Towards individualized therapy for metastatic renal cell carcinoma View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04-16

AUTHORS

Ritesh R. Kotecha, Robert J. Motzer, Martin H. Voss

ABSTRACT

Over the past decade, the treatment landscape for patients with metastatic renal cell carcinoma (RCC) has evolved dramatically. The therapeutic options available have expanded and now include immune-checkpoint inhibitors, novel targeted agents and combination strategies, and thus optimal patient selection and treatment sequencing are increasingly pertinent for optimizing clinical outcomes. A better understanding of the underlying biology of the tumour and its microenvironment continues to drive the inception of new diagnostic and therapeutic approaches. Furthermore, many biomarkers robustly associated with treatment and disease-specific outcomes have been identified, and their integration into clinical decision-making for patients with advanced-stage disease will soon become a reality. Herein, we review relevant aspects of the molecular biology of metastatic RCC, with an emphasis on predictive and prognostic biomarkers, and suggest tailored algorithms to individualize and guide treatment approaches for specific subgroups of patients. More... »

PAGES

621-633

References to SciGraph publications

  • 2017-02-21. Combination of the histone deacetylase inhibitor vorinostat with bevacizumab in patients with clear-cell renal cell carcinoma: a multicentre, single-arm phase I/II clinical trial in BRITISH JOURNAL OF CANCER
  • 2018-10-22. Safety and efficacy of nivolumab in combination with sunitinib or pazopanib in advanced or metastatic renal cell carcinoma: the CheckMate 016 study in JOURNAL FOR IMMUNOTHERAPY OF CANCER
  • 2018-10-27. mTOR and mTOR phosphorylation status in primary and metastatic renal cell carcinoma tissue: differential expression and clinical relevance in JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY
  • 2017-08-31. Predictive value of C-reactive protein in patients treated with sunitinib for metastatic clear cell renal cell carcinoma in BMC UROLOGY
  • 2014-04-22. Active surveillance for metastatic or recurrent renal cell carcinoma in JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY
  • 2018-06-04. MET alterations detected in blood-derived circulating tumor DNA correlate with bone metastases and poor prognosis in JOURNAL OF HEMATOLOGY & ONCOLOGY
  • 2016-02-23. Circulating biomarkers and outcome from a randomised phase II trial of sunitinib vs everolimus for patients with metastatic renal cell carcinoma in BRITISH JOURNAL OF CANCER
  • 2016-11-17. Tumor immune microenvironment characterization in clear cell renal cell carcinoma identifies prognostic and immunotherapeutically relevant messenger RNA signatures in GENOME BIOLOGY
  • 2007-07-02. Circulating protein biomarkers of pharmacodynamic activity of sunitinib in patients with metastatic renal cell carcinoma: modulation of VEGF and VEGF-related proteins in JOURNAL OF TRANSLATIONAL MEDICINE
  • 2018-07-16. Krebs-cycle-deficient hereditary cancer syndromes are defined by defects in homologous-recombination DNA repair in NATURE GENETICS
  • 2014-10-29. Variation in genomic landscape of clear cell renal cell carcinoma across Europe in NATURE COMMUNICATIONS
  • 2013-06-23. Comprehensive molecular characterization of clear cell renal cell carcinoma in NATURE
  • 2018-06-18. Targeting adenosine for cancer immunotherapy in JOURNAL FOR IMMUNOTHERAPY OF CANCER
  • 2017-11-16. Incidence and mortality of kidney cancer: temporal patterns and global trends in 39 countries in SCIENTIFIC REPORTS
  • 2016-10-07. Molecular analysis of aggressive renal cell carcinoma with unclassified histology reveals distinct subsets in NATURE COMMUNICATIONS
  • 2015-02-13. TCEB1-mutated renal cell carcinoma: a distinct genomic and morphological subtype in MODERN PATHOLOGY
  • 2018-11-06. 33rd Annual Meeting & Pre-Conference Programs of the Society for Immunotherapy of Cancer (SITC 2018) in JOURNAL FOR IMMUNOTHERAPY OF CANCER
  • 2018-06-04. Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma in NATURE MEDICINE
  • 2015-10-02. Prognostic Role of PD-L1 Expression in Renal Cell Carcinoma. A Systematic Review and Meta-Analysis in TARGETED ONCOLOGY
  • 2012-06-10. BAP1 loss defines a new class of renal cell carcinoma in NATURE GENETICS
  • 2018-11-26. 89Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer in NATURE MEDICINE
  • 2012-11-20. VEGF directly suppresses activation of T cells from ascites secondary to ovarian cancer via VEGF receptor type 2 in BRITISH JOURNAL OF CANCER
  • 2017-11-07. 32nd Annual Meeting and Pre-Conference Programs of the Society for Immunotherapy of Cancer (SITC 2017): Part One in JOURNAL FOR IMMUNOTHERAPY OF CANCER
  • 2017-06-30. Germline BAP1 mutations induce a Warburg effect in CELL DEATH & DIFFERENTIATION
  • 2017-12-11. Loss of PBRM1 rescues VHL dependent replication stress to promote renal carcinogenesis in NATURE COMMUNICATIONS
  • 2013-06-24. Integrated molecular analysis of clear-cell renal cell carcinoma in NATURE GENETICS
  • 2013-07-29. A clear picture of renal cell carcinoma in NATURE GENETICS
  • 2018-01-25. Biomarkers of immunotherapy in urothelial and renal cell carcinoma: PD-L1, tumor mutational burden, and beyond in JOURNAL FOR IMMUNOTHERAPY OF CANCER
  • 2017-05-08. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients in NATURE MEDICINE
  • 2018-01-22. Change in neutrophil-to-lymphocyte ratio (NLR) in response to immune checkpoint blockade for metastatic renal cell carcinoma in JOURNAL FOR IMMUNOTHERAPY OF CANCER
  • 2018-10-17. Patterns, predictors and subsequent outcomes of disease progression in metastatic renal cell carcinoma patients treated with nivolumab in JOURNAL FOR IMMUNOTHERAPY OF CANCER
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41571-019-0209-1

    DOI

    http://dx.doi.org/10.1038/s41571-019-0209-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1113484196

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30992569


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oncology and Carcinogenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biomarkers", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Carcinoma, Renal Cell", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Kidney Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Molecular Targeted Therapy", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Precision Medicine", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Genitourinary Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA", 
              "id": "http://www.grid.ac/institutes/grid.51462.34", 
              "name": [
                "Genitourinary Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kotecha", 
            "givenName": "Ritesh R.", 
            "id": "sg:person.013661672211.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013661672211.47"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Genitourinary Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA", 
              "id": "http://www.grid.ac/institutes/grid.51462.34", 
              "name": [
                "Genitourinary Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Motzer", 
            "givenName": "Robert J.", 
            "id": "sg:person.01234500340.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234500340.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Genitourinary Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA", 
              "id": "http://www.grid.ac/institutes/grid.51462.34", 
              "name": [
                "Genitourinary Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Voss", 
            "givenName": "Martin H.", 
            "id": "sg:person.0577111044.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577111044.36"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/s40425-018-0422-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1108055272", 
              "https://doi.org/10.1186/s40425-018-0422-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/bjc.2012.468", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025539630", 
              "https://doi.org/10.1038/bjc.2012.468"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/bjc.2017.33", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083853534", 
              "https://doi.org/10.1038/bjc.2017.33"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41591-018-0255-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110065981", 
              "https://doi.org/10.1038/s41591-018-0255-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41591-018-0053-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104306675", 
              "https://doi.org/10.1038/s41591-018-0053-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/bjc.2016.21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040730926", 
              "https://doi.org/10.1038/bjc.2016.21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13045-018-0610-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104385496", 
              "https://doi.org/10.1186/s13045-018-0610-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00432-014-1680-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016806345", 
              "https://doi.org/10.1007/s00432-014-1680-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40425-018-0314-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100433879", 
              "https://doi.org/10.1186/s40425-018-0314-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/modpathol.2015.6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041721671", 
              "https://doi.org/10.1038/modpathol.2015.6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/cdd.2017.95", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090299827", 
              "https://doi.org/10.1038/cdd.2017.95"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-017-15922-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092638745", 
              "https://doi.org/10.1038/s41598-017-15922-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2323", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043591147", 
              "https://doi.org/10.1038/ng.2323"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40425-018-0360-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104903069", 
              "https://doi.org/10.1186/s40425-018-0360-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm.4333", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085214027", 
              "https://doi.org/10.1038/nm.4333"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11523-015-0392-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012361695", 
              "https://doi.org/10.1007/s11523-015-0392-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1479-5876-5-32", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001875982", 
              "https://doi.org/10.1186/1479-5876-5-32"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40425-018-0420-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107776066", 
              "https://doi.org/10.1186/s40425-018-0420-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40425-017-0289-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092569537", 
              "https://doi.org/10.1186/s40425-017-0289-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00432-018-2775-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107871289", 
              "https://doi.org/10.1007/s00432-018-2775-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2699", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023979397", 
              "https://doi.org/10.1038/ng.2699"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2708", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038839901", 
              "https://doi.org/10.1038/ng.2708"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41588-018-0170-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105584569", 
              "https://doi.org/10.1038/s41588-018-0170-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12222", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050842404", 
              "https://doi.org/10.1038/nature12222"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-016-1092-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008906709", 
              "https://doi.org/10.1186/s13059-016-1092-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40425-018-0425-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107687347", 
              "https://doi.org/10.1186/s40425-018-0425-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12894-017-0267-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091408270", 
              "https://doi.org/10.1186/s12894-017-0267-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40425-018-0315-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100433880", 
              "https://doi.org/10.1186/s40425-018-0315-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-017-02245-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099597563", 
              "https://doi.org/10.1038/s41467-017-02245-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms13131", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048068890", 
              "https://doi.org/10.1038/ncomms13131"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms6135", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001274259", 
              "https://doi.org/10.1038/ncomms6135"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-04-16", 
        "datePublishedReg": "2019-04-16", 
        "description": "Over the past decade, the treatment landscape for patients with metastatic renal cell carcinoma (RCC) has evolved dramatically. The therapeutic options available have expanded and now include immune-checkpoint inhibitors, novel targeted agents and combination strategies, and thus optimal patient selection and treatment sequencing are increasingly pertinent for optimizing clinical outcomes. A better understanding of the underlying biology of the tumour and its microenvironment continues to drive the inception of new diagnostic and therapeutic approaches. Furthermore, many biomarkers robustly associated with treatment and disease-specific outcomes have been identified, and their integration into clinical decision-making for patients with advanced-stage disease will soon become a reality. Herein, we review relevant aspects of the molecular biology of metastatic RCC, with an emphasis on predictive and prognostic biomarkers, and suggest tailored algorithms to individualize and guide treatment approaches for specific subgroups of patients.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41571-019-0209-1", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1034153", 
            "issn": [
              "1759-4774", 
              "1759-4782"
            ], 
            "name": "Nature Reviews Clinical Oncology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "10", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "16"
          }
        ], 
        "keywords": [
          "metastatic renal cell carcinoma", 
          "renal cell carcinoma", 
          "cell carcinoma", 
          "immune checkpoint inhibitors", 
          "optimal patient selection", 
          "advanced stage disease", 
          "disease-specific outcomes", 
          "treatment landscape", 
          "patient selection", 
          "clinical outcomes", 
          "therapeutic options", 
          "treatment sequencing", 
          "prognostic biomarker", 
          "therapeutic approaches", 
          "individualized therapy", 
          "treatment approaches", 
          "specific subgroups", 
          "patients", 
          "carcinoma", 
          "combination strategies", 
          "biomarkers", 
          "outcomes", 
          "therapy", 
          "tumors", 
          "molecular biology", 
          "disease", 
          "subgroups", 
          "treatment", 
          "inhibitors", 
          "microenvironment", 
          "past decade", 
          "better understanding", 
          "options", 
          "agents", 
          "inception", 
          "sequencing", 
          "biology", 
          "relevant aspects", 
          "strategies", 
          "decades", 
          "Herein", 
          "understanding", 
          "approach", 
          "aspects", 
          "emphasis", 
          "selection", 
          "integration", 
          "reality", 
          "landscape", 
          "algorithm"
        ], 
        "name": "Towards individualized therapy for metastatic renal cell carcinoma", 
        "pagination": "621-633", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1113484196"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41571-019-0209-1"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30992569"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41571-019-0209-1", 
          "https://app.dimensions.ai/details/publication/pub.1113484196"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:04", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_818.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41571-019-0209-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41571-019-0209-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41571-019-0209-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41571-019-0209-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41571-019-0209-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    273 TRIPLES      21 PREDICATES      112 URIs      73 LITERALS      13 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41571-019-0209-1 schema:about N064d1f9d17cd4f55af4a4d45bc919374
    2 N1d8e5755081a41f2b63e3db7dae245a8
    3 N2b0bece1b85a47efa020d12076638259
    4 N2bec56a2a445491cbd9337725bc525ef
    5 N3c381da2291b4ceea93358d60280f86f
    6 Ne82b338d13f74c3a958197f1c417ee9d
    7 anzsrc-for:11
    8 anzsrc-for:1112
    9 schema:author Nc29ffacb38a54ae286e2c64bd7fde7cb
    10 schema:citation sg:pub.10.1007/s00432-014-1680-9
    11 sg:pub.10.1007/s00432-018-2775-5
    12 sg:pub.10.1007/s11523-015-0392-7
    13 sg:pub.10.1038/bjc.2012.468
    14 sg:pub.10.1038/bjc.2016.21
    15 sg:pub.10.1038/bjc.2017.33
    16 sg:pub.10.1038/cdd.2017.95
    17 sg:pub.10.1038/modpathol.2015.6
    18 sg:pub.10.1038/nature12222
    19 sg:pub.10.1038/ncomms13131
    20 sg:pub.10.1038/ncomms6135
    21 sg:pub.10.1038/ng.2323
    22 sg:pub.10.1038/ng.2699
    23 sg:pub.10.1038/ng.2708
    24 sg:pub.10.1038/nm.4333
    25 sg:pub.10.1038/s41467-017-02245-1
    26 sg:pub.10.1038/s41588-018-0170-4
    27 sg:pub.10.1038/s41591-018-0053-3
    28 sg:pub.10.1038/s41591-018-0255-8
    29 sg:pub.10.1038/s41598-017-15922-4
    30 sg:pub.10.1186/1479-5876-5-32
    31 sg:pub.10.1186/s12894-017-0267-6
    32 sg:pub.10.1186/s13045-018-0610-8
    33 sg:pub.10.1186/s13059-016-1092-z
    34 sg:pub.10.1186/s40425-017-0289-3
    35 sg:pub.10.1186/s40425-018-0314-1
    36 sg:pub.10.1186/s40425-018-0315-0
    37 sg:pub.10.1186/s40425-018-0360-8
    38 sg:pub.10.1186/s40425-018-0420-0
    39 sg:pub.10.1186/s40425-018-0422-y
    40 sg:pub.10.1186/s40425-018-0425-8
    41 schema:datePublished 2019-04-16
    42 schema:datePublishedReg 2019-04-16
    43 schema:description Over the past decade, the treatment landscape for patients with metastatic renal cell carcinoma (RCC) has evolved dramatically. The therapeutic options available have expanded and now include immune-checkpoint inhibitors, novel targeted agents and combination strategies, and thus optimal patient selection and treatment sequencing are increasingly pertinent for optimizing clinical outcomes. A better understanding of the underlying biology of the tumour and its microenvironment continues to drive the inception of new diagnostic and therapeutic approaches. Furthermore, many biomarkers robustly associated with treatment and disease-specific outcomes have been identified, and their integration into clinical decision-making for patients with advanced-stage disease will soon become a reality. Herein, we review relevant aspects of the molecular biology of metastatic RCC, with an emphasis on predictive and prognostic biomarkers, and suggest tailored algorithms to individualize and guide treatment approaches for specific subgroups of patients.
    44 schema:genre article
    45 schema:isAccessibleForFree false
    46 schema:isPartOf N38e0c7831fcc4789bc77e42e66db3b5a
    47 N8087f369b5184be0a8ed4de1b1e03586
    48 sg:journal.1034153
    49 schema:keywords Herein
    50 advanced stage disease
    51 agents
    52 algorithm
    53 approach
    54 aspects
    55 better understanding
    56 biology
    57 biomarkers
    58 carcinoma
    59 cell carcinoma
    60 clinical outcomes
    61 combination strategies
    62 decades
    63 disease
    64 disease-specific outcomes
    65 emphasis
    66 immune checkpoint inhibitors
    67 inception
    68 individualized therapy
    69 inhibitors
    70 integration
    71 landscape
    72 metastatic renal cell carcinoma
    73 microenvironment
    74 molecular biology
    75 optimal patient selection
    76 options
    77 outcomes
    78 past decade
    79 patient selection
    80 patients
    81 prognostic biomarker
    82 reality
    83 relevant aspects
    84 renal cell carcinoma
    85 selection
    86 sequencing
    87 specific subgroups
    88 strategies
    89 subgroups
    90 therapeutic approaches
    91 therapeutic options
    92 therapy
    93 treatment
    94 treatment approaches
    95 treatment landscape
    96 treatment sequencing
    97 tumors
    98 understanding
    99 schema:name Towards individualized therapy for metastatic renal cell carcinoma
    100 schema:pagination 621-633
    101 schema:productId N3a9bd763c2ca4cdaa03647837f440d13
    102 N9d4828ffca3f43afb617916f952c3dae
    103 Nd407160de264442182131bd17acf4b79
    104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113484196
    105 https://doi.org/10.1038/s41571-019-0209-1
    106 schema:sdDatePublished 2022-09-02T16:04
    107 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    108 schema:sdPublisher N7dd0c5d472954b85953e08d63dad5fa3
    109 schema:url https://doi.org/10.1038/s41571-019-0209-1
    110 sgo:license sg:explorer/license/
    111 sgo:sdDataset articles
    112 rdf:type schema:ScholarlyArticle
    113 N064d1f9d17cd4f55af4a4d45bc919374 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    114 schema:name Precision Medicine
    115 rdf:type schema:DefinedTerm
    116 N1d8e5755081a41f2b63e3db7dae245a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    117 schema:name Humans
    118 rdf:type schema:DefinedTerm
    119 N2b0bece1b85a47efa020d12076638259 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    120 schema:name Carcinoma, Renal Cell
    121 rdf:type schema:DefinedTerm
    122 N2bec56a2a445491cbd9337725bc525ef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    123 schema:name Molecular Targeted Therapy
    124 rdf:type schema:DefinedTerm
    125 N38e0c7831fcc4789bc77e42e66db3b5a schema:issueNumber 10
    126 rdf:type schema:PublicationIssue
    127 N3a9bd763c2ca4cdaa03647837f440d13 schema:name pubmed_id
    128 schema:value 30992569
    129 rdf:type schema:PropertyValue
    130 N3c381da2291b4ceea93358d60280f86f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Kidney Neoplasms
    132 rdf:type schema:DefinedTerm
    133 N7dd0c5d472954b85953e08d63dad5fa3 schema:name Springer Nature - SN SciGraph project
    134 rdf:type schema:Organization
    135 N8087f369b5184be0a8ed4de1b1e03586 schema:volumeNumber 16
    136 rdf:type schema:PublicationVolume
    137 N9d4828ffca3f43afb617916f952c3dae schema:name doi
    138 schema:value 10.1038/s41571-019-0209-1
    139 rdf:type schema:PropertyValue
    140 Nc206b165711b403a9b943b46555d2a79 rdf:first sg:person.01234500340.18
    141 rdf:rest Nc863cbc223e14af7bc4d836d41fc0436
    142 Nc29ffacb38a54ae286e2c64bd7fde7cb rdf:first sg:person.013661672211.47
    143 rdf:rest Nc206b165711b403a9b943b46555d2a79
    144 Nc863cbc223e14af7bc4d836d41fc0436 rdf:first sg:person.0577111044.36
    145 rdf:rest rdf:nil
    146 Nd407160de264442182131bd17acf4b79 schema:name dimensions_id
    147 schema:value pub.1113484196
    148 rdf:type schema:PropertyValue
    149 Ne82b338d13f74c3a958197f1c417ee9d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    150 schema:name Biomarkers
    151 rdf:type schema:DefinedTerm
    152 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    153 schema:name Medical and Health Sciences
    154 rdf:type schema:DefinedTerm
    155 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
    156 schema:name Oncology and Carcinogenesis
    157 rdf:type schema:DefinedTerm
    158 sg:journal.1034153 schema:issn 1759-4774
    159 1759-4782
    160 schema:name Nature Reviews Clinical Oncology
    161 schema:publisher Springer Nature
    162 rdf:type schema:Periodical
    163 sg:person.01234500340.18 schema:affiliation grid-institutes:grid.51462.34
    164 schema:familyName Motzer
    165 schema:givenName Robert J.
    166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234500340.18
    167 rdf:type schema:Person
    168 sg:person.013661672211.47 schema:affiliation grid-institutes:grid.51462.34
    169 schema:familyName Kotecha
    170 schema:givenName Ritesh R.
    171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013661672211.47
    172 rdf:type schema:Person
    173 sg:person.0577111044.36 schema:affiliation grid-institutes:grid.51462.34
    174 schema:familyName Voss
    175 schema:givenName Martin H.
    176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577111044.36
    177 rdf:type schema:Person
    178 sg:pub.10.1007/s00432-014-1680-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016806345
    179 https://doi.org/10.1007/s00432-014-1680-9
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/s00432-018-2775-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107871289
    182 https://doi.org/10.1007/s00432-018-2775-5
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/s11523-015-0392-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012361695
    185 https://doi.org/10.1007/s11523-015-0392-7
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1038/bjc.2012.468 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025539630
    188 https://doi.org/10.1038/bjc.2012.468
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1038/bjc.2016.21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040730926
    191 https://doi.org/10.1038/bjc.2016.21
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1038/bjc.2017.33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083853534
    194 https://doi.org/10.1038/bjc.2017.33
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1038/cdd.2017.95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090299827
    197 https://doi.org/10.1038/cdd.2017.95
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1038/modpathol.2015.6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041721671
    200 https://doi.org/10.1038/modpathol.2015.6
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1038/nature12222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050842404
    203 https://doi.org/10.1038/nature12222
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1038/ncomms13131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048068890
    206 https://doi.org/10.1038/ncomms13131
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1038/ncomms6135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001274259
    209 https://doi.org/10.1038/ncomms6135
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1038/ng.2323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043591147
    212 https://doi.org/10.1038/ng.2323
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1038/ng.2699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023979397
    215 https://doi.org/10.1038/ng.2699
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1038/ng.2708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038839901
    218 https://doi.org/10.1038/ng.2708
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1038/nm.4333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085214027
    221 https://doi.org/10.1038/nm.4333
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1038/s41467-017-02245-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099597563
    224 https://doi.org/10.1038/s41467-017-02245-1
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1038/s41588-018-0170-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105584569
    227 https://doi.org/10.1038/s41588-018-0170-4
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1038/s41591-018-0053-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104306675
    230 https://doi.org/10.1038/s41591-018-0053-3
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1038/s41591-018-0255-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110065981
    233 https://doi.org/10.1038/s41591-018-0255-8
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1038/s41598-017-15922-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092638745
    236 https://doi.org/10.1038/s41598-017-15922-4
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1186/1479-5876-5-32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001875982
    239 https://doi.org/10.1186/1479-5876-5-32
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1186/s12894-017-0267-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091408270
    242 https://doi.org/10.1186/s12894-017-0267-6
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1186/s13045-018-0610-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104385496
    245 https://doi.org/10.1186/s13045-018-0610-8
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1186/s13059-016-1092-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1008906709
    248 https://doi.org/10.1186/s13059-016-1092-z
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1186/s40425-017-0289-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092569537
    251 https://doi.org/10.1186/s40425-017-0289-3
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1186/s40425-018-0314-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100433879
    254 https://doi.org/10.1186/s40425-018-0314-1
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1186/s40425-018-0315-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100433880
    257 https://doi.org/10.1186/s40425-018-0315-0
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1186/s40425-018-0360-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104903069
    260 https://doi.org/10.1186/s40425-018-0360-8
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1186/s40425-018-0420-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107776066
    263 https://doi.org/10.1186/s40425-018-0420-0
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1186/s40425-018-0422-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1108055272
    266 https://doi.org/10.1186/s40425-018-0422-y
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1186/s40425-018-0425-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107687347
    269 https://doi.org/10.1186/s40425-018-0425-8
    270 rdf:type schema:CreativeWork
    271 grid-institutes:grid.51462.34 schema:alternateName Genitourinary Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
    272 schema:name Genitourinary Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
    273 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...