Pan-genomics in the human genome era View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-02-07

AUTHORS

Rachel M. Sherman, Steven L. Salzberg

ABSTRACT

Since the early days of the genome era, the scientific community has relied on a single ‘reference’ genome for each species, which is used as the basis for a wide range of genetic analyses, including studies of variation within and across species. As sequencing costs have dropped, thousands of new genomes have been sequenced, and scientists have come to realize that a single reference genome is inadequate for many purposes. By sampling a diverse set of individuals, one can begin to assemble a pan-genome: a collection of all the DNA sequences that occur in a species. Here we review efforts to create pan-genomes for a range of species, from bacteria to humans, and we further consider the computational methods that have been proposed in order to capture, interpret and compare pan-genome data. As scientists continue to survey and catalogue the genomic variation across human populations and begin to assemble a human pan-genome, these efforts will increase our power to connect variation to human diversity, disease and beyond. More... »

PAGES

243-254

References to SciGraph publications

  • 2001-02-15. Initial sequencing and analysis of the human genome in NATURE
  • 2019-10-28. RaGOO: fast and accurate reference-guided scaffolding of draft genomes in GENOME BIOLOGY
  • 2012-10-31. An integrated map of genetic variation from 1,092 human genomes in NATURE
  • 2016-04-14. Bloom Filter Trie: an alignment-free and reference-free data structure for pan-genome storage in ALGORITHMS FOR MOLECULAR BIOLOGY
  • 2019-08-12. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome in NATURE BIOTECHNOLOGY
  • 2016-10-11. A continuum of admixture in the Western Hemisphere revealed by the African Diaspora genome in NATURE COMMUNICATIONS
  • 2019-01-14. Fast and accurate genomic analyses using genome graphs in NATURE GENETICS
  • 2010-10. Revolution Postponed in SCIENTIFIC AMERICAN
  • 2015-08-21. Rare variant discovery by deep whole-genome sequencing of 1,070 Japanese individuals in NATURE COMMUNICATIONS
  • 2014-06-29. Whole-genome sequence variation, population structure and demographic history of the Dutch population in NATURE GENETICS
  • 2019-05-16. Next-generation genome annotation: we still struggle to get it right in GENOME BIOLOGY
  • 2014. Whole genome de novo assemblies of three divergent strains of rice, Oryza sativa , document novel gene space of aus and indica in GENOME BIOLOGY
  • 2016-04-09. Anchored pseudo-de novo assembly of human genomes identifies extensive sequence variation from unmapped sequence reads in HUMAN GENETICS
  • 2019-06-04. Human protein-coding genes and gene feature statistics in 2019 in BMC RESEARCH NOTES
  • 2018-12-31. Sunflower pan-genome analysis shows that hybridization altered gene content and disease resistance in NATURE PLANTS
  • 2014-09-14. De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits in NATURE BIOTECHNOLOGY
  • 2014-11-10. Resolving the complexity of the human genome using single-molecule sequencing in NATURE
  • 2018-11-28. CHESS: a new human gene catalog curated from thousands of large-scale RNA sequencing experiments reveals extensive transcriptional noise in GENOME BIOLOGY
  • 2011-08-28. Multiple reference genomes and transcriptomes for Arabidopsis thaliana in NATURE
  • 2012-01-08. De novo assembly and genotyping of variants using colored de Bruijn graphs in NATURE GENETICS
  • 2017-09-21. Whole genome characterization of sequence diversity of 15,220 Icelanders in SCIENTIFIC DATA
  • 2018-11-19. Assembly of a pan-genome from deep sequencing of 910 humans of African descent in NATURE GENETICS
  • 2016-09-21. The Simons Genome Diversity Project: 300 genomes from 142 diverse populations in NATURE
  • 2019-03-04. Genome maps across 26 human populations reveal population-specific patterns of structural variation in NATURE COMMUNICATIONS
  • 2014-12-03. The African Genome Variation Project shapes medical genetics in Africa in NATURE
  • 2015-09-30. An integrated map of structural variation in 2,504 human genomes in NATURE
  • 2018-08-02. De novo human genome assemblies reveal spectrum of alternative haplotypes in diverse populations in NATURE COMMUNICATIONS
  • 2019-07-22. Long-read sequencing identifies GGC repeat expansions in NOTCH2NLC associated with neuronal intranuclear inclusion disease in NATURE GENETICS
  • 2017-12-12. Whole-genome sequencing for an enhanced understanding of genetic variation among South Africans in NATURE COMMUNICATIONS
  • 2017-07-11. A graph extension of the positional Burrows–Wheeler transform and its applications in ALGORITHMS FOR MOLECULAR BIOLOGY
  • 2015-06-29. Assembly and diploid architecture of an individual human genome via single-molecule technologies in NATURE METHODS
  • 2018-01-15. Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice in NATURE GENETICS
  • 2018-03-29. Piercing the dark matter: bioinformatics of long-range sequencing and mapping in NATURE REVIEWS GENETICS
  • 2015-09-30. A global reference for human genetic variation in NATURE
  • 2017-07-26. Sequencing and de novo assembly of 150 genomes from Denmark as a population reference in NATURE
  • 2019-05-13. The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor in NATURE GENETICS
  • 2011-08-28. Whole-genome sequencing of multiple Arabidopsis thaliana populations in NATURE GENETICS
  • 2016-06-30. Long-read sequencing and de novo assembly of a Chinese genome in NATURE COMMUNICATIONS
  • 2018-11-05. Whole-genome sequencing of 175 Mongolians uncovers population-specific genetic architecture and gene flow throughout North and East Asia in NATURE GENETICS
  • 2017-02-27. Diversity in non-repetitive human sequences not found in the reference genome in NATURE GENETICS
  • 2019-08-02. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype in NATURE BIOTECHNOLOGY
  • 2018-10-01. Variation graph toolkit improves read mapping by representing genetic variation in the reference in NATURE BIOTECHNOLOGY
  • 2013-05-29. The Genome of the Netherlands: design, and project goals in EUROPEAN JOURNAL OF HUMAN GENETICS
  • 2019-04-02. Efficient Construction of a Complete Index for Pan-Genomics Read Alignment in RESEARCH IN COMPUTATIONAL MOLECULAR BIOLOGY
  • 2015-01-24. Extending reference assembly models in GENOME BIOLOGY
  • 2019-07-31. HUPAN: a pan-genome analysis pipeline for human genomes in GENOME BIOLOGY
  • 2019-08-09. Is it time to change the reference genome? in GENOME BIOLOGY
  • 2018-12-17. FORGe: prioritizing variants for graph genomes in GENOME BIOLOGY
  • 2007-10-17. Bacterial pathogenomics in NATURE
  • 2016-11-11. The pangenome of an agronomically important crop plant Brassica oleracea in NATURE COMMUNICATIONS
  • 2012-10-03. A map of rice genome variation reveals the origin of cultivated rice in NATURE
  • 2016-10-06. A high-quality human reference panel reveals the complexity and distribution of genomic structural variants in NATURE COMMUNICATIONS
  • 2019-01-07. A pan-transcriptome analysis shows that disease resistance genes have undergone more selection pressure during barley domestication in BMC GENOMICS
  • 2018-04-30. Accurate detection of complex structural variations using single-molecule sequencing in NATURE METHODS
  • 2010-01-01. Building the sequence map of the human pan-genome in NATURE BIOTECHNOLOGY
  • 2019-02-04. 1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses in NATURE BIOTECHNOLOGY
  • 2018-10-18. The dark side of centromeres: types, causes and consequences of structural abnormalities implicating centromeric DNA in NATURE COMMUNICATIONS
  • 2012-05-30. The tomato genome sequence provides insights into fleshy fruit evolution in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41576-020-0210-7

    DOI

    http://dx.doi.org/10.1038/s41576-020-0210-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1124658584

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/32034321


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome, Bacterial", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome, Human", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome, Plant", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genomics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA", 
              "id": "http://www.grid.ac/institutes/grid.21107.35", 
              "name": [
                "Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA", 
                "Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sherman", 
            "givenName": "Rachel M.", 
            "id": "sg:person.016043540221.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016043540221.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA", 
              "id": "http://www.grid.ac/institutes/grid.21107.35", 
              "name": [
                "Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA", 
                "Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA", 
                "Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA", 
                "Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Salzberg", 
            "givenName": "Steven L.", 
            "id": "sg:person.01223441713.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223441713.02"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nature13997", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038644180", 
              "https://doi.org/10.1038/nature13997"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-05513-w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105886905", 
              "https://doi.org/10.1038/s41467-018-05513-w"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms13390", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005082733", 
              "https://doi.org/10.1038/ncomms13390"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-019-1751-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1120005966", 
              "https://doi.org/10.1186/s13059-019-1751-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41588-019-0410-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1114164300", 
              "https://doi.org/10.1038/s41588-019-0410-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-019-1829-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1122145571", 
              "https://doi.org/10.1186/s13059-019-1829-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.4227", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106252579", 
              "https://doi.org/10.1038/nbt.4227"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41592-018-0001-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103690602", 
              "https://doi.org/10.1038/s41592-018-0001-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06248", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049958262", 
              "https://doi.org/10.1038/nature06248"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.3454", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013577548", 
              "https://doi.org/10.1038/nmeth.3454"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11532", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020113305", 
              "https://doi.org/10.1038/nature11532"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41588-018-0273-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109934356", 
              "https://doi.org/10.1038/s41588-018-0273-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms12989", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008018203", 
              "https://doi.org/10.1038/ncomms12989"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-018-1595-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110711453", 
              "https://doi.org/10.1186/s13059-018-1595-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41587-019-0217-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1120285368", 
              "https://doi.org/10.1038/s41587-019-0217-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms9018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029523624", 
              "https://doi.org/10.1038/ncomms9018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature15394", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031274231", 
              "https://doi.org/10.1038/nature15394"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35057062", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042854081", 
              "https://doi.org/10.1038/35057062"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-06545-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107590382", 
              "https://doi.org/10.1038/s41467-018-06545-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41588-018-0250-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107912954", 
              "https://doi.org/10.1038/s41588-018-0250-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41477-018-0329-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110510291", 
              "https://doi.org/10.1038/s41477-018-0329-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature15393", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021812064", 
              "https://doi.org/10.1038/nature15393"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10414", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036465626", 
              "https://doi.org/10.1038/nature10414"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-018-5357-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111245775", 
              "https://doi.org/10.1186/s12864-018-5357-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2979", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000204777", 
              "https://doi.org/10.1038/nbt.2979"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-019-1774-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1120247943", 
              "https://doi.org/10.1186/s13059-019-1774-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/scientificamerican1010-60", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023917238", 
              "https://doi.org/10.1038/scientificamerican1010-60"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11632", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000661742", 
              "https://doi.org/10.1038/nature11632"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047486795", 
              "https://doi.org/10.1038/nature11119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41587-018-0008-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111907227", 
              "https://doi.org/10.1038/s41587-018-0008-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms12522", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047574392", 
              "https://doi.org/10.1038/ncomms12522"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-018-1590-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110263091", 
              "https://doi.org/10.1186/s13059-018-1590-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature23264", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090898815", 
              "https://doi.org/10.1038/nature23264"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sdata.2017.115", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091875894", 
              "https://doi.org/10.1038/sdata.2017.115"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms12065", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034133926", 
              "https://doi.org/10.1038/ncomms12065"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.1596", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041739706", 
              "https://doi.org/10.1038/nbt.1596"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13104-019-4343-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1116652824", 
              "https://doi.org/10.1186/s13104-019-4343-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41576-018-0003-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101824323", 
              "https://doi.org/10.1038/s41576-018-0003-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ejhg.2013.118", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005619440", 
              "https://doi.org/10.1038/ejhg.2013.118"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.911", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007997464", 
              "https://doi.org/10.1038/ng.911"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature18964", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025005893", 
              "https://doi.org/10.1038/nature18964"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41588-018-0316-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111333443", 
              "https://doi.org/10.1038/s41588-018-0316-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41588-018-0041-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100275618", 
              "https://doi.org/10.1038/s41588-018-0041-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature13907", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014139802", 
              "https://doi.org/10.1038/nature13907"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.1028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017955952", 
              "https://doi.org/10.1038/ng.1028"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00439-016-1667-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037589706", 
              "https://doi.org/10.1007/s00439-016-1667-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-019-08992-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112506620", 
              "https://doi.org/10.1038/s41467-019-08992-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-019-1715-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1114499470", 
              "https://doi.org/10.1186/s13059-019-1715-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41588-019-0459-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1118147460", 
              "https://doi.org/10.1038/s41588-019-0459-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/preaccept-2784872521277375", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064134524", 
              "https://doi.org/10.1186/preaccept-2784872521277375"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41587-019-0201-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1120026584", 
              "https://doi.org/10.1038/s41587-019-0201-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-015-0587-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053251839", 
              "https://doi.org/10.1186/s13059-015-0587-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-030-17083-7_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1113486628", 
              "https://doi.org/10.1007/978-3-030-17083-7_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13015-017-0109-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090613369", 
              "https://doi.org/10.1186/s13015-017-0109-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13015-016-0066-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021532733", 
              "https://doi.org/10.1186/s13015-016-0066-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030784697", 
              "https://doi.org/10.1038/ng.3021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084129142", 
              "https://doi.org/10.1038/ng.3801"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-017-00663-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099597644", 
              "https://doi.org/10.1038/s41467-017-00663-9"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2020-02-07", 
        "datePublishedReg": "2020-02-07", 
        "description": "Since the early days of the genome era, the scientific community has relied on a single \u2018reference\u2019 genome for each species, which is used as the basis for a wide range of genetic analyses, including studies of variation within and across species. As sequencing costs have dropped, thousands of new genomes have been sequenced, and scientists have come to realize that a single reference genome is inadequate for many purposes. By sampling a diverse set of individuals, one can begin to assemble a pan-genome: a collection of all the DNA sequences that occur in a species. Here we review efforts to create pan-genomes for a range of species, from bacteria to humans, and we further consider the computational methods that have been proposed in order to capture, interpret and compare pan-genome data. As scientists continue to survey and catalogue the genomic variation across human populations and begin to assemble a human pan-genome, these efforts will increase our power to connect variation to human diversity, disease and beyond.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41576-020-0210-7", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8383234", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2529453", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.4103411", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1023607", 
            "issn": [
              "1471-0056", 
              "1471-0064"
            ], 
            "name": "Nature Reviews Genetics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "21"
          }
        ], 
        "keywords": [
          "genome era", 
          "pan-genome data", 
          "single reference genome", 
          "human genome era", 
          "range of species", 
          "pan-genomics", 
          "new genomes", 
          "reference genome", 
          "genomic variation", 
          "DNA sequences", 
          "genetic analysis", 
          "sequencing costs", 
          "genome", 
          "species", 
          "human population", 
          "study of variation", 
          "diverse set", 
          "human diversity", 
          "computational methods", 
          "diversity", 
          "bacteria", 
          "sequence", 
          "variation", 
          "scientific community", 
          "wide range", 
          "humans", 
          "thousands", 
          "population", 
          "community", 
          "basis", 
          "scientists", 
          "efforts", 
          "individuals", 
          "disease", 
          "range", 
          "analysis", 
          "collection", 
          "study", 
          "data", 
          "early days", 
          "set", 
          "days", 
          "era", 
          "order", 
          "reference", 
          "method", 
          "cost", 
          "purpose", 
          "power"
        ], 
        "name": "Pan-genomics in the human genome era", 
        "pagination": "243-254", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1124658584"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41576-020-0210-7"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "32034321"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41576-020-0210-7", 
          "https://app.dimensions.ai/details/publication/pub.1124658584"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:05", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_871.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41576-020-0210-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41576-020-0210-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41576-020-0210-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41576-020-0210-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41576-020-0210-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    379 TRIPLES      21 PREDICATES      137 URIs      71 LITERALS      12 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41576-020-0210-7 schema:about N2c2edbb9b23c4503aeb8b9e87032f570
    2 Nd02dc5b8605a4c83ab0486df7f0b5735
    3 Nd0daa41e17c14472bede7bd95bd3a516
    4 Ne7514691cd9b4d98918feb9b612e4c86
    5 Neda07bd456ab492c826710ab47eac9cd
    6 anzsrc-for:06
    7 anzsrc-for:0604
    8 schema:author N441d63f077fe473caeaf304cdcad39e1
    9 schema:citation sg:pub.10.1007/978-3-030-17083-7_10
    10 sg:pub.10.1007/s00439-016-1667-5
    11 sg:pub.10.1038/35057062
    12 sg:pub.10.1038/ejhg.2013.118
    13 sg:pub.10.1038/nature06248
    14 sg:pub.10.1038/nature10414
    15 sg:pub.10.1038/nature11119
    16 sg:pub.10.1038/nature11532
    17 sg:pub.10.1038/nature11632
    18 sg:pub.10.1038/nature13907
    19 sg:pub.10.1038/nature13997
    20 sg:pub.10.1038/nature15393
    21 sg:pub.10.1038/nature15394
    22 sg:pub.10.1038/nature18964
    23 sg:pub.10.1038/nature23264
    24 sg:pub.10.1038/nbt.1596
    25 sg:pub.10.1038/nbt.2979
    26 sg:pub.10.1038/nbt.4227
    27 sg:pub.10.1038/ncomms12065
    28 sg:pub.10.1038/ncomms12522
    29 sg:pub.10.1038/ncomms12989
    30 sg:pub.10.1038/ncomms13390
    31 sg:pub.10.1038/ncomms9018
    32 sg:pub.10.1038/ng.1028
    33 sg:pub.10.1038/ng.3021
    34 sg:pub.10.1038/ng.3801
    35 sg:pub.10.1038/ng.911
    36 sg:pub.10.1038/nmeth.3454
    37 sg:pub.10.1038/s41467-017-00663-9
    38 sg:pub.10.1038/s41467-018-05513-w
    39 sg:pub.10.1038/s41467-018-06545-y
    40 sg:pub.10.1038/s41467-019-08992-7
    41 sg:pub.10.1038/s41477-018-0329-0
    42 sg:pub.10.1038/s41576-018-0003-4
    43 sg:pub.10.1038/s41587-018-0008-8
    44 sg:pub.10.1038/s41587-019-0201-4
    45 sg:pub.10.1038/s41587-019-0217-9
    46 sg:pub.10.1038/s41588-018-0041-z
    47 sg:pub.10.1038/s41588-018-0250-5
    48 sg:pub.10.1038/s41588-018-0273-y
    49 sg:pub.10.1038/s41588-018-0316-4
    50 sg:pub.10.1038/s41588-019-0410-2
    51 sg:pub.10.1038/s41588-019-0459-y
    52 sg:pub.10.1038/s41592-018-0001-7
    53 sg:pub.10.1038/scientificamerican1010-60
    54 sg:pub.10.1038/sdata.2017.115
    55 sg:pub.10.1186/preaccept-2784872521277375
    56 sg:pub.10.1186/s12864-018-5357-7
    57 sg:pub.10.1186/s13015-016-0066-8
    58 sg:pub.10.1186/s13015-017-0109-9
    59 sg:pub.10.1186/s13059-015-0587-3
    60 sg:pub.10.1186/s13059-018-1590-2
    61 sg:pub.10.1186/s13059-018-1595-x
    62 sg:pub.10.1186/s13059-019-1715-2
    63 sg:pub.10.1186/s13059-019-1751-y
    64 sg:pub.10.1186/s13059-019-1774-4
    65 sg:pub.10.1186/s13059-019-1829-6
    66 sg:pub.10.1186/s13104-019-4343-8
    67 schema:datePublished 2020-02-07
    68 schema:datePublishedReg 2020-02-07
    69 schema:description Since the early days of the genome era, the scientific community has relied on a single ‘reference’ genome for each species, which is used as the basis for a wide range of genetic analyses, including studies of variation within and across species. As sequencing costs have dropped, thousands of new genomes have been sequenced, and scientists have come to realize that a single reference genome is inadequate for many purposes. By sampling a diverse set of individuals, one can begin to assemble a pan-genome: a collection of all the DNA sequences that occur in a species. Here we review efforts to create pan-genomes for a range of species, from bacteria to humans, and we further consider the computational methods that have been proposed in order to capture, interpret and compare pan-genome data. As scientists continue to survey and catalogue the genomic variation across human populations and begin to assemble a human pan-genome, these efforts will increase our power to connect variation to human diversity, disease and beyond.
    70 schema:genre article
    71 schema:isAccessibleForFree true
    72 schema:isPartOf N1abc3ec0f02a4e1988c1a03eb58580e6
    73 N37950eb58b04478b824656171c1e5fa3
    74 sg:journal.1023607
    75 schema:keywords DNA sequences
    76 analysis
    77 bacteria
    78 basis
    79 collection
    80 community
    81 computational methods
    82 cost
    83 data
    84 days
    85 disease
    86 diverse set
    87 diversity
    88 early days
    89 efforts
    90 era
    91 genetic analysis
    92 genome
    93 genome era
    94 genomic variation
    95 human diversity
    96 human genome era
    97 human population
    98 humans
    99 individuals
    100 method
    101 new genomes
    102 order
    103 pan-genome data
    104 pan-genomics
    105 population
    106 power
    107 purpose
    108 range
    109 range of species
    110 reference
    111 reference genome
    112 scientific community
    113 scientists
    114 sequence
    115 sequencing costs
    116 set
    117 single reference genome
    118 species
    119 study
    120 study of variation
    121 thousands
    122 variation
    123 wide range
    124 schema:name Pan-genomics in the human genome era
    125 schema:pagination 243-254
    126 schema:productId N04a983ef2cf5459a8f184666b3ff91be
    127 N44843be5caaa446cb0136c20d0f94298
    128 Nc69bece2c6814ba2b60f0e26194d72ec
    129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124658584
    130 https://doi.org/10.1038/s41576-020-0210-7
    131 schema:sdDatePublished 2022-09-02T16:05
    132 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    133 schema:sdPublisher N4c14bb7400ec445f89f72c83a4355498
    134 schema:url https://doi.org/10.1038/s41576-020-0210-7
    135 sgo:license sg:explorer/license/
    136 sgo:sdDataset articles
    137 rdf:type schema:ScholarlyArticle
    138 N04a983ef2cf5459a8f184666b3ff91be schema:name dimensions_id
    139 schema:value pub.1124658584
    140 rdf:type schema:PropertyValue
    141 N1abc3ec0f02a4e1988c1a03eb58580e6 schema:issueNumber 4
    142 rdf:type schema:PublicationIssue
    143 N2c2edbb9b23c4503aeb8b9e87032f570 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    144 schema:name Genomics
    145 rdf:type schema:DefinedTerm
    146 N37950eb58b04478b824656171c1e5fa3 schema:volumeNumber 21
    147 rdf:type schema:PublicationVolume
    148 N441d63f077fe473caeaf304cdcad39e1 rdf:first sg:person.016043540221.18
    149 rdf:rest N5bc46bc41db3463096ce2fee128bcc02
    150 N44843be5caaa446cb0136c20d0f94298 schema:name doi
    151 schema:value 10.1038/s41576-020-0210-7
    152 rdf:type schema:PropertyValue
    153 N4c14bb7400ec445f89f72c83a4355498 schema:name Springer Nature - SN SciGraph project
    154 rdf:type schema:Organization
    155 N5bc46bc41db3463096ce2fee128bcc02 rdf:first sg:person.01223441713.02
    156 rdf:rest rdf:nil
    157 Nc69bece2c6814ba2b60f0e26194d72ec schema:name pubmed_id
    158 schema:value 32034321
    159 rdf:type schema:PropertyValue
    160 Nd02dc5b8605a4c83ab0486df7f0b5735 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    161 schema:name Genome, Human
    162 rdf:type schema:DefinedTerm
    163 Nd0daa41e17c14472bede7bd95bd3a516 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    164 schema:name Humans
    165 rdf:type schema:DefinedTerm
    166 Ne7514691cd9b4d98918feb9b612e4c86 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    167 schema:name Genome, Plant
    168 rdf:type schema:DefinedTerm
    169 Neda07bd456ab492c826710ab47eac9cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    170 schema:name Genome, Bacterial
    171 rdf:type schema:DefinedTerm
    172 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    173 schema:name Biological Sciences
    174 rdf:type schema:DefinedTerm
    175 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    176 schema:name Genetics
    177 rdf:type schema:DefinedTerm
    178 sg:grant.2529453 http://pending.schema.org/fundedItem sg:pub.10.1038/s41576-020-0210-7
    179 rdf:type schema:MonetaryGrant
    180 sg:grant.4103411 http://pending.schema.org/fundedItem sg:pub.10.1038/s41576-020-0210-7
    181 rdf:type schema:MonetaryGrant
    182 sg:grant.8383234 http://pending.schema.org/fundedItem sg:pub.10.1038/s41576-020-0210-7
    183 rdf:type schema:MonetaryGrant
    184 sg:journal.1023607 schema:issn 1471-0056
    185 1471-0064
    186 schema:name Nature Reviews Genetics
    187 schema:publisher Springer Nature
    188 rdf:type schema:Periodical
    189 sg:person.01223441713.02 schema:affiliation grid-institutes:grid.21107.35
    190 schema:familyName Salzberg
    191 schema:givenName Steven L.
    192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223441713.02
    193 rdf:type schema:Person
    194 sg:person.016043540221.18 schema:affiliation grid-institutes:grid.21107.35
    195 schema:familyName Sherman
    196 schema:givenName Rachel M.
    197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016043540221.18
    198 rdf:type schema:Person
    199 sg:pub.10.1007/978-3-030-17083-7_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113486628
    200 https://doi.org/10.1007/978-3-030-17083-7_10
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1007/s00439-016-1667-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037589706
    203 https://doi.org/10.1007/s00439-016-1667-5
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1038/35057062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042854081
    206 https://doi.org/10.1038/35057062
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1038/ejhg.2013.118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005619440
    209 https://doi.org/10.1038/ejhg.2013.118
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1038/nature06248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049958262
    212 https://doi.org/10.1038/nature06248
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1038/nature10414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036465626
    215 https://doi.org/10.1038/nature10414
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1038/nature11119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047486795
    218 https://doi.org/10.1038/nature11119
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1038/nature11532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020113305
    221 https://doi.org/10.1038/nature11532
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1038/nature11632 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000661742
    224 https://doi.org/10.1038/nature11632
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1038/nature13907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014139802
    227 https://doi.org/10.1038/nature13907
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1038/nature13997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038644180
    230 https://doi.org/10.1038/nature13997
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1038/nature15393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021812064
    233 https://doi.org/10.1038/nature15393
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1038/nature15394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031274231
    236 https://doi.org/10.1038/nature15394
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1038/nature18964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025005893
    239 https://doi.org/10.1038/nature18964
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1038/nature23264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090898815
    242 https://doi.org/10.1038/nature23264
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1038/nbt.1596 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041739706
    245 https://doi.org/10.1038/nbt.1596
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1038/nbt.2979 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000204777
    248 https://doi.org/10.1038/nbt.2979
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1038/nbt.4227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106252579
    251 https://doi.org/10.1038/nbt.4227
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1038/ncomms12065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034133926
    254 https://doi.org/10.1038/ncomms12065
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1038/ncomms12522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047574392
    257 https://doi.org/10.1038/ncomms12522
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1038/ncomms12989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008018203
    260 https://doi.org/10.1038/ncomms12989
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1038/ncomms13390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005082733
    263 https://doi.org/10.1038/ncomms13390
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1038/ncomms9018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029523624
    266 https://doi.org/10.1038/ncomms9018
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1038/ng.1028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017955952
    269 https://doi.org/10.1038/ng.1028
    270 rdf:type schema:CreativeWork
    271 sg:pub.10.1038/ng.3021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030784697
    272 https://doi.org/10.1038/ng.3021
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1038/ng.3801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084129142
    275 https://doi.org/10.1038/ng.3801
    276 rdf:type schema:CreativeWork
    277 sg:pub.10.1038/ng.911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007997464
    278 https://doi.org/10.1038/ng.911
    279 rdf:type schema:CreativeWork
    280 sg:pub.10.1038/nmeth.3454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013577548
    281 https://doi.org/10.1038/nmeth.3454
    282 rdf:type schema:CreativeWork
    283 sg:pub.10.1038/s41467-017-00663-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099597644
    284 https://doi.org/10.1038/s41467-017-00663-9
    285 rdf:type schema:CreativeWork
    286 sg:pub.10.1038/s41467-018-05513-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1105886905
    287 https://doi.org/10.1038/s41467-018-05513-w
    288 rdf:type schema:CreativeWork
    289 sg:pub.10.1038/s41467-018-06545-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1107590382
    290 https://doi.org/10.1038/s41467-018-06545-y
    291 rdf:type schema:CreativeWork
    292 sg:pub.10.1038/s41467-019-08992-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112506620
    293 https://doi.org/10.1038/s41467-019-08992-7
    294 rdf:type schema:CreativeWork
    295 sg:pub.10.1038/s41477-018-0329-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110510291
    296 https://doi.org/10.1038/s41477-018-0329-0
    297 rdf:type schema:CreativeWork
    298 sg:pub.10.1038/s41576-018-0003-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101824323
    299 https://doi.org/10.1038/s41576-018-0003-4
    300 rdf:type schema:CreativeWork
    301 sg:pub.10.1038/s41587-018-0008-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111907227
    302 https://doi.org/10.1038/s41587-018-0008-8
    303 rdf:type schema:CreativeWork
    304 sg:pub.10.1038/s41587-019-0201-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120026584
    305 https://doi.org/10.1038/s41587-019-0201-4
    306 rdf:type schema:CreativeWork
    307 sg:pub.10.1038/s41587-019-0217-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120285368
    308 https://doi.org/10.1038/s41587-019-0217-9
    309 rdf:type schema:CreativeWork
    310 sg:pub.10.1038/s41588-018-0041-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1100275618
    311 https://doi.org/10.1038/s41588-018-0041-z
    312 rdf:type schema:CreativeWork
    313 sg:pub.10.1038/s41588-018-0250-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107912954
    314 https://doi.org/10.1038/s41588-018-0250-5
    315 rdf:type schema:CreativeWork
    316 sg:pub.10.1038/s41588-018-0273-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1109934356
    317 https://doi.org/10.1038/s41588-018-0273-y
    318 rdf:type schema:CreativeWork
    319 sg:pub.10.1038/s41588-018-0316-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111333443
    320 https://doi.org/10.1038/s41588-018-0316-4
    321 rdf:type schema:CreativeWork
    322 sg:pub.10.1038/s41588-019-0410-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1114164300
    323 https://doi.org/10.1038/s41588-019-0410-2
    324 rdf:type schema:CreativeWork
    325 sg:pub.10.1038/s41588-019-0459-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1118147460
    326 https://doi.org/10.1038/s41588-019-0459-y
    327 rdf:type schema:CreativeWork
    328 sg:pub.10.1038/s41592-018-0001-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103690602
    329 https://doi.org/10.1038/s41592-018-0001-7
    330 rdf:type schema:CreativeWork
    331 sg:pub.10.1038/scientificamerican1010-60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023917238
    332 https://doi.org/10.1038/scientificamerican1010-60
    333 rdf:type schema:CreativeWork
    334 sg:pub.10.1038/sdata.2017.115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091875894
    335 https://doi.org/10.1038/sdata.2017.115
    336 rdf:type schema:CreativeWork
    337 sg:pub.10.1186/preaccept-2784872521277375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064134524
    338 https://doi.org/10.1186/preaccept-2784872521277375
    339 rdf:type schema:CreativeWork
    340 sg:pub.10.1186/s12864-018-5357-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111245775
    341 https://doi.org/10.1186/s12864-018-5357-7
    342 rdf:type schema:CreativeWork
    343 sg:pub.10.1186/s13015-016-0066-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021532733
    344 https://doi.org/10.1186/s13015-016-0066-8
    345 rdf:type schema:CreativeWork
    346 sg:pub.10.1186/s13015-017-0109-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090613369
    347 https://doi.org/10.1186/s13015-017-0109-9
    348 rdf:type schema:CreativeWork
    349 sg:pub.10.1186/s13059-015-0587-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053251839
    350 https://doi.org/10.1186/s13059-015-0587-3
    351 rdf:type schema:CreativeWork
    352 sg:pub.10.1186/s13059-018-1590-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110263091
    353 https://doi.org/10.1186/s13059-018-1590-2
    354 rdf:type schema:CreativeWork
    355 sg:pub.10.1186/s13059-018-1595-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1110711453
    356 https://doi.org/10.1186/s13059-018-1595-x
    357 rdf:type schema:CreativeWork
    358 sg:pub.10.1186/s13059-019-1715-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1114499470
    359 https://doi.org/10.1186/s13059-019-1715-2
    360 rdf:type schema:CreativeWork
    361 sg:pub.10.1186/s13059-019-1751-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1120005966
    362 https://doi.org/10.1186/s13059-019-1751-y
    363 rdf:type schema:CreativeWork
    364 sg:pub.10.1186/s13059-019-1774-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120247943
    365 https://doi.org/10.1186/s13059-019-1774-4
    366 rdf:type schema:CreativeWork
    367 sg:pub.10.1186/s13059-019-1829-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122145571
    368 https://doi.org/10.1186/s13059-019-1829-6
    369 rdf:type schema:CreativeWork
    370 sg:pub.10.1186/s13104-019-4343-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1116652824
    371 https://doi.org/10.1186/s13104-019-4343-8
    372 rdf:type schema:CreativeWork
    373 grid-institutes:grid.21107.35 schema:alternateName Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
    374 Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
    375 schema:name Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
    376 Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
    377 Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
    378 Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
    379 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...