Chen, Lihua Wang, Jianping Lin, Yan Liu, Dongyuan Zhao, Hao Yan, Chunhai Fan

ABSTRACT

Genetically encoded protein scaffolds often serve as templates for the mineralization of biocomposite materials with complex yet highly controlled structural features that span from nanometres to the macroscopic scale1–4. Methods developed to mimic these fabrication capabilities can produce synthetic materials with well defined micro- and macro-sized features, but extending control to the nanoscale remains challenging5,6. DNA nanotechnology can deliver a wide range of customized nanoscale two- and three-dimensional assemblies with controlled sizes and shapes7–11. But although DNA has been used to modulate the morphology of inorganic materials12,13 and DNA nanostructures have served as moulds14,15 and templates16,17, it remains challenging to exploit the potential of DNA nanostructures fully because they require high-ionic-strength solutions to maintain their structure, and this in turn gives rise to surface charging that suppresses the material deposition. Here we report that the Stöber method, widely used for producing silica (silicon dioxide) nanostructures, can be adjusted to overcome this difficulty: when synthesis conditions are such that mineral precursor molecules do not deposit directly but first form clusters, DNA–silica hybrid materials that faithfully replicate the complex geometric information of a wide range of different DNA origami scaffolds are readily obtained. We illustrate this approach using frame-like, curved and porous DNA nanostructures, with one-, two- and three-dimensional complex hierarchical architectures that range in size from 10 to 1,000 nanometres. We also show that after coating with an amorphous silica layer, the thickness of which can be tuned by adjusting the growth time, hybrid structures can be up to ten times tougher than the DNA template while maintaining flexibility. These findings establish our approach as a general method for creating biomimetic silica nanostructures. More... »

PAGES

593-598

Journal

TITLE

Nature

ISSUE

7715

VOLUME

559

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41586-018-0332-7

DOI

http://dx.doi.org/10.1038/s41586-018-0332-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105584563

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30013119


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Macromolecular and Materials Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomimetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Elastic Modulus", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microscopy, Electron, Transmission", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Dynamics Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nanostructures", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Silicon Dioxide", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.16821.3c", 
          "name": [
            "Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China", 
            "School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Xiaoguo", 
        "id": "sg:person.01160306136.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160306136.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Molecular Sciences, Arizona State University, Tempe, AZ, USA", 
          "id": "http://www.grid.ac/institutes/grid.215654.1", 
          "name": [
            "Center for Molecular Design and Biomimetics, Biodesign Institute, Tempe, AZ, USA", 
            "School of Molecular Sciences, Arizona State University, Tempe, AZ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Fei", 
        "id": "sg:person.01227175741.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227175741.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jing", 
        "givenName": "Xinxin", 
        "id": "sg:person.07400205354.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07400205354.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pan", 
        "givenName": "Muchen", 
        "id": "sg:person.010175565754.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010175565754.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China", 
          "id": "http://www.grid.ac/institutes/grid.458513.e", 
          "name": [
            "State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, Tianjin, China", 
            "Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Pi", 
        "id": "sg:person.01003715223.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003715223.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.8547.e", 
          "name": [
            "Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Wei", 
        "id": "sg:person.016632652653.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016632652653.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Bowen", 
        "id": "sg:person.012366107354.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012366107354.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.22069.3f", 
          "name": [
            "Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China", 
            "Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Jiang", 
        "id": "sg:person.01253443600.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253443600.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, China", 
          "id": "http://www.grid.ac/institutes/grid.12955.3a", 
          "name": [
            "Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Hong", 
        "id": "sg:person.011134507167.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011134507167.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Lihua", 
        "id": "sg:person.015273400357.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015273400357.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China", 
          "id": "http://www.grid.ac/institutes/grid.458513.e", 
          "name": [
            "State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, Tianjin, China", 
            "Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Jianping", 
        "id": "sg:person.01234372223.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234372223.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Molecular Sciences, Arizona State University, Tempe, AZ, USA", 
          "id": "http://www.grid.ac/institutes/grid.215654.1", 
          "name": [
            "Center for Molecular Design and Biomimetics, Biodesign Institute, Tempe, AZ, USA", 
            "School of Molecular Sciences, Arizona State University, Tempe, AZ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Yan", 
        "id": "sg:person.01354477301.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354477301.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.8547.e", 
          "name": [
            "Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Dongyuan", 
        "id": "sg:person.011112434425.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011112434425.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Molecular Sciences, Arizona State University, Tempe, AZ, USA", 
          "id": "http://www.grid.ac/institutes/grid.215654.1", 
          "name": [
            "Center for Molecular Design and Biomimetics, Biodesign Institute, Tempe, AZ, USA", 
            "School of Molecular Sciences, Arizona State University, Tempe, AZ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yan", 
        "givenName": "Hao", 
        "id": "sg:person.0727257441.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727257441.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fan", 
        "givenName": "Chunhai", 
        "id": "sg:person.0764427152.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764427152.44"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature04586", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028635122", 
          "https://doi.org/10.1038/nature04586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021027769", 
          "https://doi.org/10.1038/nmat1913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/381056a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044703065", 
          "https://doi.org/10.1038/381056a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2009.220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048980818", 
          "https://doi.org/10.1038/nnano.2009.220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042549336", 
          "https://doi.org/10.1038/nature01405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013163341", 
          "https://doi.org/10.1038/nature08274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat4089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029890107", 
          "https://doi.org/10.1038/nmat4089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35084037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045265151", 
          "https://doi.org/10.1038/35084037"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-07-16", 
    "datePublishedReg": "2018-07-16", 
    "description": "Genetically encoded protein scaffolds often serve as templates for the mineralization of biocomposite materials with complex yet highly controlled structural features that span from nanometres to the macroscopic scale1\u20134. Methods developed to mimic these fabrication capabilities can produce synthetic materials with well defined micro- and macro-sized features, but extending control to the nanoscale remains challenging5,6. DNA nanotechnology can deliver a wide range of customized nanoscale two- and three-dimensional assemblies with controlled sizes and shapes7\u201311. But although DNA has been used to modulate the morphology of inorganic materials12,13 and DNA nanostructures have served as moulds14,15 and templates16,17, it remains challenging to exploit the potential of DNA nanostructures fully because they require high-ionic-strength solutions to maintain their structure, and this in turn gives rise to surface charging that suppresses the material deposition. Here we report that the St\u00f6ber method, widely used for producing silica (silicon dioxide) nanostructures, can be adjusted to overcome this difficulty: when synthesis conditions are such that mineral precursor molecules do not deposit directly but first form clusters, DNA\u2013silica hybrid materials that faithfully replicate the complex geometric information of a wide range of different DNA origami scaffolds are readily obtained. We illustrate this approach using frame-like, curved and porous DNA nanostructures, with one-, two- and three-dimensional complex hierarchical architectures that range in size from 10 to 1,000 nanometres. We also show that after coating with an amorphous silica layer, the thickness of which can be tuned by adjusting the growth time, hybrid structures can be up to ten times tougher than the DNA template while maintaining flexibility. These findings establish our approach as a general method for creating biomimetic silica nanostructures.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41586-018-0332-7", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8158982", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8144716", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8380148", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8146476", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8156736", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8154336", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7715", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "559"
      }
    ], 
    "keywords": [
      "DNA nanostructures", 
      "silica nanostructures", 
      "DNA origami scaffold", 
      "amorphous silica layer", 
      "nanoscale two", 
      "St\u00f6ber method", 
      "composite nanomaterials", 
      "DNA nanotechnology", 
      "three-dimensional assembly", 
      "DNA origami", 
      "fabrication capability", 
      "silica layer", 
      "origami scaffold", 
      "nanostructures", 
      "complex hierarchical architectures", 
      "hybrid materials", 
      "hybrid structure", 
      "synthesis conditions", 
      "hierarchical architecture", 
      "growth time", 
      "protein scaffolds", 
      "strength solutions", 
      "synthetic materials", 
      "biocomposite materials", 
      "precursor molecules", 
      "material deposition", 
      "structural features", 
      "DNA template", 
      "complex geometric information", 
      "template", 
      "nanomaterials", 
      "nanotechnology", 
      "scaffolds", 
      "nanoscale", 
      "form clusters", 
      "wide range", 
      "origami", 
      "materials", 
      "general method", 
      "molecules", 
      "structure", 
      "size", 
      "morphology", 
      "architecture", 
      "deposition", 
      "layer", 
      "assembly", 
      "geometric information", 
      "range", 
      "thickness", 
      "capability", 
      "method", 
      "solution", 
      "flexibility", 
      "DNA", 
      "potential", 
      "clusters", 
      "mineralization", 
      "approach", 
      "conditions", 
      "time", 
      "features", 
      "control", 
      "turn", 
      "rise", 
      "information", 
      "difficulties", 
      "two", 
      "findings"
    ], 
    "name": "Complex silica composite nanomaterials templated with DNA origami", 
    "pagination": "593-598", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105584563"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41586-018-0332-7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30013119"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41586-018-0332-7", 
      "https://app.dimensions.ai/details/publication/pub.1105584563"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T17:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_763.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41586-018-0332-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41586-018-0332-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41586-018-0332-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41586-018-0332-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41586-018-0332-7'


 

This table displays all metadata directly associated to this object as RDF triples.

326 TRIPLES      21 PREDICATES      110 URIs      93 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41586-018-0332-7 schema:about N6374680e81264ca285045d2af15bb78f
2 N66c9cba48d12412e895bb2a840839039
3 N82700795e53b401390c6077a4393e44e
4 N884d0b22d4904ba0814517076524490e
5 N8dd1f2b331f94f17a9f326aeecfa4be0
6 Nb16832a30c9a4f3eb72bc2d34232be9d
7 Ndc3fcad99d2247c0b94a6dd19ed33c1a
8 anzsrc-for:03
9 anzsrc-for:0303
10 anzsrc-for:0306
11 schema:author N3c7397516b8949f4a353f66f1ea4b94c
12 schema:citation sg:pub.10.1038/35084037
13 sg:pub.10.1038/381056a0
14 sg:pub.10.1038/nature01405
15 sg:pub.10.1038/nature04586
16 sg:pub.10.1038/nature08274
17 sg:pub.10.1038/nmat1913
18 sg:pub.10.1038/nmat4089
19 sg:pub.10.1038/nnano.2009.220
20 schema:datePublished 2018-07-16
21 schema:datePublishedReg 2018-07-16
22 schema:description Genetically encoded protein scaffolds often serve as templates for the mineralization of biocomposite materials with complex yet highly controlled structural features that span from nanometres to the macroscopic scale1–4. Methods developed to mimic these fabrication capabilities can produce synthetic materials with well defined micro- and macro-sized features, but extending control to the nanoscale remains challenging5,6. DNA nanotechnology can deliver a wide range of customized nanoscale two- and three-dimensional assemblies with controlled sizes and shapes7–11. But although DNA has been used to modulate the morphology of inorganic materials12,13 and DNA nanostructures have served as moulds14,15 and templates16,17, it remains challenging to exploit the potential of DNA nanostructures fully because they require high-ionic-strength solutions to maintain their structure, and this in turn gives rise to surface charging that suppresses the material deposition. Here we report that the Stöber method, widely used for producing silica (silicon dioxide) nanostructures, can be adjusted to overcome this difficulty: when synthesis conditions are such that mineral precursor molecules do not deposit directly but first form clusters, DNA–silica hybrid materials that faithfully replicate the complex geometric information of a wide range of different DNA origami scaffolds are readily obtained. We illustrate this approach using frame-like, curved and porous DNA nanostructures, with one-, two- and three-dimensional complex hierarchical architectures that range in size from 10 to 1,000 nanometres. We also show that after coating with an amorphous silica layer, the thickness of which can be tuned by adjusting the growth time, hybrid structures can be up to ten times tougher than the DNA template while maintaining flexibility. These findings establish our approach as a general method for creating biomimetic silica nanostructures.
23 schema:genre article
24 schema:isAccessibleForFree false
25 schema:isPartOf N5877a74c22714145a223bae7faae05ff
26 Nc989e70fdfdb4df9a156884a22f4c286
27 sg:journal.1018957
28 schema:keywords DNA
29 DNA nanostructures
30 DNA nanotechnology
31 DNA origami
32 DNA origami scaffold
33 DNA template
34 Stöber method
35 amorphous silica layer
36 approach
37 architecture
38 assembly
39 biocomposite materials
40 capability
41 clusters
42 complex geometric information
43 complex hierarchical architectures
44 composite nanomaterials
45 conditions
46 control
47 deposition
48 difficulties
49 fabrication capability
50 features
51 findings
52 flexibility
53 form clusters
54 general method
55 geometric information
56 growth time
57 hierarchical architecture
58 hybrid materials
59 hybrid structure
60 information
61 layer
62 material deposition
63 materials
64 method
65 mineralization
66 molecules
67 morphology
68 nanomaterials
69 nanoscale
70 nanoscale two
71 nanostructures
72 nanotechnology
73 origami
74 origami scaffold
75 potential
76 precursor molecules
77 protein scaffolds
78 range
79 rise
80 scaffolds
81 silica layer
82 silica nanostructures
83 size
84 solution
85 strength solutions
86 structural features
87 structure
88 synthesis conditions
89 synthetic materials
90 template
91 thickness
92 three-dimensional assembly
93 time
94 turn
95 two
96 wide range
97 schema:name Complex silica composite nanomaterials templated with DNA origami
98 schema:pagination 593-598
99 schema:productId N25c1376e825c496080995c902ef8c6db
100 Na93acf0cf2b04464b59879ffc7ce91e5
101 Nf6d0c4837bbc48bbb91def949e10e988
102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105584563
103 https://doi.org/10.1038/s41586-018-0332-7
104 schema:sdDatePublished 2022-08-04T17:04
105 schema:sdLicense https://scigraph.springernature.com/explorer/license/
106 schema:sdPublisher Na48c1ccf490e4c8ba36e95c3935e22d0
107 schema:url https://doi.org/10.1038/s41586-018-0332-7
108 sgo:license sg:explorer/license/
109 sgo:sdDataset articles
110 rdf:type schema:ScholarlyArticle
111 N098cca57fd37427db168ba97b2383204 rdf:first sg:person.0764427152.44
112 rdf:rest rdf:nil
113 N25c1376e825c496080995c902ef8c6db schema:name pubmed_id
114 schema:value 30013119
115 rdf:type schema:PropertyValue
116 N3c7397516b8949f4a353f66f1ea4b94c rdf:first sg:person.01160306136.68
117 rdf:rest N9b248108a4604b13843bbb0c1eb19cd3
118 N3cfdada841de486cb2836b7383fae574 rdf:first sg:person.015273400357.25
119 rdf:rest Nba8a996544a448fd991c0d34db5cb686
120 N54d7de397d52456f845c960ee67be7b4 rdf:first sg:person.011134507167.34
121 rdf:rest N3cfdada841de486cb2836b7383fae574
122 N55d80134c34941fabc8882174d4939f4 rdf:first sg:person.01253443600.29
123 rdf:rest N54d7de397d52456f845c960ee67be7b4
124 N5877a74c22714145a223bae7faae05ff schema:volumeNumber 559
125 rdf:type schema:PublicationVolume
126 N60e0d647f6e244839adf29f5031f036d rdf:first sg:person.07400205354.42
127 rdf:rest N847abe0f353141c99ec0040846511668
128 N6374680e81264ca285045d2af15bb78f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Molecular Dynamics Simulation
130 rdf:type schema:DefinedTerm
131 N66c9cba48d12412e895bb2a840839039 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Elastic Modulus
133 rdf:type schema:DefinedTerm
134 N7573af5762174836bb57a8b7616a0148 rdf:first sg:person.01354477301.08
135 rdf:rest Nc5c7a9daf59b4418ac91f475fdd23bb9
136 N82700795e53b401390c6077a4393e44e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Nanostructures
138 rdf:type schema:DefinedTerm
139 N847abe0f353141c99ec0040846511668 rdf:first sg:person.010175565754.29
140 rdf:rest Nc627129c2e8c4491a2170cd6360c98e6
141 N884d0b22d4904ba0814517076524490e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Biomimetics
143 rdf:type schema:DefinedTerm
144 N8dd1f2b331f94f17a9f326aeecfa4be0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Microscopy, Electron, Transmission
146 rdf:type schema:DefinedTerm
147 N9512928d864140d497164faaca1fec39 rdf:first sg:person.0727257441.61
148 rdf:rest N098cca57fd37427db168ba97b2383204
149 N9b248108a4604b13843bbb0c1eb19cd3 rdf:first sg:person.01227175741.13
150 rdf:rest N60e0d647f6e244839adf29f5031f036d
151 Na48c1ccf490e4c8ba36e95c3935e22d0 schema:name Springer Nature - SN SciGraph project
152 rdf:type schema:Organization
153 Na93acf0cf2b04464b59879ffc7ce91e5 schema:name dimensions_id
154 schema:value pub.1105584563
155 rdf:type schema:PropertyValue
156 Nb16832a30c9a4f3eb72bc2d34232be9d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Silicon Dioxide
158 rdf:type schema:DefinedTerm
159 Nb87fcb479d7e49359d460bd95c421808 rdf:first sg:person.016632652653.92
160 rdf:rest Neb5e30cf5b1848dfb18710443af61112
161 Nba8a996544a448fd991c0d34db5cb686 rdf:first sg:person.01234372223.18
162 rdf:rest N7573af5762174836bb57a8b7616a0148
163 Nc5c7a9daf59b4418ac91f475fdd23bb9 rdf:first sg:person.011112434425.72
164 rdf:rest N9512928d864140d497164faaca1fec39
165 Nc627129c2e8c4491a2170cd6360c98e6 rdf:first sg:person.01003715223.42
166 rdf:rest Nb87fcb479d7e49359d460bd95c421808
167 Nc989e70fdfdb4df9a156884a22f4c286 schema:issueNumber 7715
168 rdf:type schema:PublicationIssue
169 Ndc3fcad99d2247c0b94a6dd19ed33c1a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name DNA
171 rdf:type schema:DefinedTerm
172 Neb5e30cf5b1848dfb18710443af61112 rdf:first sg:person.012366107354.41
173 rdf:rest N55d80134c34941fabc8882174d4939f4
174 Nf6d0c4837bbc48bbb91def949e10e988 schema:name doi
175 schema:value 10.1038/s41586-018-0332-7
176 rdf:type schema:PropertyValue
177 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
178 schema:name Chemical Sciences
179 rdf:type schema:DefinedTerm
180 anzsrc-for:0303 schema:inDefinedTermSet anzsrc-for:
181 schema:name Macromolecular and Materials Chemistry
182 rdf:type schema:DefinedTerm
183 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
184 schema:name Physical Chemistry (incl. Structural)
185 rdf:type schema:DefinedTerm
186 sg:grant.8144716 http://pending.schema.org/fundedItem sg:pub.10.1038/s41586-018-0332-7
187 rdf:type schema:MonetaryGrant
188 sg:grant.8146476 http://pending.schema.org/fundedItem sg:pub.10.1038/s41586-018-0332-7
189 rdf:type schema:MonetaryGrant
190 sg:grant.8154336 http://pending.schema.org/fundedItem sg:pub.10.1038/s41586-018-0332-7
191 rdf:type schema:MonetaryGrant
192 sg:grant.8156736 http://pending.schema.org/fundedItem sg:pub.10.1038/s41586-018-0332-7
193 rdf:type schema:MonetaryGrant
194 sg:grant.8158982 http://pending.schema.org/fundedItem sg:pub.10.1038/s41586-018-0332-7
195 rdf:type schema:MonetaryGrant
196 sg:grant.8380148 http://pending.schema.org/fundedItem sg:pub.10.1038/s41586-018-0332-7
197 rdf:type schema:MonetaryGrant
198 sg:journal.1018957 schema:issn 0028-0836
199 1476-4687
200 schema:name Nature
201 schema:publisher Springer Nature
202 rdf:type schema:Periodical
203 sg:person.01003715223.42 schema:affiliation grid-institutes:grid.458513.e
204 schema:familyName Liu
205 schema:givenName Pi
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003715223.42
207 rdf:type schema:Person
208 sg:person.010175565754.29 schema:affiliation grid-institutes:None
209 schema:familyName Pan
210 schema:givenName Muchen
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010175565754.29
212 rdf:type schema:Person
213 sg:person.011112434425.72 schema:affiliation grid-institutes:grid.8547.e
214 schema:familyName Zhao
215 schema:givenName Dongyuan
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011112434425.72
217 rdf:type schema:Person
218 sg:person.011134507167.34 schema:affiliation grid-institutes:grid.12955.3a
219 schema:familyName Chen
220 schema:givenName Hong
221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011134507167.34
222 rdf:type schema:Person
223 sg:person.01160306136.68 schema:affiliation grid-institutes:grid.16821.3c
224 schema:familyName Liu
225 schema:givenName Xiaoguo
226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160306136.68
227 rdf:type schema:Person
228 sg:person.01227175741.13 schema:affiliation grid-institutes:grid.215654.1
229 schema:familyName Zhang
230 schema:givenName Fei
231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227175741.13
232 rdf:type schema:Person
233 sg:person.01234372223.18 schema:affiliation grid-institutes:grid.458513.e
234 schema:familyName Lin
235 schema:givenName Jianping
236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234372223.18
237 rdf:type schema:Person
238 sg:person.012366107354.41 schema:affiliation grid-institutes:None
239 schema:familyName Zhu
240 schema:givenName Bowen
241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012366107354.41
242 rdf:type schema:Person
243 sg:person.01253443600.29 schema:affiliation grid-institutes:grid.22069.3f
244 schema:familyName Li
245 schema:givenName Jiang
246 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253443600.29
247 rdf:type schema:Person
248 sg:person.01354477301.08 schema:affiliation grid-institutes:grid.215654.1
249 schema:familyName Liu
250 schema:givenName Yan
251 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354477301.08
252 rdf:type schema:Person
253 sg:person.015273400357.25 schema:affiliation grid-institutes:None
254 schema:familyName Wang
255 schema:givenName Lihua
256 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015273400357.25
257 rdf:type schema:Person
258 sg:person.016632652653.92 schema:affiliation grid-institutes:grid.8547.e
259 schema:familyName Li
260 schema:givenName Wei
261 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016632652653.92
262 rdf:type schema:Person
263 sg:person.0727257441.61 schema:affiliation grid-institutes:grid.215654.1
264 schema:familyName Yan
265 schema:givenName Hao
266 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727257441.61
267 rdf:type schema:Person
268 sg:person.07400205354.42 schema:affiliation grid-institutes:None
269 schema:familyName Jing
270 schema:givenName Xinxin
271 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07400205354.42
272 rdf:type schema:Person
273 sg:person.0764427152.44 schema:affiliation grid-institutes:None
274 schema:familyName Fan
275 schema:givenName Chunhai
276 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764427152.44
277 rdf:type schema:Person
278 sg:pub.10.1038/35084037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045265151
279 https://doi.org/10.1038/35084037
280 rdf:type schema:CreativeWork
281 sg:pub.10.1038/381056a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044703065
282 https://doi.org/10.1038/381056a0
283 rdf:type schema:CreativeWork
284 sg:pub.10.1038/nature01405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042549336
285 https://doi.org/10.1038/nature01405
286 rdf:type schema:CreativeWork
287 sg:pub.10.1038/nature04586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028635122
288 https://doi.org/10.1038/nature04586
289 rdf:type schema:CreativeWork
290 sg:pub.10.1038/nature08274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013163341
291 https://doi.org/10.1038/nature08274
292 rdf:type schema:CreativeWork
293 sg:pub.10.1038/nmat1913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021027769
294 https://doi.org/10.1038/nmat1913
295 rdf:type schema:CreativeWork
296 sg:pub.10.1038/nmat4089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029890107
297 https://doi.org/10.1038/nmat4089
298 rdf:type schema:CreativeWork
299 sg:pub.10.1038/nnano.2009.220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048980818
300 https://doi.org/10.1038/nnano.2009.220
301 rdf:type schema:CreativeWork
302 grid-institutes:None schema:alternateName Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
303 schema:name Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
304 rdf:type schema:Organization
305 grid-institutes:grid.12955.3a schema:alternateName Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, China
306 schema:name Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, China
307 rdf:type schema:Organization
308 grid-institutes:grid.16821.3c schema:alternateName School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
309 schema:name Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
310 School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
311 rdf:type schema:Organization
312 grid-institutes:grid.215654.1 schema:alternateName School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
313 schema:name Center for Molecular Design and Biomimetics, Biodesign Institute, Tempe, AZ, USA
314 School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
315 rdf:type schema:Organization
316 grid-institutes:grid.22069.3f schema:alternateName Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
317 schema:name Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
318 Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
319 rdf:type schema:Organization
320 grid-institutes:grid.458513.e schema:alternateName Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
321 schema:name Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
322 State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, Tianjin, China
323 rdf:type schema:Organization
324 grid-institutes:grid.8547.e schema:alternateName Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
325 schema:name Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
326 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...