Molecular magnetism: from chemical design to spin control in molecules, materials and devices View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-10-24

AUTHORS

Eugenio Coronado

ABSTRACT

The field of molecular magnetism is rapidly evolving towards the use of magnetic molecules and molecule-based magnetic materials in physics-driven and nanotechnology-driven fields, in particular molecular spintronics, quantum technologies, metal–organic frameworks (MOFs) and 2D materials. In molecular spintronics, the goal is the development of a new generation of spintronic devices based on molecular materials or, in the longer term, on one or a few molecules. In the area of quantum technologies, the milestones reached in the design of molecular spin qubits with long quantum coherence times and in the implementation of quantum operations have raised expectations for the use of molecular spin qubits in quantum computation. MOFs and 2D materials are two classes of materials for which magnetism has been, until very recently, an elusive property; molecular materials with attractive properties and functionalities are now starting to be developed in both areas. In MOFs, single-molecule magnets and spin crossover complexes can be integrated into the nodes of the framework, within the pores or both, sometimes giving rise to smart magnetic materials or to hybrid materials exhibiting synergistic combinations of properties. 2D molecular-based magnets can provide a platform to study magnetism in the 2D limit and exhibit superior properties compared with their inorganic analogues in terms of chemical stability and tunability. More... »

PAGES

87-104

References to SciGraph publications

  • 1984. Magneto-Structural Correlations in Exchange Coupled Systems in NONE
  • 2018-03-12. Organic-based magnon spintronics in NATURE MATERIALS
  • 2008-02-06. Wiring up quantum systems in NATURE
  • 2016-06-21. Nanoscale magnetic skyrmions in metallic films and multilayers: a new twist for spintronics in NATURE REVIEWS MATERIALS
  • 2004-02. Giant magnetoresistance in organic spin-valves in NATURE
  • 2017-06-30. Single-molecule quantum dot as a Kondo simulator in NATURE COMMUNICATIONS
  • 2014-10-20. Room temperature quantum coherence in a potential molecular qubit in NATURE COMMUNICATIONS
  • 2016-03-17. Enhanced superconductivity in atomically thin TaS2 in NATURE COMMUNICATIONS
  • 2014-12-08. Strong magneto-chiral dichroism in a paramagnetic molecular helix observed by hard X-rays in NATURE PHYSICS
  • 2010-05-30. Graphene transistors in NATURE NANOTECHNOLOGY
  • 2007-05-03. Spin qubits with electrically gated polyoxometalate molecules in NATURE NANOTECHNOLOGY
  • 1993-09. Magnetic bistability in a metal-ion cluster in NATURE
  • 2017-03-06. The role of anharmonic phonons in under-barrier spin relaxation of single molecule magnets in NATURE COMMUNICATIONS
  • 2014-09-09. Impurity-band transport in organic spin valves in NATURE COMMUNICATIONS
  • 2019-03-22. Molecular spins for quantum computation in NATURE CHEMISTRY
  • 2013-04-24. Heralded entanglement between solid-state qubits separated by three metres in NATURE
  • 2017-04-25. Activating the molecular spinterface in NATURE MATERIALS
  • 2016-12-14. The rise of plastic bioelectronics in NATURE
  • 2002-06. Kondo resonance in a single-molecule transistor in NATURE
  • 2017-09-06. Silicon quantum processor with robust long-distance qubit couplings in NATURE COMMUNICATIONS
  • 2013-07-24. Van der Waals heterostructures in NATURE
  • 2009-08-24. Spin routes in organic semiconductors in NATURE MATERIALS
  • 2017-08-24. Molecular magnetic hysteresis at 60 kelvin in dysprosocenium in NATURE
  • 2013-11-24. 90-degree optical switching of output second-harmonic light in chiral photomagnet in NATURE PHOTONICS
  • 2018-06-04. Electron delocalization and charge mobility as a function of reduction in a metal–organic framework in NATURE MATERIALS
  • 2016-08-01. Mixed-dimensional van der Waals heterostructures in NATURE MATERIALS
  • 2008-08-17. Strong magneto-chiral dichroism in enantiopure chiral ferromagnets in NATURE MATERIALS
  • 1995-12. A room-temperature organometallic magnet based on Prussian blue in NATURE
  • 2017-06-08. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit in NATURE
  • 2015-01-07. Optically addressable nuclear spins in a solid with a six-hour coherence time in NATURE
  • 2000-11. Coexistence of ferromagnetism and metallic conductivity in a molecule-based layered compound in NATURE
  • 2010-10-27. Quantum tunnelling of the magnetization in a monolayer of oriented single-molecule magnets in NATURE
  • 2010-06-13. The rise of spinterface science in NATURE PHYSICS
  • 2019-05-17. A Lieb-like lattice in a covalent-organic framework and its Stoner ferromagnetism in NATURE COMMUNICATIONS
  • 2019-05-07. Magnetic 2D materials and heterostructures in NATURE NANOTECHNOLOGY
  • 2018-08-27. Isoreticular two-dimensional magnetic coordination polymers prepared through pre-synthetic ligand functionalization in NATURE CHEMISTRY
  • 2016-03-16. Enhancing coherence in molecular spin qubits via atomic clock transitions in NATURE
  • 2018-09-10. Formation of the layered conductive magnet CrCl2(pyrazine)2 through redox-active coordination chemistry in NATURE CHEMISTRY
  • 2012-01. Robust spin crossover and memristance across a single molecule in NATURE COMMUNICATIONS
  • 2016-02-23. Chemical principles of single-molecule electronics in NATURE REVIEWS MATERIALS
  • 2013-11-10. Protection of excited spin states by a superconducting energy gap in NATURE PHYSICS
  • 2016-04-25. A modular design of molecular qubits to implement universal quantum gates in NATURE COMMUNICATIONS
  • 2018-10-31. Magnetism in two-dimensional van der Waals materials in NATURE
  • 2003-02-16. A nanoporous molecular magnet with reversible solvent-induced mechanical and magnetic properties in NATURE MATERIALS
  • 1996-09. Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets in NATURE
  • 2012-08-15. Electronic read-out of a single nuclear spin using a molecular spin transistor in NATURE
  • 2017-01-25. Synthesis and chemistry of elemental 2D materials in NATURE REVIEWS CHEMISTRY
  • 2008-03. Molecular spintronics using single-molecule magnets in NATURE MATERIALS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41578-019-0146-8

    DOI

    http://dx.doi.org/10.1038/s41578-019-0146-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1122089918


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0302", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Inorganic Chemistry", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Macromolecular and Materials Chemistry", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Instituto de Ciencia Molecular (ICMol), Universitat de Valencia, Valencia, Spain", 
              "id": "http://www.grid.ac/institutes/grid.5338.d", 
              "name": [
                "Instituto de Ciencia Molecular (ICMol), Universitat de Valencia, Valencia, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Coronado", 
            "givenName": "Eugenio", 
            "id": "sg:person.01245166576.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245166576.37"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nphys1714", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031065691", 
              "https://doi.org/10.1038/nphys1714"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys2794", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004724914", 
              "https://doi.org/10.1038/nphys2794"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms16012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090306279", 
              "https://doi.org/10.1038/ncomms16012"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2013.310", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020246345", 
              "https://doi.org/10.1038/nphoton.2013.310"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/451664a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037543758", 
              "https://doi.org/10.1038/451664a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature23447", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091311103", 
              "https://doi.org/10.1038/nature23447"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2007.110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008460050", 
              "https://doi.org/10.1038/nnano.2007.110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12385", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024857999", 
              "https://doi.org/10.1038/nature12385"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4902", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085054459", 
              "https://doi.org/10.1038/nmat4902"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41557-018-0113-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106199503", 
              "https://doi.org/10.1038/s41557-018-0113-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41557-018-0107-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106681147", 
              "https://doi.org/10.1038/s41557-018-0107-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms14620", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084128852", 
              "https://doi.org/10.1038/ncomms14620"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-019-10094-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1114527757", 
              "https://doi.org/10.1038/s41467-019-10094-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11341", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015361904", 
              "https://doi.org/10.1038/nature11341"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41563-018-0035-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101488427", 
              "https://doi.org/10.1038/s41563-018-0035-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms5842", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033232357", 
              "https://doi.org/10.1038/ncomms5842"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/383145a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036610413", 
              "https://doi.org/10.1038/383145a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-017-00378-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091456732", 
              "https://doi.org/10.1038/s41467-017-00378-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02325", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026819630", 
              "https://doi.org/10.1038/nature02325"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/378701a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011425902", 
              "https://doi.org/10.1038/378701a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms6304", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028629386", 
              "https://doi.org/10.1038/ncomms6304"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35044035", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009592175", 
              "https://doi.org/10.1038/35044035"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033567082", 
              "https://doi.org/10.1038/nature14025"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature00790", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005786324", 
              "https://doi.org/10.1038/nature00790"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09478", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038256963", 
              "https://doi.org/10.1038/nature09478"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature22391", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085889876", 
              "https://doi.org/10.1038/nature22391"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat2133", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041640333", 
              "https://doi.org/10.1038/nmat2133"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat834", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032167638", 
              "https://doi.org/10.1038/nmat834"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat2256", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028477224", 
              "https://doi.org/10.1038/nmat2256"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/365141a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007450225", 
              "https://doi.org/10.1038/365141a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41565-019-0438-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1113952572", 
              "https://doi.org/10.1038/s41565-019-0438-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41557-019-0232-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112949420", 
              "https://doi.org/10.1038/s41557-019-0232-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/natrevmats.2016.2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039515856", 
              "https://doi.org/10.1038/natrevmats.2016.2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/natrevmats.2016.44", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002688226", 
              "https://doi.org/10.1038/natrevmats.2016.44"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms11043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040653004", 
              "https://doi.org/10.1038/ncomms11043"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2010.89", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011423110", 
              "https://doi.org/10.1038/nnano.2010.89"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms11377", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040373065", 
              "https://doi.org/10.1038/ncomms11377"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms1940", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007921446", 
              "https://doi.org/10.1038/ncomms1940"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys3152", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040365457", 
              "https://doi.org/10.1038/nphys3152"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-009-6511-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1108494043", 
              "https://doi.org/10.1007/978-94-009-6511-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4703", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042572357", 
              "https://doi.org/10.1038/nmat4703"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41570-016-0014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074198994", 
              "https://doi.org/10.1038/s41570-016-0014"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature16984", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047595349", 
              "https://doi.org/10.1038/nature16984"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature21004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030846050", 
              "https://doi.org/10.1038/nature21004"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-018-0631-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107849754", 
              "https://doi.org/10.1038/s41586-018-0631-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat2510", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043848324", 
              "https://doi.org/10.1038/nmat2510"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022526660", 
              "https://doi.org/10.1038/nature12016"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41563-018-0098-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104356858", 
              "https://doi.org/10.1038/s41563-018-0098-1"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-10-24", 
        "datePublishedReg": "2019-10-24", 
        "description": "The field of molecular magnetism is rapidly evolving towards the use of magnetic molecules and molecule-based magnetic materials in physics-driven and nanotechnology-driven fields, in particular molecular spintronics, quantum technologies, metal\u2013organic frameworks (MOFs) and 2D materials. In molecular spintronics, the goal is the development of a new generation of spintronic devices based on molecular materials or, in the longer term, on one or a few molecules. In the area of quantum technologies, the milestones reached in the design of molecular spin qubits with long quantum coherence times and in the implementation of quantum operations have raised expectations for the use of molecular spin qubits in quantum computation. MOFs and 2D materials are two classes of materials for which magnetism has been, until very recently, an elusive property; molecular materials with attractive properties and functionalities are now starting to be developed in both areas. In MOFs, single-molecule magnets and spin crossover complexes can be integrated into the nodes of the framework, within the pores or both, sometimes giving rise to smart magnetic materials or to hybrid materials exhibiting synergistic combinations of properties. 2D molecular-based magnets can provide a platform to study magnetism in the 2D limit and exhibit superior properties compared with their inorganic analogues in terms of chemical stability and tunability.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41578-019-0146-8", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7676838", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1284373", 
            "issn": [
              "2058-8437", 
              "2058-8437"
            ], 
            "name": "Nature Reviews Materials", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "5"
          }
        ], 
        "keywords": [
          "metal-organic frameworks", 
          "molecular spin qubits", 
          "molecular materials", 
          "molecular spintronics", 
          "molecule-based magnetic materials", 
          "quantum technologies", 
          "spin qubits", 
          "long quantum coherence times", 
          "single-molecule magnets", 
          "quantum coherence times", 
          "inorganic analogues", 
          "magnetic materials", 
          "hybrid materials", 
          "class of materials", 
          "molecular magnetism", 
          "chemical design", 
          "chemical stability", 
          "crossover complexes", 
          "quantum computation", 
          "coherence time", 
          "quantum operations", 
          "magnetic molecules", 
          "spintronic devices", 
          "smart magnetic materials", 
          "superior properties", 
          "molecules", 
          "magnetism", 
          "qubits", 
          "attractive properties", 
          "spintronics", 
          "elusive properties", 
          "synergistic combination", 
          "properties", 
          "materials", 
          "magnets", 
          "tunability", 
          "complexes", 
          "field", 
          "devices", 
          "new generation", 
          "pores", 
          "stability", 
          "analogues", 
          "functionality", 
          "limit", 
          "computation", 
          "terms", 
          "framework", 
          "generation", 
          "class", 
          "technology", 
          "use", 
          "design", 
          "platform", 
          "combination", 
          "nodes", 
          "area", 
          "rise", 
          "operation", 
          "implementation", 
          "time", 
          "milestones", 
          "development", 
          "control", 
          "goal", 
          "expectations", 
          "long term"
        ], 
        "name": "Molecular magnetism: from chemical design to spin control in molecules, materials and devices", 
        "pagination": "87-104", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1122089918"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41578-019-0146-8"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41578-019-0146-8", 
          "https://app.dimensions.ai/details/publication/pub.1122089918"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-10T10:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_820.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41578-019-0146-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41578-019-0146-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41578-019-0146-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41578-019-0146-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41578-019-0146-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    326 TRIPLES      22 PREDICATES      142 URIs      84 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41578-019-0146-8 schema:about anzsrc-for:03
    2 anzsrc-for:0302
    3 anzsrc-for:0303
    4 anzsrc-for:0306
    5 schema:author N305537902143491f8268183e78367705
    6 schema:citation sg:pub.10.1007/978-94-009-6511-9
    7 sg:pub.10.1038/35044035
    8 sg:pub.10.1038/365141a0
    9 sg:pub.10.1038/378701a0
    10 sg:pub.10.1038/383145a0
    11 sg:pub.10.1038/451664a
    12 sg:pub.10.1038/natrevmats.2016.2
    13 sg:pub.10.1038/natrevmats.2016.44
    14 sg:pub.10.1038/nature00790
    15 sg:pub.10.1038/nature02325
    16 sg:pub.10.1038/nature09478
    17 sg:pub.10.1038/nature11341
    18 sg:pub.10.1038/nature12016
    19 sg:pub.10.1038/nature12385
    20 sg:pub.10.1038/nature14025
    21 sg:pub.10.1038/nature16984
    22 sg:pub.10.1038/nature21004
    23 sg:pub.10.1038/nature22391
    24 sg:pub.10.1038/nature23447
    25 sg:pub.10.1038/ncomms11043
    26 sg:pub.10.1038/ncomms11377
    27 sg:pub.10.1038/ncomms14620
    28 sg:pub.10.1038/ncomms16012
    29 sg:pub.10.1038/ncomms1940
    30 sg:pub.10.1038/ncomms5842
    31 sg:pub.10.1038/ncomms6304
    32 sg:pub.10.1038/nmat2133
    33 sg:pub.10.1038/nmat2256
    34 sg:pub.10.1038/nmat2510
    35 sg:pub.10.1038/nmat4703
    36 sg:pub.10.1038/nmat4902
    37 sg:pub.10.1038/nmat834
    38 sg:pub.10.1038/nnano.2007.110
    39 sg:pub.10.1038/nnano.2010.89
    40 sg:pub.10.1038/nphoton.2013.310
    41 sg:pub.10.1038/nphys1714
    42 sg:pub.10.1038/nphys2794
    43 sg:pub.10.1038/nphys3152
    44 sg:pub.10.1038/s41467-017-00378-x
    45 sg:pub.10.1038/s41467-019-10094-3
    46 sg:pub.10.1038/s41557-018-0107-7
    47 sg:pub.10.1038/s41557-018-0113-9
    48 sg:pub.10.1038/s41557-019-0232-y
    49 sg:pub.10.1038/s41563-018-0035-3
    50 sg:pub.10.1038/s41563-018-0098-1
    51 sg:pub.10.1038/s41565-019-0438-6
    52 sg:pub.10.1038/s41570-016-0014
    53 sg:pub.10.1038/s41586-018-0631-z
    54 schema:datePublished 2019-10-24
    55 schema:datePublishedReg 2019-10-24
    56 schema:description The field of molecular magnetism is rapidly evolving towards the use of magnetic molecules and molecule-based magnetic materials in physics-driven and nanotechnology-driven fields, in particular molecular spintronics, quantum technologies, metal–organic frameworks (MOFs) and 2D materials. In molecular spintronics, the goal is the development of a new generation of spintronic devices based on molecular materials or, in the longer term, on one or a few molecules. In the area of quantum technologies, the milestones reached in the design of molecular spin qubits with long quantum coherence times and in the implementation of quantum operations have raised expectations for the use of molecular spin qubits in quantum computation. MOFs and 2D materials are two classes of materials for which magnetism has been, until very recently, an elusive property; molecular materials with attractive properties and functionalities are now starting to be developed in both areas. In MOFs, single-molecule magnets and spin crossover complexes can be integrated into the nodes of the framework, within the pores or both, sometimes giving rise to smart magnetic materials or to hybrid materials exhibiting synergistic combinations of properties. 2D molecular-based magnets can provide a platform to study magnetism in the 2D limit and exhibit superior properties compared with their inorganic analogues in terms of chemical stability and tunability.
    57 schema:genre article
    58 schema:inLanguage en
    59 schema:isAccessibleForFree true
    60 schema:isPartOf N19e1d1911bcd4f31bd3a40995a42140b
    61 N57d597bbae194003a9c47f60462159ee
    62 sg:journal.1284373
    63 schema:keywords analogues
    64 area
    65 attractive properties
    66 chemical design
    67 chemical stability
    68 class
    69 class of materials
    70 coherence time
    71 combination
    72 complexes
    73 computation
    74 control
    75 crossover complexes
    76 design
    77 development
    78 devices
    79 elusive properties
    80 expectations
    81 field
    82 framework
    83 functionality
    84 generation
    85 goal
    86 hybrid materials
    87 implementation
    88 inorganic analogues
    89 limit
    90 long quantum coherence times
    91 long term
    92 magnetic materials
    93 magnetic molecules
    94 magnetism
    95 magnets
    96 materials
    97 metal-organic frameworks
    98 milestones
    99 molecular magnetism
    100 molecular materials
    101 molecular spin qubits
    102 molecular spintronics
    103 molecule-based magnetic materials
    104 molecules
    105 new generation
    106 nodes
    107 operation
    108 platform
    109 pores
    110 properties
    111 quantum coherence times
    112 quantum computation
    113 quantum operations
    114 quantum technologies
    115 qubits
    116 rise
    117 single-molecule magnets
    118 smart magnetic materials
    119 spin qubits
    120 spintronic devices
    121 spintronics
    122 stability
    123 superior properties
    124 synergistic combination
    125 technology
    126 terms
    127 time
    128 tunability
    129 use
    130 schema:name Molecular magnetism: from chemical design to spin control in molecules, materials and devices
    131 schema:pagination 87-104
    132 schema:productId N528c39467bf744d79f16f920d67acd03
    133 Neba122b9393940748423585d33bd9dbf
    134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122089918
    135 https://doi.org/10.1038/s41578-019-0146-8
    136 schema:sdDatePublished 2022-05-10T10:27
    137 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    138 schema:sdPublisher Nf836274ec0584ea6bc04e6e40cf35714
    139 schema:url https://doi.org/10.1038/s41578-019-0146-8
    140 sgo:license sg:explorer/license/
    141 sgo:sdDataset articles
    142 rdf:type schema:ScholarlyArticle
    143 N19e1d1911bcd4f31bd3a40995a42140b schema:volumeNumber 5
    144 rdf:type schema:PublicationVolume
    145 N305537902143491f8268183e78367705 rdf:first sg:person.01245166576.37
    146 rdf:rest rdf:nil
    147 N528c39467bf744d79f16f920d67acd03 schema:name doi
    148 schema:value 10.1038/s41578-019-0146-8
    149 rdf:type schema:PropertyValue
    150 N57d597bbae194003a9c47f60462159ee schema:issueNumber 2
    151 rdf:type schema:PublicationIssue
    152 Neba122b9393940748423585d33bd9dbf schema:name dimensions_id
    153 schema:value pub.1122089918
    154 rdf:type schema:PropertyValue
    155 Nf836274ec0584ea6bc04e6e40cf35714 schema:name Springer Nature - SN SciGraph project
    156 rdf:type schema:Organization
    157 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    158 schema:name Chemical Sciences
    159 rdf:type schema:DefinedTerm
    160 anzsrc-for:0302 schema:inDefinedTermSet anzsrc-for:
    161 schema:name Inorganic Chemistry
    162 rdf:type schema:DefinedTerm
    163 anzsrc-for:0303 schema:inDefinedTermSet anzsrc-for:
    164 schema:name Macromolecular and Materials Chemistry
    165 rdf:type schema:DefinedTerm
    166 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    167 schema:name Physical Chemistry (incl. Structural)
    168 rdf:type schema:DefinedTerm
    169 sg:grant.7676838 http://pending.schema.org/fundedItem sg:pub.10.1038/s41578-019-0146-8
    170 rdf:type schema:MonetaryGrant
    171 sg:journal.1284373 schema:issn 2058-8437
    172 schema:name Nature Reviews Materials
    173 schema:publisher Springer Nature
    174 rdf:type schema:Periodical
    175 sg:person.01245166576.37 schema:affiliation grid-institutes:grid.5338.d
    176 schema:familyName Coronado
    177 schema:givenName Eugenio
    178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245166576.37
    179 rdf:type schema:Person
    180 sg:pub.10.1007/978-94-009-6511-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108494043
    181 https://doi.org/10.1007/978-94-009-6511-9
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1038/35044035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009592175
    184 https://doi.org/10.1038/35044035
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1038/365141a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007450225
    187 https://doi.org/10.1038/365141a0
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1038/378701a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011425902
    190 https://doi.org/10.1038/378701a0
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1038/383145a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036610413
    193 https://doi.org/10.1038/383145a0
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1038/451664a schema:sameAs https://app.dimensions.ai/details/publication/pub.1037543758
    196 https://doi.org/10.1038/451664a
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1038/natrevmats.2016.2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039515856
    199 https://doi.org/10.1038/natrevmats.2016.2
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1038/natrevmats.2016.44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002688226
    202 https://doi.org/10.1038/natrevmats.2016.44
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1038/nature00790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005786324
    205 https://doi.org/10.1038/nature00790
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1038/nature02325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026819630
    208 https://doi.org/10.1038/nature02325
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1038/nature09478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038256963
    211 https://doi.org/10.1038/nature09478
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1038/nature11341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015361904
    214 https://doi.org/10.1038/nature11341
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1038/nature12016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022526660
    217 https://doi.org/10.1038/nature12016
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1038/nature12385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024857999
    220 https://doi.org/10.1038/nature12385
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1038/nature14025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033567082
    223 https://doi.org/10.1038/nature14025
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1038/nature16984 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047595349
    226 https://doi.org/10.1038/nature16984
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1038/nature21004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030846050
    229 https://doi.org/10.1038/nature21004
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1038/nature22391 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085889876
    232 https://doi.org/10.1038/nature22391
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1038/nature23447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091311103
    235 https://doi.org/10.1038/nature23447
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1038/ncomms11043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040653004
    238 https://doi.org/10.1038/ncomms11043
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1038/ncomms11377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040373065
    241 https://doi.org/10.1038/ncomms11377
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1038/ncomms14620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084128852
    244 https://doi.org/10.1038/ncomms14620
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1038/ncomms16012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090306279
    247 https://doi.org/10.1038/ncomms16012
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1038/ncomms1940 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007921446
    250 https://doi.org/10.1038/ncomms1940
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1038/ncomms5842 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033232357
    253 https://doi.org/10.1038/ncomms5842
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1038/ncomms6304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028629386
    256 https://doi.org/10.1038/ncomms6304
    257 rdf:type schema:CreativeWork
    258 sg:pub.10.1038/nmat2133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041640333
    259 https://doi.org/10.1038/nmat2133
    260 rdf:type schema:CreativeWork
    261 sg:pub.10.1038/nmat2256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028477224
    262 https://doi.org/10.1038/nmat2256
    263 rdf:type schema:CreativeWork
    264 sg:pub.10.1038/nmat2510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043848324
    265 https://doi.org/10.1038/nmat2510
    266 rdf:type schema:CreativeWork
    267 sg:pub.10.1038/nmat4703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042572357
    268 https://doi.org/10.1038/nmat4703
    269 rdf:type schema:CreativeWork
    270 sg:pub.10.1038/nmat4902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085054459
    271 https://doi.org/10.1038/nmat4902
    272 rdf:type schema:CreativeWork
    273 sg:pub.10.1038/nmat834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032167638
    274 https://doi.org/10.1038/nmat834
    275 rdf:type schema:CreativeWork
    276 sg:pub.10.1038/nnano.2007.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008460050
    277 https://doi.org/10.1038/nnano.2007.110
    278 rdf:type schema:CreativeWork
    279 sg:pub.10.1038/nnano.2010.89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011423110
    280 https://doi.org/10.1038/nnano.2010.89
    281 rdf:type schema:CreativeWork
    282 sg:pub.10.1038/nphoton.2013.310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020246345
    283 https://doi.org/10.1038/nphoton.2013.310
    284 rdf:type schema:CreativeWork
    285 sg:pub.10.1038/nphys1714 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031065691
    286 https://doi.org/10.1038/nphys1714
    287 rdf:type schema:CreativeWork
    288 sg:pub.10.1038/nphys2794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004724914
    289 https://doi.org/10.1038/nphys2794
    290 rdf:type schema:CreativeWork
    291 sg:pub.10.1038/nphys3152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040365457
    292 https://doi.org/10.1038/nphys3152
    293 rdf:type schema:CreativeWork
    294 sg:pub.10.1038/s41467-017-00378-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1091456732
    295 https://doi.org/10.1038/s41467-017-00378-x
    296 rdf:type schema:CreativeWork
    297 sg:pub.10.1038/s41467-019-10094-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1114527757
    298 https://doi.org/10.1038/s41467-019-10094-3
    299 rdf:type schema:CreativeWork
    300 sg:pub.10.1038/s41557-018-0107-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106681147
    301 https://doi.org/10.1038/s41557-018-0107-7
    302 rdf:type schema:CreativeWork
    303 sg:pub.10.1038/s41557-018-0113-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106199503
    304 https://doi.org/10.1038/s41557-018-0113-9
    305 rdf:type schema:CreativeWork
    306 sg:pub.10.1038/s41557-019-0232-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1112949420
    307 https://doi.org/10.1038/s41557-019-0232-y
    308 rdf:type schema:CreativeWork
    309 sg:pub.10.1038/s41563-018-0035-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101488427
    310 https://doi.org/10.1038/s41563-018-0035-3
    311 rdf:type schema:CreativeWork
    312 sg:pub.10.1038/s41563-018-0098-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104356858
    313 https://doi.org/10.1038/s41563-018-0098-1
    314 rdf:type schema:CreativeWork
    315 sg:pub.10.1038/s41565-019-0438-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113952572
    316 https://doi.org/10.1038/s41565-019-0438-6
    317 rdf:type schema:CreativeWork
    318 sg:pub.10.1038/s41570-016-0014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074198994
    319 https://doi.org/10.1038/s41570-016-0014
    320 rdf:type schema:CreativeWork
    321 sg:pub.10.1038/s41586-018-0631-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1107849754
    322 https://doi.org/10.1038/s41586-018-0631-z
    323 rdf:type schema:CreativeWork
    324 grid-institutes:grid.5338.d schema:alternateName Instituto de Ciencia Molecular (ICMol), Universitat de Valencia, Valencia, Spain
    325 schema:name Instituto de Ciencia Molecular (ICMol), Universitat de Valencia, Valencia, Spain
    326 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...