Universal gap scaling in percolation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2020-02-10

AUTHORS

Jingfang Fan, Jun Meng, Yang Liu, Abbas Ali Saberi, Jürgen Kurths, Jan Nagler

ABSTRACT

Universality is a principle that fundamentally underlies many critical phenomena, ranging from epidemic spreading to the emergence or breakdown of global connectivity in networks. Percolation, the transition to global connectedness on gradual addition of links, may exhibit substantial gaps in the size of the largest connected network component. We uncover that the largest gap statistics is governed by extreme-value theory. This allows us to unify continuous and discontinuous percolation by virtue of universal critical scaling functions, obtained from normal and extreme-value statistics. Specifically, we show that the universal scaling function of the size of the largest gap is given by the extreme-value Gumbel distribution. This links extreme-value statistics to universality and criticality in percolation. More... »

PAGES

455-461

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41567-019-0783-2

DOI

http://dx.doi.org/10.1038/s41567-019-0783-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1124775458


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Potsdam Institute for Climate Impact Research, Potsdam, Germany", 
          "id": "http://www.grid.ac/institutes/grid.4556.2", 
          "name": [
            "Potsdam Institute for Climate Impact Research, Potsdam, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fan", 
        "givenName": "Jingfang", 
        "id": "sg:person.011521537643.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011521537643.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Potsdam Institute for Climate Impact Research, Potsdam, Germany", 
          "id": "http://www.grid.ac/institutes/grid.4556.2", 
          "name": [
            "Potsdam Institute for Climate Impact Research, Potsdam, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meng", 
        "givenName": "Jun", 
        "id": "sg:person.010724157243.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010724157243.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, Technische Universit\u00e4t Berlin, Berlin, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6734.6", 
          "name": [
            "Potsdam Institute for Climate Impact Research, Potsdam, Germany", 
            "Department of Computer Science, Technische Universit\u00e4t Berlin, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Yang", 
        "id": "sg:person.015123441127.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015123441127.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Theoretische Physik, Universitat zu K\u00f6ln, K\u00f6ln, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6190.e", 
          "name": [
            "Department of Physics, University of Tehran, Tehran, Iran", 
            "Institut f\u00fcr Theoretische Physik, Universitat zu K\u00f6ln, K\u00f6ln, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saberi", 
        "givenName": "Abbas Ali", 
        "id": "sg:person.0636374542.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636374542.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Saratov State University, Saratov, Russia", 
          "id": "http://www.grid.ac/institutes/grid.446088.6", 
          "name": [
            "Potsdam Institute for Climate Impact Research, Potsdam, Germany", 
            "Department of Physics, Humboldt University, Berlin, Germany", 
            "Saratov State University, Saratov, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kurths", 
        "givenName": "J\u00fcrgen", 
        "id": "sg:person.01075465176.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075465176.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Deep Dynamics Group, Frankfurt School of Finance and Management, Frankfurt, Germany", 
          "id": "http://www.grid.ac/institutes/grid.461612.6", 
          "name": [
            "Deep Dynamics Group, Frankfurt School of Finance and Management, Frankfurt, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nagler", 
        "givenName": "Jan", 
        "id": "sg:person.0615513231.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615513231.04"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nphys3378", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017255190", 
          "https://doi.org/10.1038/nphys3378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1860", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028057985", 
          "https://doi.org/10.1038/nphys1860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms3222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032277675", 
          "https://doi.org/10.1038/ncomms3222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01009960", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041635208", 
          "https://doi.org/10.1007/bf01009960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-06182-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090696302", 
          "https://doi.org/10.1038/s41598-017-06182-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2020-02-10", 
    "datePublishedReg": "2020-02-10", 
    "description": "Universality is a principle that fundamentally underlies many critical phenomena, ranging from epidemic spreading to the emergence or breakdown of global connectivity in networks. Percolation, the transition to global connectedness on gradual addition of links, may exhibit substantial gaps in the size of the largest connected network component. We uncover that the largest gap statistics is governed by extreme-value theory. This allows us to unify continuous and discontinuous percolation by virtue of universal critical scaling functions, obtained from normal and extreme-value statistics. Specifically, we show that the universal scaling function of the size of the largest gap is given by the extreme-value Gumbel distribution. This links extreme-value statistics to universality and criticality in percolation.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41567-019-0783-2", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1034717", 
        "issn": [
          "1745-2473", 
          "1745-2481"
        ], 
        "name": "Nature Physics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "keywords": [
      "extreme value statistics", 
      "scaling functions", 
      "extreme-value Gumbel distribution", 
      "universal scaling function", 
      "critical scaling function", 
      "largest connected network component", 
      "extreme value theory", 
      "discontinuous percolation", 
      "critical phenomena", 
      "Gumbel distribution", 
      "gap statistic", 
      "universal gap", 
      "connected network components", 
      "percolation", 
      "statistics", 
      "network components", 
      "universality", 
      "global connectivity", 
      "criticality", 
      "theory", 
      "function", 
      "large gap", 
      "gap", 
      "network", 
      "distribution", 
      "principles", 
      "transition", 
      "phenomenon", 
      "size", 
      "connectivity", 
      "link", 
      "breakdown", 
      "virtue", 
      "connectedness", 
      "components", 
      "emergence", 
      "epidemic", 
      "addition", 
      "gradual addition", 
      "global connectedness", 
      "substantial gaps", 
      "largest gap statistics", 
      "universal critical scaling functions"
    ], 
    "name": "Universal gap scaling in percolation", 
    "pagination": "455-461", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1124775458"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41567-019-0783-2"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41567-019-0783-2", 
      "https://app.dimensions.ai/details/publication/pub.1124775458"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_859.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41567-019-0783-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41567-019-0783-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41567-019-0783-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41567-019-0783-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41567-019-0783-2'


 

This table displays all metadata directly associated to this object as RDF triples.

172 TRIPLES      22 PREDICATES      73 URIs      60 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41567-019-0783-2 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Ncca956f50cff4ef2bc72bb48315fa7ac
4 schema:citation sg:pub.10.1007/bf01009960
5 sg:pub.10.1038/ncomms3222
6 sg:pub.10.1038/nphys1860
7 sg:pub.10.1038/nphys3378
8 sg:pub.10.1038/s41598-017-06182-3
9 schema:datePublished 2020-02-10
10 schema:datePublishedReg 2020-02-10
11 schema:description Universality is a principle that fundamentally underlies many critical phenomena, ranging from epidemic spreading to the emergence or breakdown of global connectivity in networks. Percolation, the transition to global connectedness on gradual addition of links, may exhibit substantial gaps in the size of the largest connected network component. We uncover that the largest gap statistics is governed by extreme-value theory. This allows us to unify continuous and discontinuous percolation by virtue of universal critical scaling functions, obtained from normal and extreme-value statistics. Specifically, we show that the universal scaling function of the size of the largest gap is given by the extreme-value Gumbel distribution. This links extreme-value statistics to universality and criticality in percolation.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf Ndc3cc264a0594012b91d817153869eaa
16 Neeb782b6dcc34f34a741b7fa718b821e
17 sg:journal.1034717
18 schema:keywords Gumbel distribution
19 addition
20 breakdown
21 components
22 connected network components
23 connectedness
24 connectivity
25 critical phenomena
26 critical scaling function
27 criticality
28 discontinuous percolation
29 distribution
30 emergence
31 epidemic
32 extreme value statistics
33 extreme value theory
34 extreme-value Gumbel distribution
35 function
36 gap
37 gap statistic
38 global connectedness
39 global connectivity
40 gradual addition
41 large gap
42 largest connected network component
43 largest gap statistics
44 link
45 network
46 network components
47 percolation
48 phenomenon
49 principles
50 scaling functions
51 size
52 statistics
53 substantial gaps
54 theory
55 transition
56 universal critical scaling functions
57 universal gap
58 universal scaling function
59 universality
60 virtue
61 schema:name Universal gap scaling in percolation
62 schema:pagination 455-461
63 schema:productId N4e6b5aa0df284743b0a55202e30a0c2e
64 N5520e5b0d2f1446b83c564bf1f0de127
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124775458
66 https://doi.org/10.1038/s41567-019-0783-2
67 schema:sdDatePublished 2022-01-01T18:57
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher N737816bd2c2f4ba89fac918989e2ea72
70 schema:url https://doi.org/10.1038/s41567-019-0783-2
71 sgo:license sg:explorer/license/
72 sgo:sdDataset articles
73 rdf:type schema:ScholarlyArticle
74 N0d4051e4dfa745fd942eff958779c5bd rdf:first sg:person.0636374542.84
75 rdf:rest N61e23ee1a9de407184d27200616cef66
76 N37d8ad8117e3448a97989f8f1762c89f rdf:first sg:person.010724157243.08
77 rdf:rest Nad4b3a3b69724f6fb09601ff56377600
78 N4e6b5aa0df284743b0a55202e30a0c2e schema:name dimensions_id
79 schema:value pub.1124775458
80 rdf:type schema:PropertyValue
81 N5520e5b0d2f1446b83c564bf1f0de127 schema:name doi
82 schema:value 10.1038/s41567-019-0783-2
83 rdf:type schema:PropertyValue
84 N61e23ee1a9de407184d27200616cef66 rdf:first sg:person.01075465176.23
85 rdf:rest Naa2f5aeefeac44ff9adc5b9ab8685814
86 N737816bd2c2f4ba89fac918989e2ea72 schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 Naa2f5aeefeac44ff9adc5b9ab8685814 rdf:first sg:person.0615513231.04
89 rdf:rest rdf:nil
90 Nad4b3a3b69724f6fb09601ff56377600 rdf:first sg:person.015123441127.29
91 rdf:rest N0d4051e4dfa745fd942eff958779c5bd
92 Ncca956f50cff4ef2bc72bb48315fa7ac rdf:first sg:person.011521537643.39
93 rdf:rest N37d8ad8117e3448a97989f8f1762c89f
94 Ndc3cc264a0594012b91d817153869eaa schema:issueNumber 4
95 rdf:type schema:PublicationIssue
96 Neeb782b6dcc34f34a741b7fa718b821e schema:volumeNumber 16
97 rdf:type schema:PublicationVolume
98 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
99 schema:name Mathematical Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
102 schema:name Statistics
103 rdf:type schema:DefinedTerm
104 sg:journal.1034717 schema:issn 1745-2473
105 1745-2481
106 schema:name Nature Physics
107 schema:publisher Springer Nature
108 rdf:type schema:Periodical
109 sg:person.010724157243.08 schema:affiliation grid-institutes:grid.4556.2
110 schema:familyName Meng
111 schema:givenName Jun
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010724157243.08
113 rdf:type schema:Person
114 sg:person.01075465176.23 schema:affiliation grid-institutes:grid.446088.6
115 schema:familyName Kurths
116 schema:givenName Jürgen
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075465176.23
118 rdf:type schema:Person
119 sg:person.011521537643.39 schema:affiliation grid-institutes:grid.4556.2
120 schema:familyName Fan
121 schema:givenName Jingfang
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011521537643.39
123 rdf:type schema:Person
124 sg:person.015123441127.29 schema:affiliation grid-institutes:grid.6734.6
125 schema:familyName Liu
126 schema:givenName Yang
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015123441127.29
128 rdf:type schema:Person
129 sg:person.0615513231.04 schema:affiliation grid-institutes:grid.461612.6
130 schema:familyName Nagler
131 schema:givenName Jan
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615513231.04
133 rdf:type schema:Person
134 sg:person.0636374542.84 schema:affiliation grid-institutes:grid.6190.e
135 schema:familyName Saberi
136 schema:givenName Abbas Ali
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636374542.84
138 rdf:type schema:Person
139 sg:pub.10.1007/bf01009960 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041635208
140 https://doi.org/10.1007/bf01009960
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/ncomms3222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032277675
143 https://doi.org/10.1038/ncomms3222
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/nphys1860 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028057985
146 https://doi.org/10.1038/nphys1860
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/nphys3378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017255190
149 https://doi.org/10.1038/nphys3378
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/s41598-017-06182-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090696302
152 https://doi.org/10.1038/s41598-017-06182-3
153 rdf:type schema:CreativeWork
154 grid-institutes:grid.446088.6 schema:alternateName Saratov State University, Saratov, Russia
155 schema:name Department of Physics, Humboldt University, Berlin, Germany
156 Potsdam Institute for Climate Impact Research, Potsdam, Germany
157 Saratov State University, Saratov, Russia
158 rdf:type schema:Organization
159 grid-institutes:grid.4556.2 schema:alternateName Potsdam Institute for Climate Impact Research, Potsdam, Germany
160 schema:name Potsdam Institute for Climate Impact Research, Potsdam, Germany
161 rdf:type schema:Organization
162 grid-institutes:grid.461612.6 schema:alternateName Deep Dynamics Group, Frankfurt School of Finance and Management, Frankfurt, Germany
163 schema:name Deep Dynamics Group, Frankfurt School of Finance and Management, Frankfurt, Germany
164 rdf:type schema:Organization
165 grid-institutes:grid.6190.e schema:alternateName Institut für Theoretische Physik, Universitat zu Köln, Köln, Germany
166 schema:name Department of Physics, University of Tehran, Tehran, Iran
167 Institut für Theoretische Physik, Universitat zu Köln, Köln, Germany
168 rdf:type schema:Organization
169 grid-institutes:grid.6734.6 schema:alternateName Department of Computer Science, Technische Universität Berlin, Berlin, Germany
170 schema:name Department of Computer Science, Technische Universität Berlin, Berlin, Germany
171 Potsdam Institute for Climate Impact Research, Potsdam, Germany
172 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...