Generation and sampling of quantum states of light in a silicon chip View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-07-01

AUTHORS

Stefano Paesani, Yunhong Ding, Raffaele Santagati, Levon Chakhmakhchyan, Caterina Vigliar, Karsten Rottwitt, Leif K. Oxenløwe, Jianwei Wang, Mark G. Thompson, Anthony Laing

ABSTRACT

Implementing large instances of quantum algorithms1–5 requires the processing of many quantum information carriers in a hardware platform that supports the integration of different components6. Although established semiconductor fabrication processes can integrate many photonic components7, the generation and algorithmic processing of many photons has been a bottleneck in integrated photonics. Here, we report the on-chip generation and algorithmic processing of quantum states of light with up to eight photons. Switching between different optical pumping regimes, we implement the scattershot8,9, Gaussian10 and standard boson sampling3,11–14 protocols in the same silicon chip, which integrates linear and nonlinear photonic circuitry. We use these results to benchmark a quantum algorithm for calculating molecular vibronic spectra4. Our techniques can be readily scaled for the on-chip implementation of specialized quantum algorithms with tens of photons, pointing the way to efficiency advantages over conventional computers15. More... »

PAGES

925-929

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41567-019-0567-8

DOI

http://dx.doi.org/10.1038/s41567-019-0567-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1117653317


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Optical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Quantum Engineering Technology Labs, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, Bristol, UK", 
          "id": "http://www.grid.ac/institutes/grid.5337.2", 
          "name": [
            "Quantum Engineering Technology Labs, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, Bristol, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paesani", 
        "givenName": "Stefano", 
        "id": "sg:person.015156402634.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015156402634.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Silicon Photonics for Optical Communication (SPOC), Technical University of Denmark, Kgs Lyngby, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.5170.3", 
          "name": [
            "Department of Photonics Engineering, Technical University of Denmark, Kgs Lyngby, Denmark", 
            "Center for Silicon Photonics for Optical Communication (SPOC), Technical University of Denmark, Kgs Lyngby, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ding", 
        "givenName": "Yunhong", 
        "id": "sg:person.01243727470.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243727470.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Quantum Engineering Technology Labs, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, Bristol, UK", 
          "id": "http://www.grid.ac/institutes/grid.5337.2", 
          "name": [
            "Quantum Engineering Technology Labs, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, Bristol, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Santagati", 
        "givenName": "Raffaele", 
        "id": "sg:person.014034170471.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014034170471.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Quantum Engineering Technology Labs, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, Bristol, UK", 
          "id": "http://www.grid.ac/institutes/grid.5337.2", 
          "name": [
            "Quantum Engineering Technology Labs, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, Bristol, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chakhmakhchyan", 
        "givenName": "Levon", 
        "id": "sg:person.0711564431.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711564431.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Quantum Engineering Technology Labs, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, Bristol, UK", 
          "id": "http://www.grid.ac/institutes/grid.5337.2", 
          "name": [
            "Quantum Engineering Technology Labs, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, Bristol, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vigliar", 
        "givenName": "Caterina", 
        "id": "sg:person.013640733477.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013640733477.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Silicon Photonics for Optical Communication (SPOC), Technical University of Denmark, Kgs Lyngby, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.5170.3", 
          "name": [
            "Department of Photonics Engineering, Technical University of Denmark, Kgs Lyngby, Denmark", 
            "Center for Silicon Photonics for Optical Communication (SPOC), Technical University of Denmark, Kgs Lyngby, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rottwitt", 
        "givenName": "Karsten", 
        "id": "sg:person.01124530120.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124530120.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Silicon Photonics for Optical Communication (SPOC), Technical University of Denmark, Kgs Lyngby, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.5170.3", 
          "name": [
            "Department of Photonics Engineering, Technical University of Denmark, Kgs Lyngby, Denmark", 
            "Center for Silicon Photonics for Optical Communication (SPOC), Technical University of Denmark, Kgs Lyngby, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oxenl\u00f8we", 
        "givenName": "Leif K.", 
        "id": "sg:person.01256574224.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256574224.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing Academy of Quantum Information Sciences, Beijing, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Quantum Engineering Technology Labs, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, Bristol, UK", 
            "State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing, China", 
            "Beijing Academy of Quantum Information Sciences, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Jianwei", 
        "id": "sg:person.011410452451.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011410452451.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Quantum Engineering Technology Labs, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, Bristol, UK", 
          "id": "http://www.grid.ac/institutes/grid.5337.2", 
          "name": [
            "Quantum Engineering Technology Labs, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, Bristol, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thompson", 
        "givenName": "Mark G.", 
        "id": "sg:person.01105253534.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105253534.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Quantum Engineering Technology Labs, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, Bristol, UK", 
          "id": "http://www.grid.ac/institutes/grid.5337.2", 
          "name": [
            "Quantum Engineering Technology Labs, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, Bristol, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Laing", 
        "givenName": "Anthony", 
        "id": "sg:person.01326470360.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326470360.86"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/s41586-018-0152-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104171957", 
          "https://doi.org/10.1038/s41586-018-0152-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2015.153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009408776", 
          "https://doi.org/10.1038/nphoton.2015.153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms2307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013683012", 
          "https://doi.org/10.1038/ncomms2307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2016.23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022498351", 
          "https://doi.org/10.1038/nphoton.2016.23"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2014.152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030534329", 
          "https://doi.org/10.1038/nphoton.2014.152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2013.339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042385125", 
          "https://doi.org/10.1038/nphoton.2013.339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys4270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092060269", 
          "https://doi.org/10.1038/nphys4270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2017.95", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086073074", 
          "https://doi.org/10.1038/nphoton.2017.95"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2013.112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025171451", 
          "https://doi.org/10.1038/nphoton.2013.112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2014.135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050569234", 
          "https://doi.org/10.1038/nphoton.2014.135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026793563", 
          "https://doi.org/10.1038/nature08812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-8909-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033350861", 
          "https://doi.org/10.1007/978-1-4615-8909-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/lsa.2017.100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092748469", 
          "https://doi.org/10.1038/lsa.2017.100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2013.102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026850590", 
          "https://doi.org/10.1038/nphoton.2013.102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2017.63", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085099414", 
          "https://doi.org/10.1038/nphoton.2017.63"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-07-01", 
    "datePublishedReg": "2019-07-01", 
    "description": "Implementing large instances of quantum algorithms1\u20135 requires the processing of many quantum information carriers in a hardware platform that supports the integration of different components6. Although established semiconductor fabrication processes can integrate many photonic components7, the generation and algorithmic processing of many photons has been a bottleneck in integrated photonics. Here, we report the on-chip generation and algorithmic processing of quantum states of light with up to eight photons. Switching between different optical pumping regimes, we implement the scattershot8,9, Gaussian10 and standard boson sampling3,11\u201314 protocols in the same silicon chip, which integrates linear and nonlinear photonic circuitry. We use these results to benchmark a quantum algorithm for calculating molecular vibronic spectra4. Our techniques can be readily scaled for the on-chip implementation of specialized quantum algorithms with tens of photons, pointing the way to efficiency advantages over conventional computers15.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41567-019-0567-8", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4575575", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3938548", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3863546", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5072695", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7611771", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1034717", 
        "issn": [
          "1745-2473", 
          "1745-2481"
        ], 
        "name": "Nature Physics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "keywords": [
      "quantum states", 
      "silicon chip", 
      "quantum algorithms", 
      "quantum information carriers", 
      "optical pumping regime", 
      "tens of photons", 
      "same silicon chip", 
      "semiconductor fabrication process", 
      "photonic circuitry", 
      "integrated photonics", 
      "standard bosons", 
      "chip implementation", 
      "fabrication process", 
      "pumping regime", 
      "photons", 
      "hardware platform", 
      "chip generation", 
      "information carriers", 
      "chip", 
      "photonics", 
      "bosons", 
      "light", 
      "efficiency advantages", 
      "state", 
      "tens", 
      "platform", 
      "bottleneck", 
      "processing", 
      "protocol", 
      "carriers", 
      "generation", 
      "regime", 
      "circuitry", 
      "integration", 
      "advantages", 
      "algorithm", 
      "technique", 
      "algorithmic processing", 
      "implementation", 
      "process", 
      "results", 
      "large instances", 
      "way", 
      "instances", 
      "sampling", 
      "quantum algorithms1\u20135", 
      "algorithms1\u20135", 
      "different components6", 
      "components6", 
      "photonic components7", 
      "components7", 
      "different optical pumping regimes", 
      "Gaussian10", 
      "nonlinear photonic circuitry", 
      "molecular vibronic spectra4", 
      "vibronic spectra4", 
      "spectra4", 
      "specialized quantum algorithms", 
      "conventional computers15", 
      "computers15"
    ], 
    "name": "Generation and sampling of quantum states of light in a silicon chip", 
    "pagination": "925-929", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1117653317"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41567-019-0567-8"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41567-019-0567-8", 
      "https://app.dimensions.ai/details/publication/pub.1117653317"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_825.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41567-019-0567-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41567-019-0567-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41567-019-0567-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41567-019-0567-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41567-019-0567-8'


 

This table displays all metadata directly associated to this object as RDF triples.

264 TRIPLES      22 PREDICATES      101 URIs      77 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41567-019-0567-8 schema:about anzsrc-for:02
2 anzsrc-for:0205
3 anzsrc-for:0206
4 schema:author Nc59d3ccfe49947f5b72663218b888026
5 schema:citation sg:pub.10.1007/978-1-4615-8909-9
6 sg:pub.10.1038/lsa.2017.100
7 sg:pub.10.1038/nature08812
8 sg:pub.10.1038/ncomms2307
9 sg:pub.10.1038/nphoton.2013.102
10 sg:pub.10.1038/nphoton.2013.112
11 sg:pub.10.1038/nphoton.2013.339
12 sg:pub.10.1038/nphoton.2014.135
13 sg:pub.10.1038/nphoton.2014.152
14 sg:pub.10.1038/nphoton.2015.153
15 sg:pub.10.1038/nphoton.2016.23
16 sg:pub.10.1038/nphoton.2017.63
17 sg:pub.10.1038/nphoton.2017.95
18 sg:pub.10.1038/nphys4270
19 sg:pub.10.1038/s41586-018-0152-9
20 schema:datePublished 2019-07-01
21 schema:datePublishedReg 2019-07-01
22 schema:description Implementing large instances of quantum algorithms1–5 requires the processing of many quantum information carriers in a hardware platform that supports the integration of different components6. Although established semiconductor fabrication processes can integrate many photonic components7, the generation and algorithmic processing of many photons has been a bottleneck in integrated photonics. Here, we report the on-chip generation and algorithmic processing of quantum states of light with up to eight photons. Switching between different optical pumping regimes, we implement the scattershot8,9, Gaussian10 and standard boson sampling3,11–14 protocols in the same silicon chip, which integrates linear and nonlinear photonic circuitry. We use these results to benchmark a quantum algorithm for calculating molecular vibronic spectra4. Our techniques can be readily scaled for the on-chip implementation of specialized quantum algorithms with tens of photons, pointing the way to efficiency advantages over conventional computers15.
23 schema:genre article
24 schema:inLanguage en
25 schema:isAccessibleForFree true
26 schema:isPartOf N3b50294728e04a91a483757bdca2be64
27 N810c3590dc3d42b2b07d5a9d8e25eb35
28 sg:journal.1034717
29 schema:keywords Gaussian10
30 advantages
31 algorithm
32 algorithmic processing
33 algorithms1–5
34 bosons
35 bottleneck
36 carriers
37 chip
38 chip generation
39 chip implementation
40 circuitry
41 components6
42 components7
43 computers15
44 conventional computers15
45 different components6
46 different optical pumping regimes
47 efficiency advantages
48 fabrication process
49 generation
50 hardware platform
51 implementation
52 information carriers
53 instances
54 integrated photonics
55 integration
56 large instances
57 light
58 molecular vibronic spectra4
59 nonlinear photonic circuitry
60 optical pumping regime
61 photonic circuitry
62 photonic components7
63 photonics
64 photons
65 platform
66 process
67 processing
68 protocol
69 pumping regime
70 quantum algorithms
71 quantum algorithms1–5
72 quantum information carriers
73 quantum states
74 regime
75 results
76 same silicon chip
77 sampling
78 semiconductor fabrication process
79 silicon chip
80 specialized quantum algorithms
81 spectra4
82 standard bosons
83 state
84 technique
85 tens
86 tens of photons
87 vibronic spectra4
88 way
89 schema:name Generation and sampling of quantum states of light in a silicon chip
90 schema:pagination 925-929
91 schema:productId Nafaf1321f826442890034011ff715632
92 Nf8c99da182b240a6a242eb762b12d427
93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1117653317
94 https://doi.org/10.1038/s41567-019-0567-8
95 schema:sdDatePublished 2022-01-01T18:51
96 schema:sdLicense https://scigraph.springernature.com/explorer/license/
97 schema:sdPublisher N49446eded04540d985a3cf0e602170ea
98 schema:url https://doi.org/10.1038/s41567-019-0567-8
99 sgo:license sg:explorer/license/
100 sgo:sdDataset articles
101 rdf:type schema:ScholarlyArticle
102 N0c1a1ad039404dc0879d5d75decb6bf3 rdf:first sg:person.01124530120.26
103 rdf:rest N8016a6dca55a432f8ac6144eb57ac35f
104 N13e9acb4667a4f3aac412cecd2602b9a rdf:first sg:person.01326470360.86
105 rdf:rest rdf:nil
106 N3ac206e53e394e58b8275b5bb0d985b8 rdf:first sg:person.014034170471.35
107 rdf:rest Necbe6d1b612a40c7a0b926c3aa892686
108 N3b50294728e04a91a483757bdca2be64 schema:issueNumber 9
109 rdf:type schema:PublicationIssue
110 N49446eded04540d985a3cf0e602170ea schema:name Springer Nature - SN SciGraph project
111 rdf:type schema:Organization
112 N4e356f0fa16b43e8a6096f8dc9eb01c3 rdf:first sg:person.013640733477.22
113 rdf:rest N0c1a1ad039404dc0879d5d75decb6bf3
114 N57aa011bff6e4c51a7dbfd2424b3276e rdf:first sg:person.01105253534.38
115 rdf:rest N13e9acb4667a4f3aac412cecd2602b9a
116 N8016a6dca55a432f8ac6144eb57ac35f rdf:first sg:person.01256574224.75
117 rdf:rest N9107b3cbed4f4ccdb6bbe7dbc89573f0
118 N810c3590dc3d42b2b07d5a9d8e25eb35 schema:volumeNumber 15
119 rdf:type schema:PublicationVolume
120 N8e45e7ddf6fc4647bd59c29ca514dc93 rdf:first sg:person.01243727470.10
121 rdf:rest N3ac206e53e394e58b8275b5bb0d985b8
122 N9107b3cbed4f4ccdb6bbe7dbc89573f0 rdf:first sg:person.011410452451.00
123 rdf:rest N57aa011bff6e4c51a7dbfd2424b3276e
124 Nafaf1321f826442890034011ff715632 schema:name doi
125 schema:value 10.1038/s41567-019-0567-8
126 rdf:type schema:PropertyValue
127 Nc59d3ccfe49947f5b72663218b888026 rdf:first sg:person.015156402634.44
128 rdf:rest N8e45e7ddf6fc4647bd59c29ca514dc93
129 Necbe6d1b612a40c7a0b926c3aa892686 rdf:first sg:person.0711564431.18
130 rdf:rest N4e356f0fa16b43e8a6096f8dc9eb01c3
131 Nf8c99da182b240a6a242eb762b12d427 schema:name dimensions_id
132 schema:value pub.1117653317
133 rdf:type schema:PropertyValue
134 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
135 schema:name Physical Sciences
136 rdf:type schema:DefinedTerm
137 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
138 schema:name Optical Physics
139 rdf:type schema:DefinedTerm
140 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
141 schema:name Quantum Physics
142 rdf:type schema:DefinedTerm
143 sg:grant.3863546 http://pending.schema.org/fundedItem sg:pub.10.1038/s41567-019-0567-8
144 rdf:type schema:MonetaryGrant
145 sg:grant.3938548 http://pending.schema.org/fundedItem sg:pub.10.1038/s41567-019-0567-8
146 rdf:type schema:MonetaryGrant
147 sg:grant.4575575 http://pending.schema.org/fundedItem sg:pub.10.1038/s41567-019-0567-8
148 rdf:type schema:MonetaryGrant
149 sg:grant.5072695 http://pending.schema.org/fundedItem sg:pub.10.1038/s41567-019-0567-8
150 rdf:type schema:MonetaryGrant
151 sg:grant.7611771 http://pending.schema.org/fundedItem sg:pub.10.1038/s41567-019-0567-8
152 rdf:type schema:MonetaryGrant
153 sg:journal.1034717 schema:issn 1745-2473
154 1745-2481
155 schema:name Nature Physics
156 schema:publisher Springer Nature
157 rdf:type schema:Periodical
158 sg:person.01105253534.38 schema:affiliation grid-institutes:grid.5337.2
159 schema:familyName Thompson
160 schema:givenName Mark G.
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105253534.38
162 rdf:type schema:Person
163 sg:person.01124530120.26 schema:affiliation grid-institutes:grid.5170.3
164 schema:familyName Rottwitt
165 schema:givenName Karsten
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124530120.26
167 rdf:type schema:Person
168 sg:person.011410452451.00 schema:affiliation grid-institutes:None
169 schema:familyName Wang
170 schema:givenName Jianwei
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011410452451.00
172 rdf:type schema:Person
173 sg:person.01243727470.10 schema:affiliation grid-institutes:grid.5170.3
174 schema:familyName Ding
175 schema:givenName Yunhong
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243727470.10
177 rdf:type schema:Person
178 sg:person.01256574224.75 schema:affiliation grid-institutes:grid.5170.3
179 schema:familyName Oxenløwe
180 schema:givenName Leif K.
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256574224.75
182 rdf:type schema:Person
183 sg:person.01326470360.86 schema:affiliation grid-institutes:grid.5337.2
184 schema:familyName Laing
185 schema:givenName Anthony
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326470360.86
187 rdf:type schema:Person
188 sg:person.013640733477.22 schema:affiliation grid-institutes:grid.5337.2
189 schema:familyName Vigliar
190 schema:givenName Caterina
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013640733477.22
192 rdf:type schema:Person
193 sg:person.014034170471.35 schema:affiliation grid-institutes:grid.5337.2
194 schema:familyName Santagati
195 schema:givenName Raffaele
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014034170471.35
197 rdf:type schema:Person
198 sg:person.015156402634.44 schema:affiliation grid-institutes:grid.5337.2
199 schema:familyName Paesani
200 schema:givenName Stefano
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015156402634.44
202 rdf:type schema:Person
203 sg:person.0711564431.18 schema:affiliation grid-institutes:grid.5337.2
204 schema:familyName Chakhmakhchyan
205 schema:givenName Levon
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711564431.18
207 rdf:type schema:Person
208 sg:pub.10.1007/978-1-4615-8909-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033350861
209 https://doi.org/10.1007/978-1-4615-8909-9
210 rdf:type schema:CreativeWork
211 sg:pub.10.1038/lsa.2017.100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092748469
212 https://doi.org/10.1038/lsa.2017.100
213 rdf:type schema:CreativeWork
214 sg:pub.10.1038/nature08812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026793563
215 https://doi.org/10.1038/nature08812
216 rdf:type schema:CreativeWork
217 sg:pub.10.1038/ncomms2307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013683012
218 https://doi.org/10.1038/ncomms2307
219 rdf:type schema:CreativeWork
220 sg:pub.10.1038/nphoton.2013.102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026850590
221 https://doi.org/10.1038/nphoton.2013.102
222 rdf:type schema:CreativeWork
223 sg:pub.10.1038/nphoton.2013.112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025171451
224 https://doi.org/10.1038/nphoton.2013.112
225 rdf:type schema:CreativeWork
226 sg:pub.10.1038/nphoton.2013.339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042385125
227 https://doi.org/10.1038/nphoton.2013.339
228 rdf:type schema:CreativeWork
229 sg:pub.10.1038/nphoton.2014.135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050569234
230 https://doi.org/10.1038/nphoton.2014.135
231 rdf:type schema:CreativeWork
232 sg:pub.10.1038/nphoton.2014.152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030534329
233 https://doi.org/10.1038/nphoton.2014.152
234 rdf:type schema:CreativeWork
235 sg:pub.10.1038/nphoton.2015.153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009408776
236 https://doi.org/10.1038/nphoton.2015.153
237 rdf:type schema:CreativeWork
238 sg:pub.10.1038/nphoton.2016.23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022498351
239 https://doi.org/10.1038/nphoton.2016.23
240 rdf:type schema:CreativeWork
241 sg:pub.10.1038/nphoton.2017.63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085099414
242 https://doi.org/10.1038/nphoton.2017.63
243 rdf:type schema:CreativeWork
244 sg:pub.10.1038/nphoton.2017.95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086073074
245 https://doi.org/10.1038/nphoton.2017.95
246 rdf:type schema:CreativeWork
247 sg:pub.10.1038/nphys4270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092060269
248 https://doi.org/10.1038/nphys4270
249 rdf:type schema:CreativeWork
250 sg:pub.10.1038/s41586-018-0152-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104171957
251 https://doi.org/10.1038/s41586-018-0152-9
252 rdf:type schema:CreativeWork
253 grid-institutes:None schema:alternateName Beijing Academy of Quantum Information Sciences, Beijing, China
254 schema:name Beijing Academy of Quantum Information Sciences, Beijing, China
255 Quantum Engineering Technology Labs, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, Bristol, UK
256 State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing, China
257 rdf:type schema:Organization
258 grid-institutes:grid.5170.3 schema:alternateName Center for Silicon Photonics for Optical Communication (SPOC), Technical University of Denmark, Kgs Lyngby, Denmark
259 schema:name Center for Silicon Photonics for Optical Communication (SPOC), Technical University of Denmark, Kgs Lyngby, Denmark
260 Department of Photonics Engineering, Technical University of Denmark, Kgs Lyngby, Denmark
261 rdf:type schema:Organization
262 grid-institutes:grid.5337.2 schema:alternateName Quantum Engineering Technology Labs, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, Bristol, UK
263 schema:name Quantum Engineering Technology Labs, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, Bristol, UK
264 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...