Dynamic band-structure tuning of graphene moiré superlattices with pressure View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-05

AUTHORS

Matthew Yankowitz, Jeil Jung, Evan Laksono, Nicolas Leconte, Bheema L. Chittari, K. Watanabe, T. Taniguchi, Shaffique Adam, David Graf, Cory R. Dean

ABSTRACT

Heterostructures can be assembled from atomically thin materials by combining a wide range of available van der Waals crystals, providing exciting possibilities for designer electronics 1 . In many cases, beyond simply realizing new material combinations, interlayer interactions lead to emergent electronic properties that are fundamentally distinct from those of the constituent layers 2 . A critical parameter in these structures is the interlayer coupling strength, but this is often not easy to determine and is typically considered to be a fixed property of the system. Here we demonstrate that we can controllably tune the interlayer separation in van der Waals heterostructures using hydrostatic pressure, providing a dynamic way to modify their electronic properties. In devices in which graphene is encapsulated in boron nitride and aligned with one of the encapsulating layers, we observe that increasing pressure produces a superlinear increase in the moiré-superlattice-induced bandgap-nearly doubling within the studied range-together with an increase in the capacitive gate coupling to the active channel by as much as 25 per cent. Comparison to theoretical modelling highlights the role of atomic-scale structural deformations and how this can be altered with pressure. Our results demonstrate that combining hydrostatic pressure with controlled rotational order provides opportunities for dynamic band-structure engineering in van der Waals heterostructures. More... »

PAGES

404-408

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41586-018-0107-1

DOI

http://dx.doi.org/10.1038/s41586-018-0107-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1103889279

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29769674


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Columbia University", 
          "id": "https://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "Department of Physics, Columbia University, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yankowitz", 
        "givenName": "Matthew", 
        "id": "sg:person.01156336772.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156336772.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Seoul", 
          "id": "https://www.grid.ac/institutes/grid.267134.5", 
          "name": [
            "Department of Physics, University of Seoul, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jung", 
        "givenName": "Jeil", 
        "id": "sg:person.01246053461.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246053461.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Singapore", 
          "id": "https://www.grid.ac/institutes/grid.4280.e", 
          "name": [
            "Centre for Advanced 2D Materials, National University of Singapore, Singapore, Singapore", 
            "Department of Physics, Faculty of Science, National University of Singapore, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Laksono", 
        "givenName": "Evan", 
        "id": "sg:person.01060176317.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060176317.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Seoul", 
          "id": "https://www.grid.ac/institutes/grid.267134.5", 
          "name": [
            "Department of Physics, University of Seoul, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leconte", 
        "givenName": "Nicolas", 
        "id": "sg:person.01046530572.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046530572.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Seoul", 
          "id": "https://www.grid.ac/institutes/grid.267134.5", 
          "name": [
            "Department of Physics, University of Seoul, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chittari", 
        "givenName": "Bheema L.", 
        "id": "sg:person.014740075205.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014740075205.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.21941.3f", 
          "name": [
            "National Institute for Materials Science, Tsukuba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Watanabe", 
        "givenName": "K.", 
        "id": "sg:person.010575643400.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010575643400.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.21941.3f", 
          "name": [
            "National Institute for Materials Science, Tsukuba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Taniguchi", 
        "givenName": "T.", 
        "id": "sg:person.0765715521.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765715521.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale-NUS College", 
          "id": "https://www.grid.ac/institutes/grid.463064.3", 
          "name": [
            "Centre for Advanced 2D Materials, National University of Singapore, Singapore, Singapore", 
            "Department of Physics, Faculty of Science, National University of Singapore, Singapore, Singapore", 
            "Yale-NUS College, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Adam", 
        "givenName": "Shaffique", 
        "id": "sg:person.0630776216.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0630776216.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National High Magnetic Field Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.481548.4", 
          "name": [
            "National High Magnetic Field Laboratory, Tallahassee, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Graf", 
        "givenName": "David", 
        "id": "sg:person.01326505374.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326505374.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Columbia University", 
          "id": "https://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "Department of Physics, Columbia University, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dean", 
        "givenName": "Cory R.", 
        "id": "sg:person.01233365721.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233365721.66"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/andp.201400204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003256346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.89.201404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004483812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.89.201404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004483812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1108174108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008495685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1252875", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008860704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1252875", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008860704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1098(95)00381-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008970991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1254966", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009912648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms13168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010899919", 
          "https://doi.org/10.1038/ncomms13168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1237240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011524156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013597256", 
          "https://doi.org/10.1038/nphys3856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013894018", 
          "https://doi.org/10.1038/nphys2954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.5b05263", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014530874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1244358", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016025802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018587379", 
          "https://doi.org/10.1038/nnano.2010.172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018587379", 
          "https://doi.org/10.1038/nnano.2010.172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021097156", 
          "https://doi.org/10.1038/nphys2272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.075428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021584210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.075428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021584210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.155406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022366727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.155406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022366727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms5461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023222760", 
          "https://doi.org/10.1038/ncomms5461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024857999", 
          "https://doi.org/10.1038/nature12385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026408867", 
          "https://doi.org/10.1038/nature12187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.266801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028746127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.266801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028746127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsta.2011.0198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030467736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms7308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038756475", 
          "https://doi.org/10.1038/ncomms7308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039071679", 
          "https://doi.org/10.1038/nature12186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aac9439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041698293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2016.85", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045570811", 
          "https://doi.org/10.1038/nnano.2016.85"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms10800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046900956", 
          "https://doi.org/10.1038/ncomms10800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.126804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049501903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.126804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049501903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2014.187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053051025", 
          "https://doi.org/10.1038/nnano.2014.187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.6b01657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055121536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.6b03785", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055121892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1148145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057676482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1659428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057737469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1662159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057740458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2964117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057887897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.351951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057966768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.186801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060764358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.186801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060764358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.187002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060764363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.187002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060764363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aad2102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062666790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.7b00735", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085347401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.96.085442", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091450926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.96.085442", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091450926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aan8458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101303007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aan8458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101303007"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-05", 
    "datePublishedReg": "2018-05-01", 
    "description": "Heterostructures can be assembled from atomically thin materials by combining a wide range of available van der Waals crystals, providing exciting possibilities for designer electronics 1 . In many cases, beyond simply realizing new material combinations, interlayer interactions lead to emergent electronic properties that are\u00a0fundamentally distinct from those of the constituent layers 2 . A critical parameter in these structures is the interlayer coupling strength, but this is often not easy to determine and is typically considered to be a fixed property of the system. Here we demonstrate that we can controllably tune the interlayer separation in van der Waals heterostructures using hydrostatic pressure, providing a dynamic way to modify their electronic properties. In devices in which graphene is encapsulated in boron nitride and aligned with one of the encapsulating layers, we observe that increasing pressure produces a superlinear increase in the moir\u00e9-superlattice-induced bandgap-nearly doubling within the studied range-together with an increase in the capacitive gate coupling to the active channel by as much as 25 per cent. Comparison to theoretical modelling highlights the role of atomic-scale structural deformations and how this can be altered with pressure. Our results demonstrate that combining hydrostatic pressure with controlled rotational order provides opportunities for dynamic band-structure engineering in van der Waals heterostructures.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41586-018-0107-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6383816", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3852388", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5885411", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3851220", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3479346", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7705", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "557"
      }
    ], 
    "name": "Dynamic band-structure tuning of graphene moir\u00e9 superlattices with pressure", 
    "pagination": "404-408", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e0235b22f34be663f87c9525069f2670dce6d752fff8ec82daa89fdbdb9a4854"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29769674"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41586-018-0107-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1103889279"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41586-018-0107-1", 
      "https://app.dimensions.ai/details/publication/pub.1103889279"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000604.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41586-018-0107-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41586-018-0107-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41586-018-0107-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41586-018-0107-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41586-018-0107-1'


 

This table displays all metadata directly associated to this object as RDF triples.

296 TRIPLES      21 PREDICATES      70 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41586-018-0107-1 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N76bb4eed84274dae9872afb9158e39cb
4 schema:citation sg:pub.10.1038/nature12186
5 sg:pub.10.1038/nature12187
6 sg:pub.10.1038/nature12385
7 sg:pub.10.1038/ncomms10800
8 sg:pub.10.1038/ncomms13168
9 sg:pub.10.1038/ncomms5461
10 sg:pub.10.1038/ncomms7308
11 sg:pub.10.1038/nnano.2010.172
12 sg:pub.10.1038/nnano.2014.187
13 sg:pub.10.1038/nnano.2016.85
14 sg:pub.10.1038/nphys2272
15 sg:pub.10.1038/nphys2954
16 sg:pub.10.1038/nphys3856
17 https://doi.org/10.1002/andp.201400204
18 https://doi.org/10.1016/0038-1098(95)00381-9
19 https://doi.org/10.1021/acs.nanolett.5b05263
20 https://doi.org/10.1021/acs.nanolett.6b01657
21 https://doi.org/10.1021/acs.nanolett.6b03785
22 https://doi.org/10.1021/acs.nanolett.7b00735
23 https://doi.org/10.1063/1.1148145
24 https://doi.org/10.1063/1.1659428
25 https://doi.org/10.1063/1.1662159
26 https://doi.org/10.1063/1.2964117
27 https://doi.org/10.1063/1.351951
28 https://doi.org/10.1073/pnas.1108174108
29 https://doi.org/10.1098/rsta.2011.0198
30 https://doi.org/10.1103/physrevb.89.201404
31 https://doi.org/10.1103/physrevb.90.075428
32 https://doi.org/10.1103/physrevb.90.155406
33 https://doi.org/10.1103/physrevb.96.085442
34 https://doi.org/10.1103/physrevlett.101.126804
35 https://doi.org/10.1103/physrevlett.111.266801
36 https://doi.org/10.1103/physrevlett.115.186801
37 https://doi.org/10.1103/physrevlett.115.187002
38 https://doi.org/10.1126/science.1237240
39 https://doi.org/10.1126/science.1244358
40 https://doi.org/10.1126/science.1252875
41 https://doi.org/10.1126/science.1254966
42 https://doi.org/10.1126/science.aac9439
43 https://doi.org/10.1126/science.aad2102
44 https://doi.org/10.1126/science.aan8458
45 schema:datePublished 2018-05
46 schema:datePublishedReg 2018-05-01
47 schema:description Heterostructures can be assembled from atomically thin materials by combining a wide range of available van der Waals crystals, providing exciting possibilities for designer electronics <sup>1</sup> . In many cases, beyond simply realizing new material combinations, interlayer interactions lead to emergent electronic properties that are fundamentally distinct from those of the constituent layers <sup>2</sup> . A critical parameter in these structures is the interlayer coupling strength, but this is often not easy to determine and is typically considered to be a fixed property of the system. Here we demonstrate that we can controllably tune the interlayer separation in van der Waals heterostructures using hydrostatic pressure, providing a dynamic way to modify their electronic properties. In devices in which graphene is encapsulated in boron nitride and aligned with one of the encapsulating layers, we observe that increasing pressure produces a superlinear increase in the moiré-superlattice-induced bandgap-nearly doubling within the studied range-together with an increase in the capacitive gate coupling to the active channel by as much as 25 per cent. Comparison to theoretical modelling highlights the role of atomic-scale structural deformations and how this can be altered with pressure. Our results demonstrate that combining hydrostatic pressure with controlled rotational order provides opportunities for dynamic band-structure engineering in van der Waals heterostructures.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree true
51 schema:isPartOf N46ed348dde80400b8dfc81f4836fece1
52 Na7f715501a944cffb5bac30c50a6a82b
53 sg:journal.1018957
54 schema:name Dynamic band-structure tuning of graphene moiré superlattices with pressure
55 schema:pagination 404-408
56 schema:productId N3585eb90989a4791a9f86341c7eca02c
57 N9f127f8334ab44138e49a9f070a71d1a
58 Nbb0c4d8c4e314bfaae0b2a56999eaa19
59 Nc6814ba6495b46fabe0fffeb7d8670dd
60 Nea3ecee953fa4826b0c5e33c6c168065
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103889279
62 https://doi.org/10.1038/s41586-018-0107-1
63 schema:sdDatePublished 2019-04-10T23:40
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher Ne8864850309c4813829adc94de00dcc4
66 schema:url https://www.nature.com/articles/s41586-018-0107-1
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N2bc6f9d2a9d74a82be348cf0792b53fe rdf:first sg:person.01246053461.94
71 rdf:rest Nabeeb7c6721e4712a80cf0d05c503c9b
72 N3585eb90989a4791a9f86341c7eca02c schema:name pubmed_id
73 schema:value 29769674
74 rdf:type schema:PropertyValue
75 N46ed348dde80400b8dfc81f4836fece1 schema:volumeNumber 557
76 rdf:type schema:PublicationVolume
77 N6a453a4a15ec48848ffd921e4a5599fa rdf:first sg:person.010575643400.34
78 rdf:rest Na9fdd100c982429da01b054eb71b843e
79 N71ff423afe6d4e178f19f3c2faa0578a rdf:first sg:person.0630776216.98
80 rdf:rest N8785c6e18245472481d56988adb63864
81 N76bb4eed84274dae9872afb9158e39cb rdf:first sg:person.01156336772.03
82 rdf:rest N2bc6f9d2a9d74a82be348cf0792b53fe
83 N8785c6e18245472481d56988adb63864 rdf:first sg:person.01326505374.80
84 rdf:rest N9d9b36cac24e4ca6b677c2467f8620a1
85 N9d9b36cac24e4ca6b677c2467f8620a1 rdf:first sg:person.01233365721.66
86 rdf:rest rdf:nil
87 N9f127f8334ab44138e49a9f070a71d1a schema:name readcube_id
88 schema:value e0235b22f34be663f87c9525069f2670dce6d752fff8ec82daa89fdbdb9a4854
89 rdf:type schema:PropertyValue
90 Na7f715501a944cffb5bac30c50a6a82b schema:issueNumber 7705
91 rdf:type schema:PublicationIssue
92 Na9fdd100c982429da01b054eb71b843e rdf:first sg:person.0765715521.02
93 rdf:rest N71ff423afe6d4e178f19f3c2faa0578a
94 Nabeeb7c6721e4712a80cf0d05c503c9b rdf:first sg:person.01060176317.71
95 rdf:rest Nbd02215340a1411b84456346b3ed3b7b
96 Nbb0c4d8c4e314bfaae0b2a56999eaa19 schema:name nlm_unique_id
97 schema:value 0410462
98 rdf:type schema:PropertyValue
99 Nbd02215340a1411b84456346b3ed3b7b rdf:first sg:person.01046530572.63
100 rdf:rest Ne1bd0e933511476aaf84159293673298
101 Nc6814ba6495b46fabe0fffeb7d8670dd schema:name dimensions_id
102 schema:value pub.1103889279
103 rdf:type schema:PropertyValue
104 Ne1bd0e933511476aaf84159293673298 rdf:first sg:person.014740075205.72
105 rdf:rest N6a453a4a15ec48848ffd921e4a5599fa
106 Ne8864850309c4813829adc94de00dcc4 schema:name Springer Nature - SN SciGraph project
107 rdf:type schema:Organization
108 Nea3ecee953fa4826b0c5e33c6c168065 schema:name doi
109 schema:value 10.1038/s41586-018-0107-1
110 rdf:type schema:PropertyValue
111 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
112 schema:name Engineering
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
115 schema:name Materials Engineering
116 rdf:type schema:DefinedTerm
117 sg:grant.3479346 http://pending.schema.org/fundedItem sg:pub.10.1038/s41586-018-0107-1
118 rdf:type schema:MonetaryGrant
119 sg:grant.3851220 http://pending.schema.org/fundedItem sg:pub.10.1038/s41586-018-0107-1
120 rdf:type schema:MonetaryGrant
121 sg:grant.3852388 http://pending.schema.org/fundedItem sg:pub.10.1038/s41586-018-0107-1
122 rdf:type schema:MonetaryGrant
123 sg:grant.5885411 http://pending.schema.org/fundedItem sg:pub.10.1038/s41586-018-0107-1
124 rdf:type schema:MonetaryGrant
125 sg:grant.6383816 http://pending.schema.org/fundedItem sg:pub.10.1038/s41586-018-0107-1
126 rdf:type schema:MonetaryGrant
127 sg:journal.1018957 schema:issn 0090-0028
128 1476-4687
129 schema:name Nature
130 rdf:type schema:Periodical
131 sg:person.01046530572.63 schema:affiliation https://www.grid.ac/institutes/grid.267134.5
132 schema:familyName Leconte
133 schema:givenName Nicolas
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046530572.63
135 rdf:type schema:Person
136 sg:person.010575643400.34 schema:affiliation https://www.grid.ac/institutes/grid.21941.3f
137 schema:familyName Watanabe
138 schema:givenName K.
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010575643400.34
140 rdf:type schema:Person
141 sg:person.01060176317.71 schema:affiliation https://www.grid.ac/institutes/grid.4280.e
142 schema:familyName Laksono
143 schema:givenName Evan
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060176317.71
145 rdf:type schema:Person
146 sg:person.01156336772.03 schema:affiliation https://www.grid.ac/institutes/grid.21729.3f
147 schema:familyName Yankowitz
148 schema:givenName Matthew
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156336772.03
150 rdf:type schema:Person
151 sg:person.01233365721.66 schema:affiliation https://www.grid.ac/institutes/grid.21729.3f
152 schema:familyName Dean
153 schema:givenName Cory R.
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233365721.66
155 rdf:type schema:Person
156 sg:person.01246053461.94 schema:affiliation https://www.grid.ac/institutes/grid.267134.5
157 schema:familyName Jung
158 schema:givenName Jeil
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246053461.94
160 rdf:type schema:Person
161 sg:person.01326505374.80 schema:affiliation https://www.grid.ac/institutes/grid.481548.4
162 schema:familyName Graf
163 schema:givenName David
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326505374.80
165 rdf:type schema:Person
166 sg:person.014740075205.72 schema:affiliation https://www.grid.ac/institutes/grid.267134.5
167 schema:familyName Chittari
168 schema:givenName Bheema L.
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014740075205.72
170 rdf:type schema:Person
171 sg:person.0630776216.98 schema:affiliation https://www.grid.ac/institutes/grid.463064.3
172 schema:familyName Adam
173 schema:givenName Shaffique
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0630776216.98
175 rdf:type schema:Person
176 sg:person.0765715521.02 schema:affiliation https://www.grid.ac/institutes/grid.21941.3f
177 schema:familyName Taniguchi
178 schema:givenName T.
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765715521.02
180 rdf:type schema:Person
181 sg:pub.10.1038/nature12186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039071679
182 https://doi.org/10.1038/nature12186
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/nature12187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026408867
185 https://doi.org/10.1038/nature12187
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/nature12385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024857999
188 https://doi.org/10.1038/nature12385
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/ncomms10800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046900956
191 https://doi.org/10.1038/ncomms10800
192 rdf:type schema:CreativeWork
193 sg:pub.10.1038/ncomms13168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010899919
194 https://doi.org/10.1038/ncomms13168
195 rdf:type schema:CreativeWork
196 sg:pub.10.1038/ncomms5461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023222760
197 https://doi.org/10.1038/ncomms5461
198 rdf:type schema:CreativeWork
199 sg:pub.10.1038/ncomms7308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038756475
200 https://doi.org/10.1038/ncomms7308
201 rdf:type schema:CreativeWork
202 sg:pub.10.1038/nnano.2010.172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018587379
203 https://doi.org/10.1038/nnano.2010.172
204 rdf:type schema:CreativeWork
205 sg:pub.10.1038/nnano.2014.187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053051025
206 https://doi.org/10.1038/nnano.2014.187
207 rdf:type schema:CreativeWork
208 sg:pub.10.1038/nnano.2016.85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045570811
209 https://doi.org/10.1038/nnano.2016.85
210 rdf:type schema:CreativeWork
211 sg:pub.10.1038/nphys2272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021097156
212 https://doi.org/10.1038/nphys2272
213 rdf:type schema:CreativeWork
214 sg:pub.10.1038/nphys2954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013894018
215 https://doi.org/10.1038/nphys2954
216 rdf:type schema:CreativeWork
217 sg:pub.10.1038/nphys3856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013597256
218 https://doi.org/10.1038/nphys3856
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1002/andp.201400204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003256346
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1016/0038-1098(95)00381-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008970991
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1021/acs.nanolett.5b05263 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014530874
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1021/acs.nanolett.6b01657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055121536
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1021/acs.nanolett.6b03785 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055121892
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1021/acs.nanolett.7b00735 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085347401
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1063/1.1148145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057676482
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1063/1.1659428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057737469
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1063/1.1662159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057740458
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1063/1.2964117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057887897
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1063/1.351951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057966768
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1073/pnas.1108174108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008495685
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1098/rsta.2011.0198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030467736
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1103/physrevb.89.201404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004483812
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1103/physrevb.90.075428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021584210
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1103/physrevb.90.155406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022366727
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1103/physrevb.96.085442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091450926
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1103/physrevlett.101.126804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049501903
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1103/physrevlett.111.266801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028746127
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1103/physrevlett.115.186801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060764358
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1103/physrevlett.115.187002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060764363
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1126/science.1237240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011524156
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1126/science.1244358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016025802
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1126/science.1252875 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008860704
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1126/science.1254966 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009912648
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1126/science.aac9439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041698293
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1126/science.aad2102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062666790
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1126/science.aan8458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101303007
275 rdf:type schema:CreativeWork
276 https://www.grid.ac/institutes/grid.21729.3f schema:alternateName Columbia University
277 schema:name Department of Physics, Columbia University, New York, NY, USA
278 rdf:type schema:Organization
279 https://www.grid.ac/institutes/grid.21941.3f schema:alternateName National Institute for Materials Science
280 schema:name National Institute for Materials Science, Tsukuba, Japan
281 rdf:type schema:Organization
282 https://www.grid.ac/institutes/grid.267134.5 schema:alternateName University of Seoul
283 schema:name Department of Physics, University of Seoul, Seoul, South Korea
284 rdf:type schema:Organization
285 https://www.grid.ac/institutes/grid.4280.e schema:alternateName National University of Singapore
286 schema:name Centre for Advanced 2D Materials, National University of Singapore, Singapore, Singapore
287 Department of Physics, Faculty of Science, National University of Singapore, Singapore, Singapore
288 rdf:type schema:Organization
289 https://www.grid.ac/institutes/grid.463064.3 schema:alternateName Yale-NUS College
290 schema:name Centre for Advanced 2D Materials, National University of Singapore, Singapore, Singapore
291 Department of Physics, Faculty of Science, National University of Singapore, Singapore, Singapore
292 Yale-NUS College, Singapore, Singapore
293 rdf:type schema:Organization
294 https://www.grid.ac/institutes/grid.481548.4 schema:alternateName National High Magnetic Field Laboratory
295 schema:name National High Magnetic Field Laboratory, Tallahassee, FL, USA
296 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...