Magnetic edge states and coherent manipulation of graphene nanoribbons View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-05

AUTHORS

Michael Slota, Ashok Keerthi, William K. Myers, Evgeny Tretyakov, Martin Baumgarten, Arzhang Ardavan, Hatef Sadeghi, Colin J. Lambert, Akimitsu Narita, Klaus Müllen, Lapo Bogani

ABSTRACT

Graphene, a single-layer network of carbon atoms, has outstanding electrical and mechanical properties 1 . Graphene ribbons with nanometre-scale widths2,3 (nanoribbons) should exhibit half-metallicity 4 and quantum confinement. Magnetic edges in graphene nanoribbons5,6 have been studied extensively from a theoretical standpoint because their coherent manipulation would be a milestone for spintronic 7 and quantum computing devices 8 . However, experimental investigations have been hampered because nanoribbon edges cannot be produced with atomic precision and the graphene terminations that have been proposed are chemically unstable 9 . Here we address both of these problems, by using molecular graphene nanoribbons functionalized with stable spin-bearing radical groups. We observe the predicted delocalized magnetic edge states and test theoretical models of the spin dynamics and spin-environment interactions. Comparison with a non-graphitized reference material enables us to clearly identify the characteristic behaviour of the radical-functionalized graphene nanoribbons. We quantify the parameters of spin-orbit coupling, define the interaction patterns and determine the spin decoherence channels. Even without any optimization, the spin coherence time is in the range of microseconds at room temperature, and we perform quantum inversion operations between edge and radical spins. Our approach provides a way of testing the theory of magnetism in graphene nanoribbons experimentally. The coherence times that we observe open up encouraging prospects for the use of magnetic nanoribbons in quantum spintronic devices. More... »

PAGES

691-695

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41586-018-0154-7

DOI

http://dx.doi.org/10.1038/s41586-018-0154-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104185767

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29849157


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Oxford", 
          "id": "https://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Department of Materials, University of Oxford, Oxford, UK", 
            "Centre for Advanced ESR, University of Oxford, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Slota", 
        "givenName": "Michael", 
        "id": "sg:person.01163547217.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163547217.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Polymer Research", 
          "id": "https://www.grid.ac/institutes/grid.419547.a", 
          "name": [
            "Max-Planck-Institut f\u00fcr Polymerforschung, Mainz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Keerthi", 
        "givenName": "Ashok", 
        "id": "sg:person.0610065143.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610065143.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oxford", 
          "id": "https://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Centre for Advanced ESR, University of Oxford, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Myers", 
        "givenName": "William K.", 
        "id": "sg:person.01273442072.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273442072.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Novosibirsk Institute of Organic Chemistry", 
          "id": "https://www.grid.ac/institutes/grid.419817.2", 
          "name": [
            "N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tretyakov", 
        "givenName": "Evgeny", 
        "id": "sg:person.0716605765.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716605765.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Polymer Research", 
          "id": "https://www.grid.ac/institutes/grid.419547.a", 
          "name": [
            "Max-Planck-Institut f\u00fcr Polymerforschung, Mainz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baumgarten", 
        "givenName": "Martin", 
        "id": "sg:person.01070603414.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070603414.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oxford", 
          "id": "https://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Centre for Advanced ESR, University of Oxford, Oxford, UK", 
            "Clarendon Laboratory, University of Oxford, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ardavan", 
        "givenName": "Arzhang", 
        "id": "sg:person.01205636543.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205636543.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lancaster University", 
          "id": "https://www.grid.ac/institutes/grid.9835.7", 
          "name": [
            "Quantum Technology Centre, Physics Department, Lancaster University, Lancaster, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sadeghi", 
        "givenName": "Hatef", 
        "id": "sg:person.01073626672.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01073626672.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lancaster University", 
          "id": "https://www.grid.ac/institutes/grid.9835.7", 
          "name": [
            "Quantum Technology Centre, Physics Department, Lancaster University, Lancaster, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lambert", 
        "givenName": "Colin J.", 
        "id": "sg:person.01260020415.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260020415.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Polymer Research", 
          "id": "https://www.grid.ac/institutes/grid.419547.a", 
          "name": [
            "Max-Planck-Institut f\u00fcr Polymerforschung, Mainz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Narita", 
        "givenName": "Akimitsu", 
        "id": "sg:person.01173251613.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173251613.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Polymer Research", 
          "id": "https://www.grid.ac/institutes/grid.419547.a", 
          "name": [
            "Max-Planck-Institut f\u00fcr Polymerforschung, Mainz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "M\u00fcllen", 
        "givenName": "Klaus", 
        "id": "sg:person.01305567747.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305567747.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oxford", 
          "id": "https://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Department of Materials, University of Oxford, Oxford, UK", 
            "Centre for Advanced ESR, University of Oxford, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bogani", 
        "givenName": "Lapo", 
        "id": "sg:person.01071463521.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071463521.31"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1126/science.1166862", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002392349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1166862", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002392349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006539606", 
          "https://doi.org/10.1038/nmat2420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006539606", 
          "https://doi.org/10.1038/nmat2420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006934660", 
          "https://doi.org/10.1038/nature05180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006934660", 
          "https://doi.org/10.1038/nature05180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006934660", 
          "https://doi.org/10.1038/nature05180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.80.155401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007313577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.80.155401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007313577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.125401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009321927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.125401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009321927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2jm35076a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009362064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c5cs00183h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009799828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/21/30/302001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012357636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/21/30/302001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012357636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/14/11/302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013140491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn5049014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014562289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.046601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014629211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.046601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014629211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ijch.199200038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022507329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023528767", 
          "https://doi.org/10.1038/nature07919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023528767", 
          "https://doi.org/10.1038/nature07919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03166213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024213766", 
          "https://doi.org/10.1007/bf03166213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03166213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024213766", 
          "https://doi.org/10.1007/bf03166213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature17151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025709329", 
          "https://doi.org/10.1038/nature17151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchem.1819", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025950103", 
          "https://doi.org/10.1038/nchem.1819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/asia.201600638", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026579880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00268976.2013.830783", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034861045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.saa.2007.08.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035479963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmr.2005.08.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035834316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.74.165310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039846985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.74.165310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039846985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.146802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042249380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.146802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042249380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042615843", 
          "https://doi.org/10.1038/nature09211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470166406.ch6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042632720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys544", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044502162", 
          "https://doi.org/10.1038/nphys544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046564519", 
          "https://doi.org/10.1038/nmat3305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature16984", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047595349", 
          "https://doi.org/10.1038/nature16984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047856070", 
          "https://doi.org/10.1038/nphys1424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047856070", 
          "https://doi.org/10.1038/nphys1424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050408744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050408744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0617033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052359345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0617033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052359345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.6b00497", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055121366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00084a048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055705450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn302745x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056224581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.125.912", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060425182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.125.912", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060425182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.88.025005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.88.025005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1139831", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062455316"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-05", 
    "datePublishedReg": "2018-05-01", 
    "description": "Graphene, a single-layer network of carbon atoms, has outstanding electrical and mechanical properties 1 . Graphene ribbons with nanometre-scale widths2,3 (nanoribbons) should exhibit half-metallicity 4 and quantum confinement. Magnetic edges in graphene nanoribbons5,6 have been studied extensively from a theoretical standpoint because their coherent manipulation would be a milestone for spintronic 7 and quantum computing devices 8 . However, experimental investigations have been hampered because nanoribbon edges cannot be produced with atomic precision and the graphene terminations that have been proposed are chemically unstable 9 . Here we address both of these problems, by using molecular graphene nanoribbons functionalized with stable spin-bearing radical groups. We observe the predicted delocalized magnetic edge states and test theoretical models of the spin dynamics and spin-environment interactions. Comparison with a non-graphitized reference material enables us to clearly identify the characteristic behaviour of the radical-functionalized graphene nanoribbons. We quantify the parameters of spin-orbit coupling, define the interaction patterns and determine the spin decoherence channels. Even without any optimization, the spin coherence time is in the range of microseconds at room temperature, and we perform quantum inversion operations between edge and radical spins. Our approach provides a way of testing the theory of magnetism in graphene nanoribbons experimentally. The coherence times that we observe open up encouraging prospects for the use of magnetic nanoribbons in quantum spintronic devices.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41586-018-0154-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7707", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "557"
      }
    ], 
    "name": "Magnetic edge states and coherent manipulation of graphene nanoribbons", 
    "pagination": "691-695", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "15c0d7411cfa2f434e0802131aca7840958e510249b00a1bed556f26c6640e95"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29849157"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41586-018-0154-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104185767"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41586-018-0154-7", 
      "https://app.dimensions.ai/details/publication/pub.1104185767"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000570.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41586-018-0154-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41586-018-0154-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41586-018-0154-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41586-018-0154-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41586-018-0154-7'


 

This table displays all metadata directly associated to this object as RDF triples.

269 TRIPLES      21 PREDICATES      65 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41586-018-0154-7 schema:about anzsrc-for:02
2 anzsrc-for:0204
3 schema:author N7733d41cf2144ded9daf998af409b3d9
4 schema:citation sg:pub.10.1007/bf03166213
5 sg:pub.10.1038/nature05180
6 sg:pub.10.1038/nature07919
7 sg:pub.10.1038/nature09211
8 sg:pub.10.1038/nature16984
9 sg:pub.10.1038/nature17151
10 sg:pub.10.1038/nchem.1819
11 sg:pub.10.1038/nmat2420
12 sg:pub.10.1038/nmat3305
13 sg:pub.10.1038/nphys1424
14 sg:pub.10.1038/nphys544
15 https://doi.org/10.1002/9780470166406.ch6
16 https://doi.org/10.1002/asia.201600638
17 https://doi.org/10.1002/ijch.199200038
18 https://doi.org/10.1016/j.jmr.2005.08.013
19 https://doi.org/10.1016/j.saa.2007.08.017
20 https://doi.org/10.1021/acs.nanolett.6b00497
21 https://doi.org/10.1021/ja00084a048
22 https://doi.org/10.1021/nl0617033
23 https://doi.org/10.1021/nn302745x
24 https://doi.org/10.1021/nn5049014
25 https://doi.org/10.1039/c2jm35076a
26 https://doi.org/10.1039/c5cs00183h
27 https://doi.org/10.1080/00268976.2013.830783
28 https://doi.org/10.1088/0953-8984/14/11/302
29 https://doi.org/10.1088/0957-4484/21/30/302001
30 https://doi.org/10.1103/physrev.125.912
31 https://doi.org/10.1103/physrevb.74.165310
32 https://doi.org/10.1103/physrevb.80.155401
33 https://doi.org/10.1103/physrevb.82.125401
34 https://doi.org/10.1103/physrevlett.112.046601
35 https://doi.org/10.1103/physrevlett.95.146802
36 https://doi.org/10.1103/revmodphys.81.109
37 https://doi.org/10.1103/revmodphys.88.025005
38 https://doi.org/10.1126/science.1139831
39 https://doi.org/10.1126/science.1166862
40 schema:datePublished 2018-05
41 schema:datePublishedReg 2018-05-01
42 schema:description Graphene, a single-layer network of carbon atoms, has outstanding electrical and mechanical properties <sup>1</sup> . Graphene ribbons with nanometre-scale widths<sup>2,3</sup> (nanoribbons) should exhibit half-metallicity <sup>4</sup> and quantum confinement. Magnetic edges in graphene nanoribbons<sup>5,6</sup> have been studied extensively from a theoretical standpoint because their coherent manipulation would be a milestone for spintronic <sup>7</sup> and quantum computing devices <sup>8</sup> . However, experimental investigations have been hampered because nanoribbon edges cannot be produced with atomic precision and the graphene terminations that have been proposed are chemically unstable <sup>9</sup> . Here we address both of these problems, by using molecular graphene nanoribbons functionalized with stable spin-bearing radical groups. We observe the predicted delocalized magnetic edge states and test theoretical models of the spin dynamics and spin-environment interactions. Comparison with a non-graphitized reference material enables us to clearly identify the characteristic behaviour of the radical-functionalized graphene nanoribbons. We quantify the parameters of spin-orbit coupling, define the interaction patterns and determine the spin decoherence channels. Even without any optimization, the spin coherence time is in the range of microseconds at room temperature, and we perform quantum inversion operations between edge and radical spins. Our approach provides a way of testing the theory of magnetism in graphene nanoribbons experimentally. The coherence times that we observe open up encouraging prospects for the use of magnetic nanoribbons in quantum spintronic devices.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree true
46 schema:isPartOf N2d6651ece79a4d8f888197d58447c48f
47 N3ead042b66fb4027bcb2ac93b292fd45
48 sg:journal.1018957
49 schema:name Magnetic edge states and coherent manipulation of graphene nanoribbons
50 schema:pagination 691-695
51 schema:productId N0eda64129bd5450289cd0cb2844aa903
52 N24ae6ab24c2d4ed588dd5ec60a44f596
53 N2dd0b966db4f432c9a5c044e876f206f
54 N3d53832cfcbb4c29a042a1a3ee0892b0
55 Nbec80e9cc16a4b749bd2b097c0b574b1
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104185767
57 https://doi.org/10.1038/s41586-018-0154-7
58 schema:sdDatePublished 2019-04-10T16:00
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher Naffefcd441c64c59ae33c110351cd319
61 schema:url https://www.nature.com/articles/s41586-018-0154-7
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N0b69f03fc0254f6d8eb7d55532724b6c rdf:first sg:person.01273442072.66
66 rdf:rest N16c0875e8460468f906403108c938070
67 N0eda64129bd5450289cd0cb2844aa903 schema:name dimensions_id
68 schema:value pub.1104185767
69 rdf:type schema:PropertyValue
70 N14c49b0d223645a28ad66aacbf1e7750 rdf:first sg:person.01073626672.42
71 rdf:rest N6a8b1de3a78341ba88a124e15e03884f
72 N16c0875e8460468f906403108c938070 rdf:first sg:person.0716605765.49
73 rdf:rest Nee15111cf8814c2ea3a0f423b50ee8d3
74 N19186c537b3f496b8a89094073b397a8 rdf:first sg:person.01173251613.18
75 rdf:rest N6268469d180142b59a2f1533d281707b
76 N24ae6ab24c2d4ed588dd5ec60a44f596 schema:name nlm_unique_id
77 schema:value 0410462
78 rdf:type schema:PropertyValue
79 N2d6651ece79a4d8f888197d58447c48f schema:issueNumber 7707
80 rdf:type schema:PublicationIssue
81 N2dd0b966db4f432c9a5c044e876f206f schema:name doi
82 schema:value 10.1038/s41586-018-0154-7
83 rdf:type schema:PropertyValue
84 N3d53832cfcbb4c29a042a1a3ee0892b0 schema:name readcube_id
85 schema:value 15c0d7411cfa2f434e0802131aca7840958e510249b00a1bed556f26c6640e95
86 rdf:type schema:PropertyValue
87 N3ead042b66fb4027bcb2ac93b292fd45 schema:volumeNumber 557
88 rdf:type schema:PublicationVolume
89 N5dd1049b7f584ca29b84c3fb63a529a8 rdf:first sg:person.01071463521.31
90 rdf:rest rdf:nil
91 N6268469d180142b59a2f1533d281707b rdf:first sg:person.01305567747.71
92 rdf:rest N5dd1049b7f584ca29b84c3fb63a529a8
93 N6a8b1de3a78341ba88a124e15e03884f rdf:first sg:person.01260020415.11
94 rdf:rest N19186c537b3f496b8a89094073b397a8
95 N7733d41cf2144ded9daf998af409b3d9 rdf:first sg:person.01163547217.74
96 rdf:rest N79b3ef392abf4948afec82776b2dc4fb
97 N79b3ef392abf4948afec82776b2dc4fb rdf:first sg:person.0610065143.38
98 rdf:rest N0b69f03fc0254f6d8eb7d55532724b6c
99 Naffefcd441c64c59ae33c110351cd319 schema:name Springer Nature - SN SciGraph project
100 rdf:type schema:Organization
101 Nbec80e9cc16a4b749bd2b097c0b574b1 schema:name pubmed_id
102 schema:value 29849157
103 rdf:type schema:PropertyValue
104 Ne3adfdff027f4058a85cad6857a7db3a rdf:first sg:person.01205636543.25
105 rdf:rest N14c49b0d223645a28ad66aacbf1e7750
106 Nee15111cf8814c2ea3a0f423b50ee8d3 rdf:first sg:person.01070603414.19
107 rdf:rest Ne3adfdff027f4058a85cad6857a7db3a
108 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
109 schema:name Physical Sciences
110 rdf:type schema:DefinedTerm
111 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
112 schema:name Condensed Matter Physics
113 rdf:type schema:DefinedTerm
114 sg:journal.1018957 schema:issn 0090-0028
115 1476-4687
116 schema:name Nature
117 rdf:type schema:Periodical
118 sg:person.01070603414.19 schema:affiliation https://www.grid.ac/institutes/grid.419547.a
119 schema:familyName Baumgarten
120 schema:givenName Martin
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070603414.19
122 rdf:type schema:Person
123 sg:person.01071463521.31 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
124 schema:familyName Bogani
125 schema:givenName Lapo
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071463521.31
127 rdf:type schema:Person
128 sg:person.01073626672.42 schema:affiliation https://www.grid.ac/institutes/grid.9835.7
129 schema:familyName Sadeghi
130 schema:givenName Hatef
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01073626672.42
132 rdf:type schema:Person
133 sg:person.01163547217.74 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
134 schema:familyName Slota
135 schema:givenName Michael
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163547217.74
137 rdf:type schema:Person
138 sg:person.01173251613.18 schema:affiliation https://www.grid.ac/institutes/grid.419547.a
139 schema:familyName Narita
140 schema:givenName Akimitsu
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173251613.18
142 rdf:type schema:Person
143 sg:person.01205636543.25 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
144 schema:familyName Ardavan
145 schema:givenName Arzhang
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205636543.25
147 rdf:type schema:Person
148 sg:person.01260020415.11 schema:affiliation https://www.grid.ac/institutes/grid.9835.7
149 schema:familyName Lambert
150 schema:givenName Colin J.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260020415.11
152 rdf:type schema:Person
153 sg:person.01273442072.66 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
154 schema:familyName Myers
155 schema:givenName William K.
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273442072.66
157 rdf:type schema:Person
158 sg:person.01305567747.71 schema:affiliation https://www.grid.ac/institutes/grid.419547.a
159 schema:familyName Müllen
160 schema:givenName Klaus
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305567747.71
162 rdf:type schema:Person
163 sg:person.0610065143.38 schema:affiliation https://www.grid.ac/institutes/grid.419547.a
164 schema:familyName Keerthi
165 schema:givenName Ashok
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610065143.38
167 rdf:type schema:Person
168 sg:person.0716605765.49 schema:affiliation https://www.grid.ac/institutes/grid.419817.2
169 schema:familyName Tretyakov
170 schema:givenName Evgeny
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716605765.49
172 rdf:type schema:Person
173 sg:pub.10.1007/bf03166213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024213766
174 https://doi.org/10.1007/bf03166213
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/nature05180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006934660
177 https://doi.org/10.1038/nature05180
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/nature07919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023528767
180 https://doi.org/10.1038/nature07919
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/nature09211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042615843
183 https://doi.org/10.1038/nature09211
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/nature16984 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047595349
186 https://doi.org/10.1038/nature16984
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/nature17151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025709329
189 https://doi.org/10.1038/nature17151
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/nchem.1819 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025950103
192 https://doi.org/10.1038/nchem.1819
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/nmat2420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006539606
195 https://doi.org/10.1038/nmat2420
196 rdf:type schema:CreativeWork
197 sg:pub.10.1038/nmat3305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046564519
198 https://doi.org/10.1038/nmat3305
199 rdf:type schema:CreativeWork
200 sg:pub.10.1038/nphys1424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047856070
201 https://doi.org/10.1038/nphys1424
202 rdf:type schema:CreativeWork
203 sg:pub.10.1038/nphys544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044502162
204 https://doi.org/10.1038/nphys544
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1002/9780470166406.ch6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042632720
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1002/asia.201600638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026579880
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1002/ijch.199200038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022507329
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/j.jmr.2005.08.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035834316
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/j.saa.2007.08.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035479963
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1021/acs.nanolett.6b00497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055121366
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1021/ja00084a048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055705450
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1021/nl0617033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052359345
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1021/nn302745x schema:sameAs https://app.dimensions.ai/details/publication/pub.1056224581
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1021/nn5049014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014562289
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1039/c2jm35076a schema:sameAs https://app.dimensions.ai/details/publication/pub.1009362064
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1039/c5cs00183h schema:sameAs https://app.dimensions.ai/details/publication/pub.1009799828
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1080/00268976.2013.830783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034861045
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1088/0953-8984/14/11/302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013140491
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1088/0957-4484/21/30/302001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012357636
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1103/physrev.125.912 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060425182
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1103/physrevb.74.165310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039846985
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1103/physrevb.80.155401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007313577
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1103/physrevb.82.125401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009321927
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1103/physrevlett.112.046601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014629211
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1103/physrevlett.95.146802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042249380
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1103/revmodphys.81.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050408744
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1103/revmodphys.88.025005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839803
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1126/science.1139831 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062455316
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1126/science.1166862 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002392349
255 rdf:type schema:CreativeWork
256 https://www.grid.ac/institutes/grid.419547.a schema:alternateName Max Planck Institute for Polymer Research
257 schema:name Max-Planck-Institut für Polymerforschung, Mainz, Germany
258 rdf:type schema:Organization
259 https://www.grid.ac/institutes/grid.419817.2 schema:alternateName Novosibirsk Institute of Organic Chemistry
260 schema:name N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Novosibirsk, Russia
261 rdf:type schema:Organization
262 https://www.grid.ac/institutes/grid.4991.5 schema:alternateName University of Oxford
263 schema:name Centre for Advanced ESR, University of Oxford, Oxford, UK
264 Clarendon Laboratory, University of Oxford, Oxford, UK
265 Department of Materials, University of Oxford, Oxford, UK
266 rdf:type schema:Organization
267 https://www.grid.ac/institutes/grid.9835.7 schema:alternateName Lancaster University
268 schema:name Quantum Technology Centre, Physics Department, Lancaster University, Lancaster, UK
269 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...