Engineered platforms for topological superconductivity and Majorana zero modes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-07-06

AUTHORS

Karsten Flensberg, Felix von Oppen, Ady Stern

ABSTRACT

Among the major avenues that are being pursued for realizing quantum bits, the Majorana-based approach has been the most recent to be launched. It attempts to realize qubits that store quantum information in a topologically protected manner. The quantum information is protected by non-local storage in localized and well-separated Majorana zero modes, and manipulated by exploiting their non-abelian quantum statistics. Realizing these topological qubits is experimentally challenging, requiring superconductivity, helical electrons (created by spin–orbit coupling) and breaking of time-reversal symmetry to all cooperate in an uncomfortable alliance. Over the past decade, several candidate materials systems for realizing Majorana-based topological qubits have been explored, and there is accumulating, though still debated, evidence that zero modes are indeed being realized. This Review surveys the basic physical principles on which these approaches are based, the materials systems that are being developed and the current state of the field. We highlight both the progress that has been made and the challenges that still need to be overcome. More... »

PAGES

944-958

References to SciGraph publications

  • 2016-11-07. High-resolution studies of the Majorana atomic chain platform in NATURE PHYSICS
  • 2016-03-09. Exponential protection of zero modes in Majorana islands in NATURE
  • 2017-07-06. Ballistic superconductivity in semiconductor nanowires in NATURE COMMUNICATIONS
  • 2018-11-15. Parity transitions in the superconducting ground state of hybrid InSb–Al Coulomb islands in NATURE COMMUNICATIONS
  • 2019-06-13. Isolated pairs of Majorana zero modes in a disordered superconducting lead monolayer in NATURE COMMUNICATIONS
  • 2021-01-04. Non-Majorana states yield nearly quantized conductance in proximatized nanowires in NATURE PHYSICS
  • 2014-09-10. Microwave transitions as a signature of coherent parity mixing effects in the Majorana-transmon qubit in NATURE COMMUNICATIONS
  • 2018-05-01. Majorana zero modes in superconductor–semiconductor heterostructures in NATURE REVIEWS MATERIALS
  • 2016-01-21. Manipulating Majorana zero modes on atomic rings with an external magnetic field in NATURE COMMUNICATIONS
  • 2016-11-29. Probing atomic structure and Majorana wavefunctions in mono-atomic Fe chains on superconducting Pb surface in NPJ QUANTUM INFORMATION
  • 2020-06-25. Coherent transport through a Majorana island in an Aharonov–Bohm interferometer in NATURE COMMUNICATIONS
  • 2020-09-07. Zero-bias peaks at zero magnetic field in ferromagnetic hybrid nanowires in NATURE PHYSICS
  • 2018-08-14. Engineering the spin couplings in atomically crafted spin chains on an elemental superconductor in NATURE COMMUNICATIONS
  • 2012-09-23. The fractional a.c. Josephson effect in a semiconductor–superconductor nanowire as a signature of Majorana particles in NATURE PHYSICS
  • 2019-04-29. Concomitant opening of a bulk-gap with an emerging possible Majorana zero mode in NATURE COMMUNICATIONS
  • 2013-07-17. Exciting Andreev pairs in a superconducting atomic contact in NATURE
  • 2019-10-25. Non-hermitian topology as a unifying framework for the Andreev versus Majorana states controversy in COMMUNICATIONS PHYSICS
  • 2018-01-15. Ballistic Majorana nanowire devices in NATURE NANOTECHNOLOGY
  • 2015-09-14. Parity lifetime of bound states in a proximitized semiconductor nanowire in NATURE PHYSICS
  • 2019-04-24. Topological superconductivity in a phase-controlled Josephson junction in NATURE
  • 2019-08-21. Ballistic superconductivity and tunable π–junctions in InSb quantum wells in NATURE COMMUNICATIONS
  • 2017-10-30. Majorana quasiparticles in condensed matter in LA RIVISTA DEL NUOVO CIMENTO
  • 2017-12-11. Two-dimensional topological superconductivity in Pb/Co/Si(111) in NATURE COMMUNICATIONS
  • 2015-01-12. Epitaxy of semiconductor–superconductor nanowires in NATURE MATERIALS
  • 2015-01-12. Hard gap in epitaxial semiconductor–superconductor nanowires in NATURE NANOTECHNOLOGY
  • 2019-04-24. Evidence of topological superconductivity in planar Josephson junctions in NATURE
  • 2012-11-11. Zero-bias peaks and splitting in an Al–InAs nanowire topological superconductor as a signature of Majorana fermions in NATURE PHYSICS
  • 2011-02-13. Non-Abelian statistics and topological quantum information processing in 1D wire networks in NATURE PHYSICS
  • 2020-04-13. Photon-assisted tunnelling of zero modes in a Majorana wire in NATURE PHYSICS
  • <error retrieving object. in <ERROR RETRIEVING OBJECT
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41578-021-00336-6

    DOI

    http://dx.doi.org/10.1038/s41578-021-00336-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1139420963


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark", 
              "id": "http://www.grid.ac/institutes/grid.5254.6", 
              "name": [
                "Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Flensberg", 
            "givenName": "Karsten", 
            "id": "sg:person.0644745723.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644745723.65"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universit\u00e4t Berlin, Berlin, Germany", 
              "id": "http://www.grid.ac/institutes/grid.14095.39", 
              "name": [
                "Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universit\u00e4t Berlin, Berlin, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "von Oppen", 
            "givenName": "Felix", 
            "id": "sg:person.01366036711.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366036711.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel", 
              "id": "http://www.grid.ac/institutes/grid.13992.30", 
              "name": [
                "Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Stern", 
            "givenName": "Ady", 
            "id": "sg:person.014055640065.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014055640065.48"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/s41467-018-07279-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109841471", 
              "https://doi.org/10.1038/s41467-018-07279-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms5772", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053113459", 
              "https://doi.org/10.1038/ncomms5772"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys3461", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046188120", 
              "https://doi.org/10.1038/nphys3461"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2014.306", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050412318", 
              "https://doi.org/10.1038/nnano.2014.306"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41567-020-01107-w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1134289204", 
              "https://doi.org/10.1038/s41567-020-01107-w"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys2429", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029592153", 
              "https://doi.org/10.1038/nphys2429"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-020-16988-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1128744238", 
              "https://doi.org/10.1038/s41467-020-16988-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41567-020-1017-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1130644620", 
              "https://doi.org/10.1038/s41567-020-1017-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms16025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090360161", 
              "https://doi.org/10.1038/ncomms16025"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4176", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026452220", 
              "https://doi.org/10.1038/nmat4176"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41567-020-0858-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1126636533", 
              "https://doi.org/10.1038/s41567-020-0858-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12315", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043605055", 
              "https://doi.org/10.1038/nature12315"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41565-017-0032-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100351860", 
              "https://doi.org/10.1038/s41565-017-0032-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/npjqi.2016.35", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043351173", 
              "https://doi.org/10.1038/npjqi.2016.35"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms10395", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051653876", 
              "https://doi.org/10.1038/ncomms10395"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s42254-020-0228-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1131066777", 
              "https://doi.org/10.1038/s42254-020-0228-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-019-11742-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1120445502", 
              "https://doi.org/10.1038/s41467-019-11742-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-019-1068-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1113668326", 
              "https://doi.org/10.1038/s41586-019-1068-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1393/ncr/i2017-10141-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1126004606", 
              "https://doi.org/10.1393/ncr/i2017-10141-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys1915", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022583847", 
              "https://doi.org/10.1038/nphys1915"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-019-09771-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1113811282", 
              "https://doi.org/10.1038/s41467-019-09771-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature17162", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025268295", 
              "https://doi.org/10.1038/nature17162"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41578-018-0003-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103682509", 
              "https://doi.org/10.1038/s41578-018-0003-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-019-10397-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1117131896", 
              "https://doi.org/10.1038/s41467-019-10397-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-05701-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106070332", 
              "https://doi.org/10.1038/s41467-018-05701-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys3947", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013380134", 
              "https://doi.org/10.1038/nphys3947"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-019-1148-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1113668319", 
              "https://doi.org/10.1038/s41586-019-1148-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys2479", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010713935", 
              "https://doi.org/10.1038/nphys2479"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-017-02192-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099597575", 
              "https://doi.org/10.1038/s41467-017-02192-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s42005-019-0231-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1122098427", 
              "https://doi.org/10.1038/s42005-019-0231-8"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-07-06", 
        "datePublishedReg": "2021-07-06", 
        "description": "Among the major avenues that are being pursued for realizing quantum bits, the Majorana-based approach has been the most recent to be launched. It attempts to realize qubits that store quantum information in a topologically protected manner. The quantum information is protected by non-local storage in localized and well-separated Majorana zero modes, and manipulated by exploiting their non-abelian quantum statistics. Realizing these topological qubits is experimentally challenging, requiring superconductivity, helical electrons (created by spin\u2013orbit coupling) and breaking of time-reversal symmetry to all cooperate in an uncomfortable alliance. Over the past decade, several candidate materials systems for realizing Majorana-based topological qubits have been explored, and there is accumulating, though still debated, evidence that zero modes are indeed being realized. This Review surveys the basic physical principles on which these approaches are based, the materials systems that are being developed and the current state of the field. We highlight both the progress that has been made and the challenges that still need to be overcome.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41578-021-00336-6", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1284373", 
            "issn": [
              "2058-8437"
            ], 
            "name": "Nature Reviews Materials", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "10", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "6"
          }
        ], 
        "keywords": [
          "Majorana zero modes", 
          "quantum information", 
          "topological qubits", 
          "zero modes", 
          "non-Abelian quantum statistics", 
          "time-reversal symmetry", 
          "material system", 
          "candidate material system", 
          "helical electrons", 
          "topological superconductivity", 
          "basic physical principles", 
          "quantum bits", 
          "quantum statistics", 
          "qubits", 
          "Majorana", 
          "physical principles", 
          "superconductivity", 
          "non-local storage", 
          "uncomfortable alliance", 
          "electrons", 
          "mode", 
          "engineered platforms", 
          "breaking", 
          "symmetry", 
          "field", 
          "state", 
          "review surveys", 
          "system", 
          "bits", 
          "principles", 
          "progress", 
          "major avenue", 
          "avenues", 
          "current state", 
          "information", 
          "past decade", 
          "platform", 
          "approach", 
          "statistics", 
          "storage", 
          "decades", 
          "evidence", 
          "survey", 
          "challenges", 
          "manner", 
          "alliance"
        ], 
        "name": "Engineered platforms for topological superconductivity and Majorana zero modes", 
        "pagination": "944-958", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1139420963"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41578-021-00336-6"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41578-021-00336-6", 
          "https://app.dimensions.ai/details/publication/pub.1139420963"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T21:07", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_878.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41578-021-00336-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41578-021-00336-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41578-021-00336-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41578-021-00336-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41578-021-00336-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    242 TRIPLES      21 PREDICATES      100 URIs      62 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41578-021-00336-6 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N2804b11f17184b518b1bf2f0507c7a75
    4 schema:citation sg:pub.10.1038/nature12315
    5 sg:pub.10.1038/nature17162
    6 sg:pub.10.1038/ncomms10395
    7 sg:pub.10.1038/ncomms16025
    8 sg:pub.10.1038/ncomms5772
    9 sg:pub.10.1038/nmat4176
    10 sg:pub.10.1038/nnano.2014.306
    11 sg:pub.10.1038/nphys1915
    12 sg:pub.10.1038/nphys2429
    13 sg:pub.10.1038/nphys2479
    14 sg:pub.10.1038/nphys3461
    15 sg:pub.10.1038/nphys3947
    16 sg:pub.10.1038/npjqi.2016.35
    17 sg:pub.10.1038/s41467-017-02192-x
    18 sg:pub.10.1038/s41467-018-05701-8
    19 sg:pub.10.1038/s41467-018-07279-7
    20 sg:pub.10.1038/s41467-019-09771-0
    21 sg:pub.10.1038/s41467-019-10397-5
    22 sg:pub.10.1038/s41467-019-11742-4
    23 sg:pub.10.1038/s41467-020-16988-x
    24 sg:pub.10.1038/s41565-017-0032-8
    25 sg:pub.10.1038/s41567-020-01107-w
    26 sg:pub.10.1038/s41567-020-0858-0
    27 sg:pub.10.1038/s41567-020-1017-3
    28 sg:pub.10.1038/s41578-018-0003-1
    29 sg:pub.10.1038/s41586-019-1068-8
    30 sg:pub.10.1038/s41586-019-1148-9
    31 sg:pub.10.1038/s42005-019-0231-8
    32 sg:pub.10.1038/s42254-020-0228-y
    33 sg:pub.10.1393/ncr/i2017-10141-9
    34 schema:datePublished 2021-07-06
    35 schema:datePublishedReg 2021-07-06
    36 schema:description Among the major avenues that are being pursued for realizing quantum bits, the Majorana-based approach has been the most recent to be launched. It attempts to realize qubits that store quantum information in a topologically protected manner. The quantum information is protected by non-local storage in localized and well-separated Majorana zero modes, and manipulated by exploiting their non-abelian quantum statistics. Realizing these topological qubits is experimentally challenging, requiring superconductivity, helical electrons (created by spin–orbit coupling) and breaking of time-reversal symmetry to all cooperate in an uncomfortable alliance. Over the past decade, several candidate materials systems for realizing Majorana-based topological qubits have been explored, and there is accumulating, though still debated, evidence that zero modes are indeed being realized. This Review surveys the basic physical principles on which these approaches are based, the materials systems that are being developed and the current state of the field. We highlight both the progress that has been made and the challenges that still need to be overcome.
    37 schema:genre article
    38 schema:isAccessibleForFree true
    39 schema:isPartOf Ne6d1b2535aa24e3ab4e80aa7a1ce1a78
    40 Nf768cf6d399e4341b0508d863ae8dfc3
    41 sg:journal.1284373
    42 schema:keywords Majorana
    43 Majorana zero modes
    44 alliance
    45 approach
    46 avenues
    47 basic physical principles
    48 bits
    49 breaking
    50 candidate material system
    51 challenges
    52 current state
    53 decades
    54 electrons
    55 engineered platforms
    56 evidence
    57 field
    58 helical electrons
    59 information
    60 major avenue
    61 manner
    62 material system
    63 mode
    64 non-Abelian quantum statistics
    65 non-local storage
    66 past decade
    67 physical principles
    68 platform
    69 principles
    70 progress
    71 quantum bits
    72 quantum information
    73 quantum statistics
    74 qubits
    75 review surveys
    76 state
    77 statistics
    78 storage
    79 superconductivity
    80 survey
    81 symmetry
    82 system
    83 time-reversal symmetry
    84 topological qubits
    85 topological superconductivity
    86 uncomfortable alliance
    87 zero modes
    88 schema:name Engineered platforms for topological superconductivity and Majorana zero modes
    89 schema:pagination 944-958
    90 schema:productId Nb03c80117f0c4cea97d5059fd07a91e6
    91 Nc0a2cf7d54774f7c81b0bb623fac9d4a
    92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1139420963
    93 https://doi.org/10.1038/s41578-021-00336-6
    94 schema:sdDatePublished 2022-11-24T21:07
    95 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    96 schema:sdPublisher Ne7b6430536cc4cb48f77d571efd9592c
    97 schema:url https://doi.org/10.1038/s41578-021-00336-6
    98 sgo:license sg:explorer/license/
    99 sgo:sdDataset articles
    100 rdf:type schema:ScholarlyArticle
    101 N2804b11f17184b518b1bf2f0507c7a75 rdf:first sg:person.0644745723.65
    102 rdf:rest Nd66a60c941824353afd58a1dc195f511
    103 N3d7478e5b916454d8a1b5601e57c8627 rdf:first sg:person.014055640065.48
    104 rdf:rest rdf:nil
    105 Nb03c80117f0c4cea97d5059fd07a91e6 schema:name doi
    106 schema:value 10.1038/s41578-021-00336-6
    107 rdf:type schema:PropertyValue
    108 Nc0a2cf7d54774f7c81b0bb623fac9d4a schema:name dimensions_id
    109 schema:value pub.1139420963
    110 rdf:type schema:PropertyValue
    111 Nd66a60c941824353afd58a1dc195f511 rdf:first sg:person.01366036711.96
    112 rdf:rest N3d7478e5b916454d8a1b5601e57c8627
    113 Ne6d1b2535aa24e3ab4e80aa7a1ce1a78 schema:volumeNumber 6
    114 rdf:type schema:PublicationVolume
    115 Ne7b6430536cc4cb48f77d571efd9592c schema:name Springer Nature - SN SciGraph project
    116 rdf:type schema:Organization
    117 Nf768cf6d399e4341b0508d863ae8dfc3 schema:issueNumber 10
    118 rdf:type schema:PublicationIssue
    119 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    120 schema:name Engineering
    121 rdf:type schema:DefinedTerm
    122 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    123 schema:name Materials Engineering
    124 rdf:type schema:DefinedTerm
    125 sg:journal.1284373 schema:issn 2058-8437
    126 schema:name Nature Reviews Materials
    127 schema:publisher Springer Nature
    128 rdf:type schema:Periodical
    129 sg:person.01366036711.96 schema:affiliation grid-institutes:grid.14095.39
    130 schema:familyName von Oppen
    131 schema:givenName Felix
    132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366036711.96
    133 rdf:type schema:Person
    134 sg:person.014055640065.48 schema:affiliation grid-institutes:grid.13992.30
    135 schema:familyName Stern
    136 schema:givenName Ady
    137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014055640065.48
    138 rdf:type schema:Person
    139 sg:person.0644745723.65 schema:affiliation grid-institutes:grid.5254.6
    140 schema:familyName Flensberg
    141 schema:givenName Karsten
    142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644745723.65
    143 rdf:type schema:Person
    144 sg:pub.10.1038/nature12315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043605055
    145 https://doi.org/10.1038/nature12315
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1038/nature17162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025268295
    148 https://doi.org/10.1038/nature17162
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1038/ncomms10395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051653876
    151 https://doi.org/10.1038/ncomms10395
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1038/ncomms16025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090360161
    154 https://doi.org/10.1038/ncomms16025
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1038/ncomms5772 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053113459
    157 https://doi.org/10.1038/ncomms5772
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1038/nmat4176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026452220
    160 https://doi.org/10.1038/nmat4176
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1038/nnano.2014.306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050412318
    163 https://doi.org/10.1038/nnano.2014.306
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1038/nphys1915 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022583847
    166 https://doi.org/10.1038/nphys1915
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1038/nphys2429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029592153
    169 https://doi.org/10.1038/nphys2429
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1038/nphys2479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010713935
    172 https://doi.org/10.1038/nphys2479
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1038/nphys3461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046188120
    175 https://doi.org/10.1038/nphys3461
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1038/nphys3947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013380134
    178 https://doi.org/10.1038/nphys3947
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1038/npjqi.2016.35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043351173
    181 https://doi.org/10.1038/npjqi.2016.35
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1038/s41467-017-02192-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1099597575
    184 https://doi.org/10.1038/s41467-017-02192-x
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1038/s41467-018-05701-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106070332
    187 https://doi.org/10.1038/s41467-018-05701-8
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1038/s41467-018-07279-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109841471
    190 https://doi.org/10.1038/s41467-018-07279-7
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1038/s41467-019-09771-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113811282
    193 https://doi.org/10.1038/s41467-019-09771-0
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1038/s41467-019-10397-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1117131896
    196 https://doi.org/10.1038/s41467-019-10397-5
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1038/s41467-019-11742-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120445502
    199 https://doi.org/10.1038/s41467-019-11742-4
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1038/s41467-020-16988-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1128744238
    202 https://doi.org/10.1038/s41467-020-16988-x
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1038/s41565-017-0032-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100351860
    205 https://doi.org/10.1038/s41565-017-0032-8
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1038/s41567-020-01107-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1134289204
    208 https://doi.org/10.1038/s41567-020-01107-w
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1038/s41567-020-0858-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1126636533
    211 https://doi.org/10.1038/s41567-020-0858-0
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1038/s41567-020-1017-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1130644620
    214 https://doi.org/10.1038/s41567-020-1017-3
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1038/s41578-018-0003-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103682509
    217 https://doi.org/10.1038/s41578-018-0003-1
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1038/s41586-019-1068-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113668326
    220 https://doi.org/10.1038/s41586-019-1068-8
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1038/s41586-019-1148-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113668319
    223 https://doi.org/10.1038/s41586-019-1148-9
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1038/s42005-019-0231-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122098427
    226 https://doi.org/10.1038/s42005-019-0231-8
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1038/s42254-020-0228-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1131066777
    229 https://doi.org/10.1038/s42254-020-0228-y
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1393/ncr/i2017-10141-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1126004606
    232 https://doi.org/10.1393/ncr/i2017-10141-9
    233 rdf:type schema:CreativeWork
    234 grid-institutes:grid.13992.30 schema:alternateName Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel
    235 schema:name Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel
    236 rdf:type schema:Organization
    237 grid-institutes:grid.14095.39 schema:alternateName Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, Berlin, Germany
    238 schema:name Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, Berlin, Germany
    239 rdf:type schema:Organization
    240 grid-institutes:grid.5254.6 schema:alternateName Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
    241 schema:name Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
    242 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...