Heterointerface effects in the electrointercalation of van der Waals heterostructures View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-06

AUTHORS

D. Kwabena Bediako, Mehdi Rezaee, Hyobin Yoo, Daniel T. Larson, S. Y. Frank Zhao, Takashi Taniguchi, Kenji Watanabe, Tina L. Brower-Thomas, Efthimios Kaxiras, Philip Kim

ABSTRACT

Molecular-scale manipulation of electronic and ionic charge accumulation in materials is the backbone of electrochemical energy storage1-4. Layered van der Waals (vdW) crystals are a diverse family of materials into which mobile ions can electrochemically intercalate into the interlamellar gaps of the host atomic lattice5,6. The structural diversity of such materials enables the interfacial properties of composites to be optimized to improve ion intercalation for energy storage and electronic devices7-12. However, the ability of heterolayers to modify intercalation reactions, and their role at the atomic level, are yet to be elucidated. Here we demonstrate the electrointercalation of lithium at the level of individual atomic interfaces of dissimilar vdW layers. Electrochemical devices based on vdW heterostructures 13 of stacked hexagonal boron nitride, graphene and molybdenum dichalcogenide (MoX2; X = S, Se) layers are constructed. We use transmission electron microscopy, in situ magnetoresistance and optical spectroscopy techniques, as well as low-temperature quantum magneto-oscillation measurements and ab initio calculations, to resolve the intermediate stages of lithium intercalation at heterointerfaces. The formation of vdW heterointerfaces between graphene and MoX2 results in a more than tenfold greater accumulation of charge in MoX2 when compared to MoX2/MoX2 homointerfaces, while enforcing a more negative intercalation potential than that of bulk MoX2 by at least 0.5 V. Beyond energy storage, our combined experimental and computational methodology for manipulating and characterizing the electrochemical behaviour of layered systems opens new pathways to control the charge density in two-dimensional electronic and optoelectronic devices. More... »

PAGES

425-429

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41586-018-0205-0

DOI

http://dx.doi.org/10.1038/s41586-018-0205-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104570286

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29925970


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Physics, Harvard University, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bediako", 
        "givenName": "D. Kwabena", 
        "id": "sg:person.01340166661.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340166661.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Electrical Engineering, Howard University, Washington, DC, USA", 
            "School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rezaee", 
        "givenName": "Mehdi", 
        "id": "sg:person.012114663320.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012114663320.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Physics, Harvard University, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yoo", 
        "givenName": "Hyobin", 
        "id": "sg:person.0626057423.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626057423.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Physics, Harvard University, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Larson", 
        "givenName": "Daniel T.", 
        "id": "sg:person.016455743226.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016455743226.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Physics, Harvard University, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "S. Y. Frank", 
        "id": "sg:person.01233012132.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233012132.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.21941.3f", 
          "name": [
            "National Institute for Materials Science, Tsukuba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Taniguchi", 
        "givenName": "Takashi", 
        "id": "sg:person.0765715521.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765715521.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.21941.3f", 
          "name": [
            "National Institute for Materials Science, Tsukuba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Watanabe", 
        "givenName": "Kenji", 
        "id": "sg:person.010026307551.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010026307551.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Howard University", 
          "id": "https://www.grid.ac/institutes/grid.257127.4", 
          "name": [
            "Department of Chemical Engineering, Howard University, Washington, DC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brower-Thomas", 
        "givenName": "Tina L.", 
        "id": "sg:person.016027017367.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016027017367.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Physics, Harvard University, Cambridge, MA, USA", 
            "School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaxiras", 
        "givenName": "Efthimios", 
        "id": "sg:person.01156413776.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156413776.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Physics, Harvard University, Cambridge, MA, USA", 
            "School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Philip", 
        "id": "sg:person.0722660612.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722660612.29"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1063/1.3382344", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002352738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c5nr07715j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003113947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/451652a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007137639", 
          "https://doi.org/10.1038/451652a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0927-0256(96)00008-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008708156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009145791", 
          "https://doi.org/10.1038/nmat3505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn402954e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010991432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1244358", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016025802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2818.1998.3070861.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017508231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2818.1998.3070861.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017508231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja3091438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019126274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2015.194", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019936800", 
          "https://doi.org/10.1038/nnano.2015.194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn302422x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020197315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.201205569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023662437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms11796", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024112995", 
          "https://doi.org/10.1038/ncomms11796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024857999", 
          "https://doi.org/10.1038/nature12385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.5b02091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025098091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2015.70", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025131511", 
          "https://doi.org/10.1038/nnano.2015.70"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl201874w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028395186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl201874w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028395186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2009.02.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029913597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.201308354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035593855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mattod.2014.10.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044880283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1249625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047586251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchem.1589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050119463", 
          "https://doi.org/10.1038/nchem.1589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1849", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052791836", 
          "https://doi.org/10.1038/nmat1849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.5b02619", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055120900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp4076355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056096949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.47.558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060566310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.47.558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060566310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.49.14251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060570025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.49.14251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060570025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.11169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060581262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.11169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060581262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.1758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060591374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.1758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060591374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.245438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060650963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.245438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060650963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.216803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060759802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.216803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060759802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.192.4244.1126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062513633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2017.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085862267", 
          "https://doi.org/10.1038/nnano.2017.108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2017.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085862267", 
          "https://doi.org/10.1038/nnano.2017.108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nenergy.2017.89", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085982982", 
          "https://doi.org/10.1038/nenergy.2017.89"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nenergy.2017.89", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085982982", 
          "https://doi.org/10.1038/nenergy.2017.89"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-017-00640-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091465445", 
          "https://doi.org/10.1038/s41467-017-00640-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511897870", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098714166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.7b04396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099905040"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-06", 
    "datePublishedReg": "2018-06-01", 
    "description": "Molecular-scale manipulation of electronic and ionic charge accumulation in materials is the backbone of electrochemical energy storage1-4. Layered van der Waals (vdW) crystals are a diverse family of materials into which mobile ions can electrochemically intercalate into the interlamellar gaps of the host atomic lattice5,6. The structural diversity of such materials enables the interfacial properties of composites to be optimized to improve ion intercalation for energy storage and electronic devices7-12. However, the ability of heterolayers to modify intercalation reactions, and their role at the atomic level, are yet to be elucidated. Here we demonstrate the electrointercalation of lithium at the level of individual atomic interfaces of dissimilar vdW layers. Electrochemical devices based on vdW heterostructures 13 of stacked hexagonal boron nitride, graphene and molybdenum dichalcogenide (MoX2; X\u2009=\u2009S, Se) layers are constructed. We use transmission electron microscopy, in situ magnetoresistance and optical spectroscopy techniques, as well as low-temperature quantum magneto-oscillation measurements and ab initio calculations, to resolve the intermediate stages of lithium intercalation at heterointerfaces. The formation of vdW heterointerfaces between graphene and MoX2 results in a more than tenfold greater accumulation of charge in MoX2 when compared to MoX2/MoX2 homointerfaces, while enforcing a more negative intercalation potential than that of bulk MoX2 by at least 0.5 V. Beyond energy storage, our combined experimental and computational methodology for manipulating and characterizing the electrochemical behaviour of layered systems opens new pathways to control the charge density in two-dimensional electronic and optoelectronic devices.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41586-018-0205-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7710", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "558"
      }
    ], 
    "name": "Heterointerface effects in the electrointercalation of van der Waals heterostructures", 
    "pagination": "425-429", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a87c5083ef6c3a76c33b713dfd93522d9f8be74ee8ab00a19e2274aa3260f7f7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29925970"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41586-018-0205-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104570286"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41586-018-0205-0", 
      "https://app.dimensions.ai/details/publication/pub.1104570286"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000609.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41586-018-0205-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41586-018-0205-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41586-018-0205-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41586-018-0205-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41586-018-0205-0'


 

This table displays all metadata directly associated to this object as RDF triples.

262 TRIPLES      21 PREDICATES      66 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41586-018-0205-0 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N38df19d501f447bfac4d5da34c2aff8a
4 schema:citation sg:pub.10.1038/451652a
5 sg:pub.10.1038/nature12385
6 sg:pub.10.1038/nchem.1589
7 sg:pub.10.1038/ncomms11796
8 sg:pub.10.1038/nenergy.2017.89
9 sg:pub.10.1038/nmat1849
10 sg:pub.10.1038/nmat3505
11 sg:pub.10.1038/nnano.2015.194
12 sg:pub.10.1038/nnano.2015.70
13 sg:pub.10.1038/nnano.2017.108
14 sg:pub.10.1038/s41467-017-00640-2
15 https://doi.org/10.1002/anie.201205569
16 https://doi.org/10.1002/anie.201308354
17 https://doi.org/10.1016/0927-0256(96)00008-0
18 https://doi.org/10.1016/j.mattod.2014.10.040
19 https://doi.org/10.1016/j.physrep.2009.02.003
20 https://doi.org/10.1017/cbo9780511897870
21 https://doi.org/10.1021/acs.nanolett.5b02091
22 https://doi.org/10.1021/acs.nanolett.5b02619
23 https://doi.org/10.1021/acs.nanolett.7b04396
24 https://doi.org/10.1021/ja3091438
25 https://doi.org/10.1021/jp4076355
26 https://doi.org/10.1021/nl201874w
27 https://doi.org/10.1021/nn302422x
28 https://doi.org/10.1021/nn402954e
29 https://doi.org/10.1039/c5nr07715j
30 https://doi.org/10.1046/j.1365-2818.1998.3070861.x
31 https://doi.org/10.1063/1.3382344
32 https://doi.org/10.1103/physrevb.47.558
33 https://doi.org/10.1103/physrevb.49.14251
34 https://doi.org/10.1103/physrevb.54.11169
35 https://doi.org/10.1103/physrevb.59.1758
36 https://doi.org/10.1103/physrevb.93.245438
37 https://doi.org/10.1103/physrevlett.108.216803
38 https://doi.org/10.1126/science.1244358
39 https://doi.org/10.1126/science.1249625
40 https://doi.org/10.1126/science.192.4244.1126
41 schema:datePublished 2018-06
42 schema:datePublishedReg 2018-06-01
43 schema:description Molecular-scale manipulation of electronic and ionic charge accumulation in materials is the backbone of electrochemical energy storage<sup>1-4</sup>. Layered van der Waals (vdW) crystals are a diverse family of materials into which mobile ions can electrochemically intercalate into the interlamellar gaps of the host atomic lattice<sup>5,6</sup>. The structural diversity of such materials enables the interfacial properties of composites to be optimized to improve ion intercalation for energy storage and electronic devices<sup>7-12</sup>. However, the ability of heterolayers to modify intercalation reactions, and their role at the atomic level, are yet to be elucidated. Here we demonstrate the electrointercalation of lithium at the level of individual atomic interfaces of dissimilar vdW layers. Electrochemical devices based on vdW heterostructures <sup>13</sup> of stacked hexagonal boron nitride, graphene and molybdenum dichalcogenide (MoX<sub>2</sub>; X = S, Se) layers are constructed. We use transmission electron microscopy, in situ magnetoresistance and optical spectroscopy techniques, as well as low-temperature quantum magneto-oscillation measurements and ab initio calculations, to resolve the intermediate stages of lithium intercalation at heterointerfaces. The formation of vdW heterointerfaces between graphene and MoX<sub>2</sub> results in a more than tenfold greater accumulation of charge in MoX<sub>2</sub> when compared to MoX<sub>2</sub>/MoX<sub>2</sub> homointerfaces, while enforcing a more negative intercalation potential than that of bulk MoX<sub>2</sub> by at least 0.5 V. Beyond energy storage, our combined experimental and computational methodology for manipulating and characterizing the electrochemical behaviour of layered systems opens new pathways to control the charge density in two-dimensional electronic and optoelectronic devices.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree true
47 schema:isPartOf Na133192999e0470c8afe85b93b5b4300
48 Nf8b387d7490a4504993b1c68694a34e0
49 sg:journal.1018957
50 schema:name Heterointerface effects in the electrointercalation of van der Waals heterostructures
51 schema:pagination 425-429
52 schema:productId N258e554bc72c44c088aecc1046606543
53 N86d0d8a7dd3f439393c4f44f0db99480
54 Na144c5edb0b44697b20e6f241ee018da
55 Nded35a8307f542bab85e731dc0e3dc16
56 Nf37e972b232e4681853c50eae2c1aaef
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104570286
58 https://doi.org/10.1038/s41586-018-0205-0
59 schema:sdDatePublished 2019-04-10T21:55
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N68783ea9f8754315b153c76cb4db110a
62 schema:url https://www.nature.com/articles/s41586-018-0205-0
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N115132ddcc42444cace0ae07783031ba rdf:first sg:person.016455743226.09
67 rdf:rest N1c8e5e0c88fc40a69b5de34c95db5e9e
68 N1c8e5e0c88fc40a69b5de34c95db5e9e rdf:first sg:person.01233012132.46
69 rdf:rest N635122fda8be433b9dabf4280c3ed686
70 N1ff56d484aeb4a61b26298849f45073a rdf:first sg:person.01156413776.52
71 rdf:rest N740be9830c9e43b18fa55c9d6d896ffe
72 N258e554bc72c44c088aecc1046606543 schema:name doi
73 schema:value 10.1038/s41586-018-0205-0
74 rdf:type schema:PropertyValue
75 N38df19d501f447bfac4d5da34c2aff8a rdf:first sg:person.01340166661.97
76 rdf:rest Nddd4a1e1151846caabb8bb715250778f
77 N44b52cdac4144fc7b67ea9e7f72a02b7 rdf:first sg:person.0626057423.95
78 rdf:rest N115132ddcc42444cace0ae07783031ba
79 N635122fda8be433b9dabf4280c3ed686 rdf:first sg:person.0765715521.02
80 rdf:rest Ne25468e6b52d4e3f959b5632f03c7a7e
81 N68783ea9f8754315b153c76cb4db110a schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 N740be9830c9e43b18fa55c9d6d896ffe rdf:first sg:person.0722660612.29
84 rdf:rest rdf:nil
85 N86d0d8a7dd3f439393c4f44f0db99480 schema:name nlm_unique_id
86 schema:value 0410462
87 rdf:type schema:PropertyValue
88 Na133192999e0470c8afe85b93b5b4300 schema:volumeNumber 558
89 rdf:type schema:PublicationVolume
90 Na144c5edb0b44697b20e6f241ee018da schema:name dimensions_id
91 schema:value pub.1104570286
92 rdf:type schema:PropertyValue
93 Nddd4a1e1151846caabb8bb715250778f rdf:first sg:person.012114663320.55
94 rdf:rest N44b52cdac4144fc7b67ea9e7f72a02b7
95 Nded35a8307f542bab85e731dc0e3dc16 schema:name pubmed_id
96 schema:value 29925970
97 rdf:type schema:PropertyValue
98 Ne25468e6b52d4e3f959b5632f03c7a7e rdf:first sg:person.010026307551.76
99 rdf:rest Nebeec52101c44923ad1d3a017801a025
100 Nebeec52101c44923ad1d3a017801a025 rdf:first sg:person.016027017367.51
101 rdf:rest N1ff56d484aeb4a61b26298849f45073a
102 Nf37e972b232e4681853c50eae2c1aaef schema:name readcube_id
103 schema:value a87c5083ef6c3a76c33b713dfd93522d9f8be74ee8ab00a19e2274aa3260f7f7
104 rdf:type schema:PropertyValue
105 Nf8b387d7490a4504993b1c68694a34e0 schema:issueNumber 7710
106 rdf:type schema:PublicationIssue
107 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
108 schema:name Chemical Sciences
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
111 schema:name Physical Chemistry (incl. Structural)
112 rdf:type schema:DefinedTerm
113 sg:journal.1018957 schema:issn 0090-0028
114 1476-4687
115 schema:name Nature
116 rdf:type schema:Periodical
117 sg:person.010026307551.76 schema:affiliation https://www.grid.ac/institutes/grid.21941.3f
118 schema:familyName Watanabe
119 schema:givenName Kenji
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010026307551.76
121 rdf:type schema:Person
122 sg:person.01156413776.52 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
123 schema:familyName Kaxiras
124 schema:givenName Efthimios
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156413776.52
126 rdf:type schema:Person
127 sg:person.012114663320.55 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
128 schema:familyName Rezaee
129 schema:givenName Mehdi
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012114663320.55
131 rdf:type schema:Person
132 sg:person.01233012132.46 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
133 schema:familyName Zhao
134 schema:givenName S. Y. Frank
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233012132.46
136 rdf:type schema:Person
137 sg:person.01340166661.97 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
138 schema:familyName Bediako
139 schema:givenName D. Kwabena
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340166661.97
141 rdf:type schema:Person
142 sg:person.016027017367.51 schema:affiliation https://www.grid.ac/institutes/grid.257127.4
143 schema:familyName Brower-Thomas
144 schema:givenName Tina L.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016027017367.51
146 rdf:type schema:Person
147 sg:person.016455743226.09 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
148 schema:familyName Larson
149 schema:givenName Daniel T.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016455743226.09
151 rdf:type schema:Person
152 sg:person.0626057423.95 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
153 schema:familyName Yoo
154 schema:givenName Hyobin
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626057423.95
156 rdf:type schema:Person
157 sg:person.0722660612.29 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
158 schema:familyName Kim
159 schema:givenName Philip
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722660612.29
161 rdf:type schema:Person
162 sg:person.0765715521.02 schema:affiliation https://www.grid.ac/institutes/grid.21941.3f
163 schema:familyName Taniguchi
164 schema:givenName Takashi
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765715521.02
166 rdf:type schema:Person
167 sg:pub.10.1038/451652a schema:sameAs https://app.dimensions.ai/details/publication/pub.1007137639
168 https://doi.org/10.1038/451652a
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/nature12385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024857999
171 https://doi.org/10.1038/nature12385
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/nchem.1589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050119463
174 https://doi.org/10.1038/nchem.1589
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/ncomms11796 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024112995
177 https://doi.org/10.1038/ncomms11796
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/nenergy.2017.89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085982982
180 https://doi.org/10.1038/nenergy.2017.89
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/nmat1849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052791836
183 https://doi.org/10.1038/nmat1849
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/nmat3505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009145791
186 https://doi.org/10.1038/nmat3505
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/nnano.2015.194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019936800
189 https://doi.org/10.1038/nnano.2015.194
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/nnano.2015.70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025131511
192 https://doi.org/10.1038/nnano.2015.70
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/nnano.2017.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085862267
195 https://doi.org/10.1038/nnano.2017.108
196 rdf:type schema:CreativeWork
197 sg:pub.10.1038/s41467-017-00640-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091465445
198 https://doi.org/10.1038/s41467-017-00640-2
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1002/anie.201205569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023662437
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1002/anie.201308354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035593855
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/0927-0256(96)00008-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008708156
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/j.mattod.2014.10.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044880283
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/j.physrep.2009.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029913597
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1017/cbo9780511897870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098714166
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1021/acs.nanolett.5b02091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025098091
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1021/acs.nanolett.5b02619 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055120900
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1021/acs.nanolett.7b04396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099905040
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1021/ja3091438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019126274
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1021/jp4076355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056096949
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1021/nl201874w schema:sameAs https://app.dimensions.ai/details/publication/pub.1028395186
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1021/nn302422x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020197315
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1021/nn402954e schema:sameAs https://app.dimensions.ai/details/publication/pub.1010991432
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1039/c5nr07715j schema:sameAs https://app.dimensions.ai/details/publication/pub.1003113947
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1046/j.1365-2818.1998.3070861.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017508231
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1063/1.3382344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002352738
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1103/physrevb.47.558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060566310
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1103/physrevb.49.14251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060570025
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1103/physrevb.54.11169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060581262
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1103/physrevb.59.1758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060591374
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1103/physrevb.93.245438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060650963
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1103/physrevlett.108.216803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060759802
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1126/science.1244358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016025802
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1126/science.1249625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047586251
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1126/science.192.4244.1126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062513633
251 rdf:type schema:CreativeWork
252 https://www.grid.ac/institutes/grid.21941.3f schema:alternateName National Institute for Materials Science
253 schema:name National Institute for Materials Science, Tsukuba, Japan
254 rdf:type schema:Organization
255 https://www.grid.ac/institutes/grid.257127.4 schema:alternateName Howard University
256 schema:name Department of Chemical Engineering, Howard University, Washington, DC, USA
257 rdf:type schema:Organization
258 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
259 schema:name Department of Electrical Engineering, Howard University, Washington, DC, USA
260 Department of Physics, Harvard University, Cambridge, MA, USA
261 School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
262 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...