Biosynthetic capacity, metabolic variety and unusual biology in the CPR and DPANN radiations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-09-04

AUTHORS

Cindy J. Castelle, Christopher T. Brown, Karthik Anantharaman, Alexander J. Probst, Raven H. Huang, Jillian F. Banfield

ABSTRACT

Candidate phyla radiation (CPR) bacteria and DPANN (an acronym of the names of the first included phyla) archaea are massive radiations of organisms that are widely distributed across Earth’s environments, yet we know little about them. Initial indications are that they are consistently distinct from essentially all other bacteria and archaea owing to their small cell and genome sizes, limited metabolic capacities and often episymbiotic associations with other bacteria and archaea. In this Analysis, we investigate their biology and variations in metabolic capacities by analysis of approximately 1,000 genomes reconstructed from several metagenomics-based studies. We find that they are not monolithic in terms of metabolism but rather harbour a diversity of capacities consistent with a range of lifestyles and degrees of dependence on other organisms. Notably, however, certain CPR and DPANN groups seem to have exceedingly minimal biosynthetic capacities, whereas others could potentially be free living. Understanding of these microorganisms is important from the perspective of evolutionary studies and because their interactions with other organisms are likely to shape natural microbiome function. More... »

PAGES

629-645

References to SciGraph publications

  • 2015-04-28. Metagenomic and lipid analyses reveal a diel cycle in a hypersaline microbial ecosystem in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2018-01-16. The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans in SCIENTIFIC DATA
  • 2017-03-28. Potential for microbial H2 and metal transformations associated with novel bacteria and archaea in deep terrestrial subsurface sediments in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2017-09-02. Members of the Candidate Phyla Radiation are functionally differentiated by carbon- and nitrogen-cycling capabilities in MICROBIOME
  • 2017-07-05. ‘ARMAN’ archaea depend on association with euryarchaeal host in culture and in situ in NATURE COMMUNICATIONS
  • 2015-11-17. Genomic and transcriptomic evidence for scavenging of diverse organic compounds by widespread deep-sea archaea in NATURE COMMUNICATIONS
  • 2015-03-23. Targeted diversity generation by intraterrestrial archaea and archaeal viruses in NATURE COMMUNICATIONS
  • 2015-06-15. Unusual biology across a group comprising more than 15% of domain Bacteria in NATURE
  • 2014-08-01. Insights into the metabolism, lifestyle and putative evolutionary history of the novel archaeal phylum ‘Diapherotrites’ in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2016-02-03. Major bacterial lineages are essentially devoid of CRISPR-Cas viral defence systems in NATURE COMMUNICATIONS
  • 2013-07-14. Insights into the phylogeny and coding potential of microbial dark matter in NATURE
  • 2014-11-07. Ecological roles of dominant and rare prokaryotes in acid mine drainage revealed by metagenomics and metatranscriptomics in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2016-10-24. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system in NATURE COMMUNICATIONS
  • 2017-09-11. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life in NATURE MICROBIOLOGY
  • 2008-07-12. Ignicoccus hospitalis and Nanoarchaeum equitans: ultrastructure, cell–cell interaction, and 3D reconstruction from serial sections of freeze-substituted cells and by electron cryotomography in ARCHIVES OF MICROBIOLOGY
  • 2012-05-14. Microbial ecology of expanding oxygen minimum zones in NATURE REVIEWS MICROBIOLOGY
  • 2015-07-09. The distribution, diversity, and importance of 16S rRNA gene introns in the order Thermoproteales in BIOLOGY DIRECT
  • 2016-11-07. Measurement of bacterial replication rates in microbial communities in NATURE BIOTECHNOLOGY
  • 2016-06-16. Diversity, structure and convergent evolution of the global sponge microbiome in NATURE COMMUNICATIONS
  • 2013-05-26. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes in NATURE BIOTECHNOLOGY
  • 2016-04-11. A new view of the tree of life in NATURE MICROBIOLOGY
  • 2014-08-24. Archaeal Elp3 catalyzes tRNA wobble uridine modification at C5 via a radical mechanism in NATURE CHEMICAL BIOLOGY
  • 2017-08-23. Genomic insights into potential interdependencies in microbial hydrocarbon and nutrient cycling in hydrothermal sediments in MICROBIOME
  • 2016-05-03. RubisCO of a nucleoside pathway known from Archaea is found in diverse uncultivated phyla in bacteria in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2002-05. A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont in NATURE
  • 2011-06-30. De novo metagenomic assembly reveals abundant novel major lineage of Archaea in hypersaline microbial communities in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2004-03. DNA uptake during bacterial transformation in NATURE REVIEWS MICROBIOLOGY
  • 2017-08-04. The growing tree of Archaea: new perspectives on their diversity, evolution and ecology in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2015-02-27. Diverse uncultivated ultra-small bacterial cells in groundwater in NATURE COMMUNICATIONS
  • 2014-03-13. Metabolic interdependencies between phylogenetically novel fermenters and respiratory organisms in an unconfined aquifer in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2018-01-29. Differential depth distribution of microbial function and putative symbionts through sediment-hosted aquifers in the deep terrestrial subsurface in NATURE MICROBIOLOGY
  • 2016-07-05. Genomics-informed isolation and characterization of a symbiotic Nanoarchaeota system from a terrestrial geothermal environment in NATURE COMMUNICATIONS
  • 2017-03-14. Exploring the under-investigated “microbial dark matter” of drinking water treatment plants in SCIENTIFIC REPORTS
  • 2017-04-03. Retroelement guided protein diversification abounds in vast lineages of bacteria and archaea in NATURE MICROBIOLOGY
  • 2017-01-09. Unusual respiratory capacity and nitrogen metabolism in a Parcubacterium (OD1) of the Candidate Phyla Radiation in SCIENTIFIC REPORTS
  • 2016-07-25. Structural basis for tRNA modification by Elp3 from Dehalococcoides mccartyi in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 2016-12-22. New CRISPR-Cas systems from uncultivated microbes in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41579-018-0076-2

    DOI

    http://dx.doi.org/10.1038/s41579-018-0076-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1106578334

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30181663


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Anaerobiosis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Archaea", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bacteria", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bacteria, Anaerobic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bacterial Physiological Phenomena", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Size", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome, Archaeal", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome, Bacterial", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phylogeny", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Symbiosis", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Chan Zuckerberg Biohub, San Francisco, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.499295.a", 
              "name": [
                "Department of Earth and Planetary Science, University of California, Berkeley, CA, USA", 
                "Chan Zuckerberg Biohub, San Francisco, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Castelle", 
            "givenName": "Cindy J.", 
            "id": "sg:person.0735524175.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0735524175.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Earth and Planetary Science, University of California, Berkeley, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.47840.3f", 
              "name": [
                "Department of Earth and Planetary Science, University of California, Berkeley, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Brown", 
            "givenName": "Christopher T.", 
            "id": "sg:person.01236044570.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236044570.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA", 
              "id": "http://www.grid.ac/institutes/grid.14003.36", 
              "name": [
                "Department of Earth and Planetary Science, University of California, Berkeley, CA, USA", 
                "Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Anantharaman", 
            "givenName": "Karthik", 
            "id": "sg:person.0714252516.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714252516.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Chemistry, Biofilm Center, Group for Aquatic Microbial Ecology, University of Duisburg-Essen, Essen, Germany", 
              "id": "http://www.grid.ac/institutes/grid.5718.b", 
              "name": [
                "Department of Earth and Planetary Science, University of California, Berkeley, CA, USA", 
                "Department of Chemistry, Biofilm Center, Group for Aquatic Microbial Ecology, University of Duisburg-Essen, Essen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Probst", 
            "givenName": "Alexander J.", 
            "id": "sg:person.0757405471.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757405471.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biochemistry, University of Illinois, Urbana-Champaign, IL, USA", 
              "id": "http://www.grid.ac/institutes/grid.35403.31", 
              "name": [
                "Department of Biochemistry, University of Illinois, Urbana-Champaign, IL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Huang", 
            "givenName": "Raven H.", 
            "id": "sg:person.01342133622.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342133622.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Environmental Science, Policy, and Management, Lawrence Berkeley National Laboratory, Berkeley, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.184769.5", 
              "name": [
                "Department of Earth and Planetary Science, University of California, Berkeley, CA, USA", 
                "Chan Zuckerberg Biohub, San Francisco, CA, USA", 
                "Department of Environmental Science, Policy, and Management, Lawrence Berkeley National Laboratory, Berkeley, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Banfield", 
            "givenName": "Jillian F.", 
            "id": "sg:person.01350542775.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350542775.47"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/ismej.2015.66", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003990613", 
              "https://doi.org/10.1038/ismej.2015.66"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-017-00104-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090347306", 
              "https://doi.org/10.1038/s41467-017-00104-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13062-015-0065-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048300117", 
              "https://doi.org/10.1186/s13062-015-0065-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep40101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044771262", 
              "https://doi.org/10.1038/srep40101"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14486", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029031769", 
              "https://doi.org/10.1038/nature14486"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms11870", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016982186", 
              "https://doi.org/10.1038/ncomms11870"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2016.53", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044447226", 
              "https://doi.org/10.1038/ismej.2016.53"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro2778", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029489940", 
              "https://doi.org/10.1038/nrmicro2778"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsmb.3265", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035333928", 
              "https://doi.org/10.1038/nsmb.3265"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms7372", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031540291", 
              "https://doi.org/10.1038/ncomms7372"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41564-017-0012-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091527308", 
              "https://doi.org/10.1038/s41564-017-0012-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2011.78", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019104224", 
              "https://doi.org/10.1038/ismej.2011.78"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40168-017-0331-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091424302", 
              "https://doi.org/10.1186/s40168-017-0331-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2017.39", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084128192", 
              "https://doi.org/10.1038/ismej.2017.39"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2014.141", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028982733", 
              "https://doi.org/10.1038/ismej.2014.141"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/417063a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012444409", 
              "https://doi.org/10.1038/417063a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms13219", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035143030", 
              "https://doi.org/10.1038/ncomms13219"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2579", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010652073", 
              "https://doi.org/10.1038/nbt.2579"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchembio.1610", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026039566", 
              "https://doi.org/10.1038/nchembio.1610"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sdata.2017.203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100422812", 
              "https://doi.org/10.1038/sdata.2017.203"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature21059", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023889809", 
              "https://doi.org/10.1038/nature21059"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41564-017-0098-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100671492", 
              "https://doi.org/10.1038/s41564-017-0098-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmicrobiol.2016.48", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010598799", 
              "https://doi.org/10.1038/nmicrobiol.2016.48"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms10613", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022975138", 
              "https://doi.org/10.1038/ncomms10613"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms12115", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032141553", 
              "https://doi.org/10.1038/ncomms12115"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep44350", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084132241", 
              "https://doi.org/10.1038/srep44350"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2014.212", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020974629", 
              "https://doi.org/10.1038/ismej.2014.212"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2013.249", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038736944", 
              "https://doi.org/10.1038/ismej.2013.249"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmicrobiol.2017.45", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084508967", 
              "https://doi.org/10.1038/nmicrobiol.2017.45"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms7585", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051850173", 
              "https://doi.org/10.1038/ncomms7585"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3704", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020940033", 
              "https://doi.org/10.1038/nbt.3704"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12352", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019299949", 
              "https://doi.org/10.1038/nature12352"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms9933", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010303711", 
              "https://doi.org/10.1038/ncomms9933"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40168-017-0322-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091310054", 
              "https://doi.org/10.1186/s40168-017-0322-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro844", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044206140", 
              "https://doi.org/10.1038/nrmicro844"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00203-008-0402-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013570847", 
              "https://doi.org/10.1007/s00203-008-0402-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2017.122", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090992456", 
              "https://doi.org/10.1038/ismej.2017.122"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-09-04", 
        "datePublishedReg": "2018-09-04", 
        "description": "Candidate phyla radiation (CPR) bacteria and DPANN (an acronym of the names of the first included phyla) archaea are massive radiations of organisms that are widely distributed across Earth\u2019s environments, yet we know little about them. Initial indications are that they are consistently distinct from essentially all other bacteria and archaea owing to their small cell and genome sizes, limited metabolic capacities and often episymbiotic associations with other bacteria and archaea. In this Analysis, we investigate their biology and variations in metabolic capacities by analysis of approximately 1,000 genomes reconstructed from several metagenomics-based studies. We find that they are not monolithic in terms of metabolism but rather harbour a diversity of capacities consistent with a range of lifestyles and degrees of dependence on other organisms. Notably, however, certain CPR and DPANN groups seem to have exceedingly minimal biosynthetic capacities, whereas others could potentially be free living. Understanding of these microorganisms is important from the perspective of evolutionary studies and because their interactions with other organisms are likely to shape natural microbiome function.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41579-018-0076-2", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1032854", 
            "issn": [
              "1740-1526", 
              "1740-1534"
            ], 
            "name": "Nature Reviews Microbiology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "10", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "16"
          }
        ], 
        "keywords": [
          "Candidate Phyla Radiation bacteria", 
          "biosynthetic capacity", 
          "Metagenomics-based studies", 
          "metabolic capacity", 
          "DPANN archaea", 
          "genome size", 
          "evolutionary studies", 
          "limited metabolic capacity", 
          "terms of metabolism", 
          "unusual biology", 
          "microbiome function", 
          "archaea", 
          "free living", 
          "massive radiation", 
          "range of lifestyle", 
          "metabolic variety", 
          "organisms", 
          "bacteria", 
          "biology", 
          "genome", 
          "diversity", 
          "microorganisms", 
          "metabolism", 
          "cells", 
          "small cells", 
          "degree of dependence", 
          "environment", 
          "capacity", 
          "interaction", 
          "variation", 
          "analysis", 
          "function", 
          "understanding", 
          "variety", 
          "Earth environment", 
          "initial indication", 
          "radiation", 
          "study", 
          "association", 
          "size", 
          "lifestyle", 
          "range", 
          "degree", 
          "group", 
          "perspective", 
          "living", 
          "indications", 
          "CPR", 
          "terms", 
          "dependence", 
          "phyla radiation (CPR) bacteria", 
          "radiation (CPR) bacteria", 
          "episymbiotic associations", 
          "diversity of capacities", 
          "certain CPR", 
          "DPANN groups", 
          "minimal biosynthetic capacities", 
          "natural microbiome function", 
          "DPANN radiations"
        ], 
        "name": "Biosynthetic capacity, metabolic variety and unusual biology in the CPR and DPANN radiations", 
        "pagination": "629-645", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1106578334"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41579-018-0076-2"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30181663"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41579-018-0076-2", 
          "https://app.dimensions.ai/details/publication/pub.1106578334"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:40", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_771.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41579-018-0076-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41579-018-0076-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41579-018-0076-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41579-018-0076-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41579-018-0076-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    368 TRIPLES      22 PREDICATES      133 URIs      87 LITERALS      17 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41579-018-0076-2 schema:about N0ba9a2451d2b418db1f5fd808b2ed732
    2 N297a5fae1a344ed3a4e3a22a5414c5f0
    3 N36e787013602402482985af76fd494bf
    4 N384a2f5bd0474ef8af81fcc8a746e31b
    5 N3a130112d96f47188e4cc9682c7caa49
    6 N68d446aa30c648c0bb962c4d4962cb27
    7 N826681bb0b2245139aa4bac6d7d7451e
    8 Nc375fb977ef24090b829c732d1f4f494
    9 Nca37c868170e4171a1d0679139c3c7ae
    10 Ndea558dc54bc4e40a4e6b053f78d253d
    11 anzsrc-for:06
    12 anzsrc-for:0604
    13 anzsrc-for:0605
    14 schema:author Nbb42c530b7a94190a3d0f7b64d4a0c35
    15 schema:citation sg:pub.10.1007/s00203-008-0402-6
    16 sg:pub.10.1038/417063a
    17 sg:pub.10.1038/ismej.2011.78
    18 sg:pub.10.1038/ismej.2013.249
    19 sg:pub.10.1038/ismej.2014.141
    20 sg:pub.10.1038/ismej.2014.212
    21 sg:pub.10.1038/ismej.2015.66
    22 sg:pub.10.1038/ismej.2016.53
    23 sg:pub.10.1038/ismej.2017.122
    24 sg:pub.10.1038/ismej.2017.39
    25 sg:pub.10.1038/nature12352
    26 sg:pub.10.1038/nature14486
    27 sg:pub.10.1038/nature21059
    28 sg:pub.10.1038/nbt.2579
    29 sg:pub.10.1038/nbt.3704
    30 sg:pub.10.1038/nchembio.1610
    31 sg:pub.10.1038/ncomms10613
    32 sg:pub.10.1038/ncomms11870
    33 sg:pub.10.1038/ncomms12115
    34 sg:pub.10.1038/ncomms13219
    35 sg:pub.10.1038/ncomms7372
    36 sg:pub.10.1038/ncomms7585
    37 sg:pub.10.1038/ncomms9933
    38 sg:pub.10.1038/nmicrobiol.2016.48
    39 sg:pub.10.1038/nmicrobiol.2017.45
    40 sg:pub.10.1038/nrmicro2778
    41 sg:pub.10.1038/nrmicro844
    42 sg:pub.10.1038/nsmb.3265
    43 sg:pub.10.1038/s41467-017-00104-7
    44 sg:pub.10.1038/s41564-017-0012-7
    45 sg:pub.10.1038/s41564-017-0098-y
    46 sg:pub.10.1038/sdata.2017.203
    47 sg:pub.10.1038/srep40101
    48 sg:pub.10.1038/srep44350
    49 sg:pub.10.1186/s13062-015-0065-6
    50 sg:pub.10.1186/s40168-017-0322-2
    51 sg:pub.10.1186/s40168-017-0331-1
    52 schema:datePublished 2018-09-04
    53 schema:datePublishedReg 2018-09-04
    54 schema:description Candidate phyla radiation (CPR) bacteria and DPANN (an acronym of the names of the first included phyla) archaea are massive radiations of organisms that are widely distributed across Earth’s environments, yet we know little about them. Initial indications are that they are consistently distinct from essentially all other bacteria and archaea owing to their small cell and genome sizes, limited metabolic capacities and often episymbiotic associations with other bacteria and archaea. In this Analysis, we investigate their biology and variations in metabolic capacities by analysis of approximately 1,000 genomes reconstructed from several metagenomics-based studies. We find that they are not monolithic in terms of metabolism but rather harbour a diversity of capacities consistent with a range of lifestyles and degrees of dependence on other organisms. Notably, however, certain CPR and DPANN groups seem to have exceedingly minimal biosynthetic capacities, whereas others could potentially be free living. Understanding of these microorganisms is important from the perspective of evolutionary studies and because their interactions with other organisms are likely to shape natural microbiome function.
    55 schema:genre article
    56 schema:inLanguage en
    57 schema:isAccessibleForFree true
    58 schema:isPartOf N4e6aabdc44604fda8b0865c5e25fa2af
    59 Nb9478fdadb8f47318316734ac3ed89b6
    60 sg:journal.1032854
    61 schema:keywords CPR
    62 Candidate Phyla Radiation bacteria
    63 DPANN archaea
    64 DPANN groups
    65 DPANN radiations
    66 Earth environment
    67 Metagenomics-based studies
    68 analysis
    69 archaea
    70 association
    71 bacteria
    72 biology
    73 biosynthetic capacity
    74 capacity
    75 cells
    76 certain CPR
    77 degree
    78 degree of dependence
    79 dependence
    80 diversity
    81 diversity of capacities
    82 environment
    83 episymbiotic associations
    84 evolutionary studies
    85 free living
    86 function
    87 genome
    88 genome size
    89 group
    90 indications
    91 initial indication
    92 interaction
    93 lifestyle
    94 limited metabolic capacity
    95 living
    96 massive radiation
    97 metabolic capacity
    98 metabolic variety
    99 metabolism
    100 microbiome function
    101 microorganisms
    102 minimal biosynthetic capacities
    103 natural microbiome function
    104 organisms
    105 perspective
    106 phyla radiation (CPR) bacteria
    107 radiation
    108 radiation (CPR) bacteria
    109 range
    110 range of lifestyle
    111 size
    112 small cells
    113 study
    114 terms
    115 terms of metabolism
    116 understanding
    117 unusual biology
    118 variation
    119 variety
    120 schema:name Biosynthetic capacity, metabolic variety and unusual biology in the CPR and DPANN radiations
    121 schema:pagination 629-645
    122 schema:productId N8f2b188c02e942dfb35c1f32031f7df9
    123 Nadb5106bd3794234bb39b91ad8068db2
    124 Ned2b4dca4b7d435bb49b58e360ac1e6c
    125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106578334
    126 https://doi.org/10.1038/s41579-018-0076-2
    127 schema:sdDatePublished 2021-12-01T19:40
    128 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    129 schema:sdPublisher N4e83a18e762142b087322634b19bb2a5
    130 schema:url https://doi.org/10.1038/s41579-018-0076-2
    131 sgo:license sg:explorer/license/
    132 sgo:sdDataset articles
    133 rdf:type schema:ScholarlyArticle
    134 N052ecf4b3eb54be4ab4bf505243c5f90 rdf:first sg:person.01236044570.46
    135 rdf:rest Nd11a3e3b386e402284e0ad47c64668ba
    136 N0ba9a2451d2b418db1f5fd808b2ed732 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    137 schema:name Symbiosis
    138 rdf:type schema:DefinedTerm
    139 N297a5fae1a344ed3a4e3a22a5414c5f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    140 schema:name Genome, Bacterial
    141 rdf:type schema:DefinedTerm
    142 N2fea3b7865e54e87a867502c09fd61ae rdf:first sg:person.01350542775.47
    143 rdf:rest rdf:nil
    144 N36e787013602402482985af76fd494bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    145 schema:name Genome, Archaeal
    146 rdf:type schema:DefinedTerm
    147 N384a2f5bd0474ef8af81fcc8a746e31b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    148 schema:name Bacterial Physiological Phenomena
    149 rdf:type schema:DefinedTerm
    150 N3a130112d96f47188e4cc9682c7caa49 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name Archaea
    152 rdf:type schema:DefinedTerm
    153 N4e6aabdc44604fda8b0865c5e25fa2af schema:volumeNumber 16
    154 rdf:type schema:PublicationVolume
    155 N4e83a18e762142b087322634b19bb2a5 schema:name Springer Nature - SN SciGraph project
    156 rdf:type schema:Organization
    157 N68d446aa30c648c0bb962c4d4962cb27 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    158 schema:name Cell Size
    159 rdf:type schema:DefinedTerm
    160 N7a54bd48ba764e80b99d56ed70299baf rdf:first sg:person.01342133622.16
    161 rdf:rest N2fea3b7865e54e87a867502c09fd61ae
    162 N826681bb0b2245139aa4bac6d7d7451e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    163 schema:name Bacteria
    164 rdf:type schema:DefinedTerm
    165 N8f2b188c02e942dfb35c1f32031f7df9 schema:name dimensions_id
    166 schema:value pub.1106578334
    167 rdf:type schema:PropertyValue
    168 Nadb5106bd3794234bb39b91ad8068db2 schema:name pubmed_id
    169 schema:value 30181663
    170 rdf:type schema:PropertyValue
    171 Nb9478fdadb8f47318316734ac3ed89b6 schema:issueNumber 10
    172 rdf:type schema:PublicationIssue
    173 Nbb42c530b7a94190a3d0f7b64d4a0c35 rdf:first sg:person.0735524175.28
    174 rdf:rest N052ecf4b3eb54be4ab4bf505243c5f90
    175 Nc375fb977ef24090b829c732d1f4f494 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    176 schema:name Bacteria, Anaerobic
    177 rdf:type schema:DefinedTerm
    178 Nca37c868170e4171a1d0679139c3c7ae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    179 schema:name Anaerobiosis
    180 rdf:type schema:DefinedTerm
    181 Nd11a3e3b386e402284e0ad47c64668ba rdf:first sg:person.0714252516.09
    182 rdf:rest Ndb7c04f4b21c4ea994a3980b1cc96a32
    183 Ndb7c04f4b21c4ea994a3980b1cc96a32 rdf:first sg:person.0757405471.24
    184 rdf:rest N7a54bd48ba764e80b99d56ed70299baf
    185 Ndea558dc54bc4e40a4e6b053f78d253d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    186 schema:name Phylogeny
    187 rdf:type schema:DefinedTerm
    188 Ned2b4dca4b7d435bb49b58e360ac1e6c schema:name doi
    189 schema:value 10.1038/s41579-018-0076-2
    190 rdf:type schema:PropertyValue
    191 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    192 schema:name Biological Sciences
    193 rdf:type schema:DefinedTerm
    194 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    195 schema:name Genetics
    196 rdf:type schema:DefinedTerm
    197 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
    198 schema:name Microbiology
    199 rdf:type schema:DefinedTerm
    200 sg:journal.1032854 schema:issn 1740-1526
    201 1740-1534
    202 schema:name Nature Reviews Microbiology
    203 schema:publisher Springer Nature
    204 rdf:type schema:Periodical
    205 sg:person.01236044570.46 schema:affiliation grid-institutes:grid.47840.3f
    206 schema:familyName Brown
    207 schema:givenName Christopher T.
    208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236044570.46
    209 rdf:type schema:Person
    210 sg:person.01342133622.16 schema:affiliation grid-institutes:grid.35403.31
    211 schema:familyName Huang
    212 schema:givenName Raven H.
    213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342133622.16
    214 rdf:type schema:Person
    215 sg:person.01350542775.47 schema:affiliation grid-institutes:grid.184769.5
    216 schema:familyName Banfield
    217 schema:givenName Jillian F.
    218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350542775.47
    219 rdf:type schema:Person
    220 sg:person.0714252516.09 schema:affiliation grid-institutes:grid.14003.36
    221 schema:familyName Anantharaman
    222 schema:givenName Karthik
    223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714252516.09
    224 rdf:type schema:Person
    225 sg:person.0735524175.28 schema:affiliation grid-institutes:grid.499295.a
    226 schema:familyName Castelle
    227 schema:givenName Cindy J.
    228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0735524175.28
    229 rdf:type schema:Person
    230 sg:person.0757405471.24 schema:affiliation grid-institutes:grid.5718.b
    231 schema:familyName Probst
    232 schema:givenName Alexander J.
    233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757405471.24
    234 rdf:type schema:Person
    235 sg:pub.10.1007/s00203-008-0402-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013570847
    236 https://doi.org/10.1007/s00203-008-0402-6
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1038/417063a schema:sameAs https://app.dimensions.ai/details/publication/pub.1012444409
    239 https://doi.org/10.1038/417063a
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1038/ismej.2011.78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019104224
    242 https://doi.org/10.1038/ismej.2011.78
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1038/ismej.2013.249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038736944
    245 https://doi.org/10.1038/ismej.2013.249
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1038/ismej.2014.141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028982733
    248 https://doi.org/10.1038/ismej.2014.141
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1038/ismej.2014.212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020974629
    251 https://doi.org/10.1038/ismej.2014.212
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1038/ismej.2015.66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003990613
    254 https://doi.org/10.1038/ismej.2015.66
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1038/ismej.2016.53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044447226
    257 https://doi.org/10.1038/ismej.2016.53
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1038/ismej.2017.122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090992456
    260 https://doi.org/10.1038/ismej.2017.122
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1038/ismej.2017.39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084128192
    263 https://doi.org/10.1038/ismej.2017.39
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1038/nature12352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019299949
    266 https://doi.org/10.1038/nature12352
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1038/nature14486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029031769
    269 https://doi.org/10.1038/nature14486
    270 rdf:type schema:CreativeWork
    271 sg:pub.10.1038/nature21059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023889809
    272 https://doi.org/10.1038/nature21059
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1038/nbt.2579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010652073
    275 https://doi.org/10.1038/nbt.2579
    276 rdf:type schema:CreativeWork
    277 sg:pub.10.1038/nbt.3704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020940033
    278 https://doi.org/10.1038/nbt.3704
    279 rdf:type schema:CreativeWork
    280 sg:pub.10.1038/nchembio.1610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026039566
    281 https://doi.org/10.1038/nchembio.1610
    282 rdf:type schema:CreativeWork
    283 sg:pub.10.1038/ncomms10613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022975138
    284 https://doi.org/10.1038/ncomms10613
    285 rdf:type schema:CreativeWork
    286 sg:pub.10.1038/ncomms11870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016982186
    287 https://doi.org/10.1038/ncomms11870
    288 rdf:type schema:CreativeWork
    289 sg:pub.10.1038/ncomms12115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032141553
    290 https://doi.org/10.1038/ncomms12115
    291 rdf:type schema:CreativeWork
    292 sg:pub.10.1038/ncomms13219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035143030
    293 https://doi.org/10.1038/ncomms13219
    294 rdf:type schema:CreativeWork
    295 sg:pub.10.1038/ncomms7372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031540291
    296 https://doi.org/10.1038/ncomms7372
    297 rdf:type schema:CreativeWork
    298 sg:pub.10.1038/ncomms7585 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051850173
    299 https://doi.org/10.1038/ncomms7585
    300 rdf:type schema:CreativeWork
    301 sg:pub.10.1038/ncomms9933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010303711
    302 https://doi.org/10.1038/ncomms9933
    303 rdf:type schema:CreativeWork
    304 sg:pub.10.1038/nmicrobiol.2016.48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010598799
    305 https://doi.org/10.1038/nmicrobiol.2016.48
    306 rdf:type schema:CreativeWork
    307 sg:pub.10.1038/nmicrobiol.2017.45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084508967
    308 https://doi.org/10.1038/nmicrobiol.2017.45
    309 rdf:type schema:CreativeWork
    310 sg:pub.10.1038/nrmicro2778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029489940
    311 https://doi.org/10.1038/nrmicro2778
    312 rdf:type schema:CreativeWork
    313 sg:pub.10.1038/nrmicro844 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044206140
    314 https://doi.org/10.1038/nrmicro844
    315 rdf:type schema:CreativeWork
    316 sg:pub.10.1038/nsmb.3265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035333928
    317 https://doi.org/10.1038/nsmb.3265
    318 rdf:type schema:CreativeWork
    319 sg:pub.10.1038/s41467-017-00104-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090347306
    320 https://doi.org/10.1038/s41467-017-00104-7
    321 rdf:type schema:CreativeWork
    322 sg:pub.10.1038/s41564-017-0012-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091527308
    323 https://doi.org/10.1038/s41564-017-0012-7
    324 rdf:type schema:CreativeWork
    325 sg:pub.10.1038/s41564-017-0098-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1100671492
    326 https://doi.org/10.1038/s41564-017-0098-y
    327 rdf:type schema:CreativeWork
    328 sg:pub.10.1038/sdata.2017.203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100422812
    329 https://doi.org/10.1038/sdata.2017.203
    330 rdf:type schema:CreativeWork
    331 sg:pub.10.1038/srep40101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044771262
    332 https://doi.org/10.1038/srep40101
    333 rdf:type schema:CreativeWork
    334 sg:pub.10.1038/srep44350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084132241
    335 https://doi.org/10.1038/srep44350
    336 rdf:type schema:CreativeWork
    337 sg:pub.10.1186/s13062-015-0065-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048300117
    338 https://doi.org/10.1186/s13062-015-0065-6
    339 rdf:type schema:CreativeWork
    340 sg:pub.10.1186/s40168-017-0322-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091310054
    341 https://doi.org/10.1186/s40168-017-0322-2
    342 rdf:type schema:CreativeWork
    343 sg:pub.10.1186/s40168-017-0331-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091424302
    344 https://doi.org/10.1186/s40168-017-0331-1
    345 rdf:type schema:CreativeWork
    346 grid-institutes:grid.14003.36 schema:alternateName Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
    347 schema:name Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
    348 Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
    349 rdf:type schema:Organization
    350 grid-institutes:grid.184769.5 schema:alternateName Department of Environmental Science, Policy, and Management, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
    351 schema:name Chan Zuckerberg Biohub, San Francisco, CA, USA
    352 Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
    353 Department of Environmental Science, Policy, and Management, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
    354 rdf:type schema:Organization
    355 grid-institutes:grid.35403.31 schema:alternateName Department of Biochemistry, University of Illinois, Urbana-Champaign, IL, USA
    356 schema:name Department of Biochemistry, University of Illinois, Urbana-Champaign, IL, USA
    357 rdf:type schema:Organization
    358 grid-institutes:grid.47840.3f schema:alternateName Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
    359 schema:name Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
    360 rdf:type schema:Organization
    361 grid-institutes:grid.499295.a schema:alternateName Chan Zuckerberg Biohub, San Francisco, CA, USA
    362 schema:name Chan Zuckerberg Biohub, San Francisco, CA, USA
    363 Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
    364 rdf:type schema:Organization
    365 grid-institutes:grid.5718.b schema:alternateName Department of Chemistry, Biofilm Center, Group for Aquatic Microbial Ecology, University of Duisburg-Essen, Essen, Germany
    366 schema:name Department of Chemistry, Biofilm Center, Group for Aquatic Microbial Ecology, University of Duisburg-Essen, Essen, Germany
    367 Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
    368 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...