Universal gap scaling in percolation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2020-02-10

AUTHORS

Jingfang Fan, Jun Meng, Yang Liu, Abbas Ali Saberi, Jürgen Kurths, Jan Nagler

ABSTRACT

Universality is a principle that fundamentally underlies many critical phenomena, ranging from epidemic spreading to the emergence or breakdown of global connectivity in networks. Percolation, the transition to global connectedness on gradual addition of links, may exhibit substantial gaps in the size of the largest connected network component. We uncover that the largest gap statistics is governed by extreme-value theory. This allows us to unify continuous and discontinuous percolation by virtue of universal critical scaling functions, obtained from normal and extreme-value statistics. Specifically, we show that the universal scaling function of the size of the largest gap is given by the extreme-value Gumbel distribution. This links extreme-value statistics to universality and criticality in percolation. More... »

PAGES

455-461

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41567-019-0783-2

DOI

http://dx.doi.org/10.1038/s41567-019-0783-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1124775458


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Potsdam Institute for Climate Impact Research, Potsdam, Germany", 
          "id": "http://www.grid.ac/institutes/grid.4556.2", 
          "name": [
            "Potsdam Institute for Climate Impact Research, Potsdam, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fan", 
        "givenName": "Jingfang", 
        "id": "sg:person.011521537643.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011521537643.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Potsdam Institute for Climate Impact Research, Potsdam, Germany", 
          "id": "http://www.grid.ac/institutes/grid.4556.2", 
          "name": [
            "Potsdam Institute for Climate Impact Research, Potsdam, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meng", 
        "givenName": "Jun", 
        "id": "sg:person.010724157243.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010724157243.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, Technische Universit\u00e4t Berlin, Berlin, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6734.6", 
          "name": [
            "Potsdam Institute for Climate Impact Research, Potsdam, Germany", 
            "Department of Computer Science, Technische Universit\u00e4t Berlin, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Yang", 
        "id": "sg:person.015123441127.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015123441127.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Theoretische Physik, Universitat zu K\u00f6ln, K\u00f6ln, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6190.e", 
          "name": [
            "Department of Physics, University of Tehran, Tehran, Iran", 
            "Institut f\u00fcr Theoretische Physik, Universitat zu K\u00f6ln, K\u00f6ln, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saberi", 
        "givenName": "Abbas Ali", 
        "id": "sg:person.0636374542.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636374542.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Saratov State University, Saratov, Russia", 
          "id": "http://www.grid.ac/institutes/grid.446088.6", 
          "name": [
            "Potsdam Institute for Climate Impact Research, Potsdam, Germany", 
            "Department of Physics, Humboldt University, Berlin, Germany", 
            "Saratov State University, Saratov, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kurths", 
        "givenName": "J\u00fcrgen", 
        "id": "sg:person.01075465176.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075465176.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Deep Dynamics Group, Frankfurt School of Finance and Management, Frankfurt, Germany", 
          "id": "http://www.grid.ac/institutes/grid.461612.6", 
          "name": [
            "Deep Dynamics Group, Frankfurt School of Finance and Management, Frankfurt, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nagler", 
        "givenName": "Jan", 
        "id": "sg:person.0615513231.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615513231.04"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nphys3378", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017255190", 
          "https://doi.org/10.1038/nphys3378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01009960", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041635208", 
          "https://doi.org/10.1007/bf01009960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms3222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032277675", 
          "https://doi.org/10.1038/ncomms3222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-06182-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090696302", 
          "https://doi.org/10.1038/s41598-017-06182-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1860", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028057985", 
          "https://doi.org/10.1038/nphys1860"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2020-02-10", 
    "datePublishedReg": "2020-02-10", 
    "description": "Universality is a principle that fundamentally underlies many critical phenomena, ranging from epidemic spreading to the emergence or breakdown of global connectivity in networks. Percolation, the transition to global connectedness on gradual addition of links, may exhibit substantial gaps in the size of the largest connected network component. We uncover that the largest gap statistics is governed by extreme-value theory. This allows us to unify continuous and discontinuous percolation by virtue of universal critical scaling functions, obtained from normal and extreme-value statistics. Specifically, we show that the universal scaling function of the size of the largest gap is given by the extreme-value Gumbel distribution. This links extreme-value statistics to universality and criticality in percolation.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41567-019-0783-2", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1034717", 
        "issn": [
          "1745-2473", 
          "1745-2481"
        ], 
        "name": "Nature Physics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "keywords": [
      "extreme value statistics", 
      "scaling functions", 
      "extreme-value Gumbel distribution", 
      "universal scaling function", 
      "largest connected network component", 
      "extreme value theory", 
      "critical scaling function", 
      "discontinuous percolation", 
      "critical phenomena", 
      "connected network components", 
      "Gumbel distribution", 
      "gap statistic", 
      "universal gap", 
      "percolation", 
      "statistics", 
      "network components", 
      "universality", 
      "global connectivity", 
      "criticality", 
      "theory", 
      "function", 
      "large gap", 
      "gap", 
      "distribution", 
      "network", 
      "principles", 
      "transition", 
      "phenomenon", 
      "size", 
      "connectivity", 
      "link", 
      "breakdown", 
      "virtue", 
      "components", 
      "connectedness", 
      "epidemic", 
      "emergence", 
      "addition", 
      "substantial gaps", 
      "gradual addition", 
      "global connectedness"
    ], 
    "name": "Universal gap scaling in percolation", 
    "pagination": "455-461", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1124775458"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41567-019-0783-2"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41567-019-0783-2", 
      "https://app.dimensions.ai/details/publication/pub.1124775458"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T10:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_850.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41567-019-0783-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41567-019-0783-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41567-019-0783-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41567-019-0783-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41567-019-0783-2'


 

This table displays all metadata directly associated to this object as RDF triples.

170 TRIPLES      22 PREDICATES      71 URIs      58 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41567-019-0783-2 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Na20f376e359d4df6b1361dc0920e4e52
4 schema:citation sg:pub.10.1007/bf01009960
5 sg:pub.10.1038/ncomms3222
6 sg:pub.10.1038/nphys1860
7 sg:pub.10.1038/nphys3378
8 sg:pub.10.1038/s41598-017-06182-3
9 schema:datePublished 2020-02-10
10 schema:datePublishedReg 2020-02-10
11 schema:description Universality is a principle that fundamentally underlies many critical phenomena, ranging from epidemic spreading to the emergence or breakdown of global connectivity in networks. Percolation, the transition to global connectedness on gradual addition of links, may exhibit substantial gaps in the size of the largest connected network component. We uncover that the largest gap statistics is governed by extreme-value theory. This allows us to unify continuous and discontinuous percolation by virtue of universal critical scaling functions, obtained from normal and extreme-value statistics. Specifically, we show that the universal scaling function of the size of the largest gap is given by the extreme-value Gumbel distribution. This links extreme-value statistics to universality and criticality in percolation.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N35676998ac8e408894fec369bf97f1da
16 Nb77a7cdc37174005a4eae83f6a593da5
17 sg:journal.1034717
18 schema:keywords Gumbel distribution
19 addition
20 breakdown
21 components
22 connected network components
23 connectedness
24 connectivity
25 critical phenomena
26 critical scaling function
27 criticality
28 discontinuous percolation
29 distribution
30 emergence
31 epidemic
32 extreme value statistics
33 extreme value theory
34 extreme-value Gumbel distribution
35 function
36 gap
37 gap statistic
38 global connectedness
39 global connectivity
40 gradual addition
41 large gap
42 largest connected network component
43 link
44 network
45 network components
46 percolation
47 phenomenon
48 principles
49 scaling functions
50 size
51 statistics
52 substantial gaps
53 theory
54 transition
55 universal gap
56 universal scaling function
57 universality
58 virtue
59 schema:name Universal gap scaling in percolation
60 schema:pagination 455-461
61 schema:productId N415807b5890d4af8a257e34760ab4382
62 Nb8512ca761de4b8894f78079743053ff
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124775458
64 https://doi.org/10.1038/s41567-019-0783-2
65 schema:sdDatePublished 2022-05-10T10:24
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher N0de3d42ecfef4622af762c2e71b4762f
68 schema:url https://doi.org/10.1038/s41567-019-0783-2
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N0de3d42ecfef4622af762c2e71b4762f schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 N35676998ac8e408894fec369bf97f1da schema:volumeNumber 16
75 rdf:type schema:PublicationVolume
76 N415807b5890d4af8a257e34760ab4382 schema:name doi
77 schema:value 10.1038/s41567-019-0783-2
78 rdf:type schema:PropertyValue
79 N5899dda3216a4e9bbf600c8124cf67cd rdf:first sg:person.0636374542.84
80 rdf:rest Nfbaa96533a334b6bb4f8c1fc21d9cc41
81 N913ada174d3f4c9cb64fceff7c42cc1e rdf:first sg:person.015123441127.29
82 rdf:rest N5899dda3216a4e9bbf600c8124cf67cd
83 N9d80072ff5c347fd884e363025b2ccb4 rdf:first sg:person.010724157243.08
84 rdf:rest N913ada174d3f4c9cb64fceff7c42cc1e
85 Na20f376e359d4df6b1361dc0920e4e52 rdf:first sg:person.011521537643.39
86 rdf:rest N9d80072ff5c347fd884e363025b2ccb4
87 Nab0598ed6f8e4da0a8869af29cff2005 rdf:first sg:person.0615513231.04
88 rdf:rest rdf:nil
89 Nb77a7cdc37174005a4eae83f6a593da5 schema:issueNumber 4
90 rdf:type schema:PublicationIssue
91 Nb8512ca761de4b8894f78079743053ff schema:name dimensions_id
92 schema:value pub.1124775458
93 rdf:type schema:PropertyValue
94 Nfbaa96533a334b6bb4f8c1fc21d9cc41 rdf:first sg:person.01075465176.23
95 rdf:rest Nab0598ed6f8e4da0a8869af29cff2005
96 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
97 schema:name Mathematical Sciences
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
100 schema:name Statistics
101 rdf:type schema:DefinedTerm
102 sg:journal.1034717 schema:issn 1745-2473
103 1745-2481
104 schema:name Nature Physics
105 schema:publisher Springer Nature
106 rdf:type schema:Periodical
107 sg:person.010724157243.08 schema:affiliation grid-institutes:grid.4556.2
108 schema:familyName Meng
109 schema:givenName Jun
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010724157243.08
111 rdf:type schema:Person
112 sg:person.01075465176.23 schema:affiliation grid-institutes:grid.446088.6
113 schema:familyName Kurths
114 schema:givenName Jürgen
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075465176.23
116 rdf:type schema:Person
117 sg:person.011521537643.39 schema:affiliation grid-institutes:grid.4556.2
118 schema:familyName Fan
119 schema:givenName Jingfang
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011521537643.39
121 rdf:type schema:Person
122 sg:person.015123441127.29 schema:affiliation grid-institutes:grid.6734.6
123 schema:familyName Liu
124 schema:givenName Yang
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015123441127.29
126 rdf:type schema:Person
127 sg:person.0615513231.04 schema:affiliation grid-institutes:grid.461612.6
128 schema:familyName Nagler
129 schema:givenName Jan
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615513231.04
131 rdf:type schema:Person
132 sg:person.0636374542.84 schema:affiliation grid-institutes:grid.6190.e
133 schema:familyName Saberi
134 schema:givenName Abbas Ali
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636374542.84
136 rdf:type schema:Person
137 sg:pub.10.1007/bf01009960 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041635208
138 https://doi.org/10.1007/bf01009960
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/ncomms3222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032277675
141 https://doi.org/10.1038/ncomms3222
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/nphys1860 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028057985
144 https://doi.org/10.1038/nphys1860
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/nphys3378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017255190
147 https://doi.org/10.1038/nphys3378
148 rdf:type schema:CreativeWork
149 sg:pub.10.1038/s41598-017-06182-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090696302
150 https://doi.org/10.1038/s41598-017-06182-3
151 rdf:type schema:CreativeWork
152 grid-institutes:grid.446088.6 schema:alternateName Saratov State University, Saratov, Russia
153 schema:name Department of Physics, Humboldt University, Berlin, Germany
154 Potsdam Institute for Climate Impact Research, Potsdam, Germany
155 Saratov State University, Saratov, Russia
156 rdf:type schema:Organization
157 grid-institutes:grid.4556.2 schema:alternateName Potsdam Institute for Climate Impact Research, Potsdam, Germany
158 schema:name Potsdam Institute for Climate Impact Research, Potsdam, Germany
159 rdf:type schema:Organization
160 grid-institutes:grid.461612.6 schema:alternateName Deep Dynamics Group, Frankfurt School of Finance and Management, Frankfurt, Germany
161 schema:name Deep Dynamics Group, Frankfurt School of Finance and Management, Frankfurt, Germany
162 rdf:type schema:Organization
163 grid-institutes:grid.6190.e schema:alternateName Institut für Theoretische Physik, Universitat zu Köln, Köln, Germany
164 schema:name Department of Physics, University of Tehran, Tehran, Iran
165 Institut für Theoretische Physik, Universitat zu Köln, Köln, Germany
166 rdf:type schema:Organization
167 grid-institutes:grid.6734.6 schema:alternateName Department of Computer Science, Technische Universität Berlin, Berlin, Germany
168 schema:name Department of Computer Science, Technische Universität Berlin, Berlin, Germany
169 Potsdam Institute for Climate Impact Research, Potsdam, Germany
170 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...