Large work extraction and the Landauer limit in a continuous Maxwell demon View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04-01

AUTHORS

M. Ribezzi-Crivellari, F. Ritort

ABSTRACT

The relation between entropy and information dates back to the classical Maxwell demon paradox1, a thought experiment proposed in 1867 by James Clerk Maxwell to violate the second law of thermodynamics. A variant of the classical Maxwell demon is the Szilard engine, proposed by Leo Szilard in 19291. In it, at a given time, the demon observes the compartment occupied by a single molecule in a vessel and extracts work by operating a pulley device. Here, we introduce the continuous Maxwell demon, a device capable of extracting arbitrarily large amounts of work per cycle by repeated measurements of the state of a system, and experimentally test it in single DNA hairpin pulling experiments. In the continuous Maxwell demon, the demon monitors the state of the DNA hairpin (folded or unfolded) by observing it at equally spaced time intervals, but it extracts work only when the molecule changes state. We demonstrate that the average maximum work per cycle that can be extracted by the continuous Maxwell demon is limited by the information content of the stored sequences, in agreement with the second law. Work extraction efficiency is found to be maximal in the large information-content limit where work extraction is fuelled by rare events. A continuous version of the Maxwell demon is a machine that repeatedly monitors a system, but extracts work only on state change. Arbitrarily large quantities of work can thus be extracted, as demonstrated by DNA hairpin pulling experiments. More... »

PAGES

1-5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41567-019-0481-0

DOI

http://dx.doi.org/10.1038/s41567-019-0481-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113157430


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "ESPCI Paris", 
          "id": "https://www.grid.ac/institutes/grid.15736.36", 
          "name": [
            "Condensed Matter Physics Department, University of Barcelona, Barcelona, Spain", 
            "Laboratoire de Biochimie, Institute of Chemistry, Biology and Innovation (CBI), UMR 8231, ESPCI Paris/CNRS, PSL Research University, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ribezzi-Crivellari", 
        "givenName": "M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Barcelona", 
          "id": "https://www.grid.ac/institutes/grid.5841.8", 
          "name": [
            "Condensed Matter Physics Department, University of Barcelona, Barcelona, Spain", 
            "CIBER-BBN de Bioingenier\u00eda, Biomateriales y Nanomedicina, Instituto de Sanidad Carlos III, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ritort", 
        "givenName": "F.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ncomms8498", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002226109", 
          "https://doi.org/10.1038/ncomms8498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms5721", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003065899", 
          "https://doi.org/10.1038/ncomms5721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2940", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005234533", 
          "https://doi.org/10.1038/nphys2940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1001454107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008502337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010952195", 
          "https://doi.org/10.1038/nphys3169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02084158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014354438", 
          "https://doi.org/10.1007/bf02084158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02084158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014354438", 
          "https://doi.org/10.1007/bf02084158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/75/12/126001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014658892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018501444", 
          "https://doi.org/10.1038/nphys1821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/16/12/125007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023466262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.2015.0813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023717013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1406966111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025071901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.82.061120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028958631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.82.061120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028958631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029804773", 
          "https://doi.org/10.1038/nphys3230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/17/6/065011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031088555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1204263109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031848569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036208115", 
          "https://doi.org/10.1038/nature10872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-5468/2014/03/p03025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043628866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.190601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046555274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.190601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046555274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.1665", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050240206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.1665", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050240206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050376104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050376104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.090602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052926340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.090602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052926340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/sciadv.1501492", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062440026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1147/rd.53.0183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063183065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aah4077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079403055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.7.021051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090319817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.7.021051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090319817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471200611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471200611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2017.12.149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100162370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.121.180601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107971094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.121.180601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107971094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.121.180601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107971094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1887/0750307595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109736194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1887/0750307595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109736194"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04-01", 
    "datePublishedReg": "2019-04-01", 
    "description": "The relation between entropy and information dates back to the classical Maxwell demon paradox1, a thought experiment proposed in 1867 by James Clerk Maxwell to violate the second law of thermodynamics. A variant of the classical Maxwell demon is the Szilard engine, proposed by Leo Szilard in 19291. In it, at a given time, the demon observes the compartment occupied by a single molecule in a vessel and extracts work by operating a pulley device. Here, we introduce the continuous Maxwell demon, a device capable of extracting arbitrarily large amounts of work per cycle by repeated measurements of the state of a system, and experimentally test it in single DNA hairpin pulling experiments. In the continuous Maxwell demon, the demon monitors the state of the DNA hairpin (folded or unfolded) by observing it at equally spaced time intervals, but it extracts work only when the molecule changes state. We demonstrate that the average maximum work per cycle that can be extracted by the continuous Maxwell demon is limited by the information content of the stored sequences, in agreement with the second law. Work extraction efficiency is found to be maximal in the large information-content limit where work extraction is fuelled by rare events. A continuous version of the Maxwell demon is a machine that repeatedly monitors a system, but extracts work only on state change. Arbitrarily large quantities of work can thus be extracted, as demonstrated by DNA hairpin pulling experiments.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41567-019-0481-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3793749", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3786292", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6623292", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1034717", 
        "issn": [
          "1745-2473", 
          "1745-2481"
        ], 
        "name": "Nature Physics", 
        "type": "Periodical"
      }
    ], 
    "name": "Large work extraction and the Landauer limit in a continuous Maxwell demon", 
    "pagination": "1-5", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1171a8b16016c9dc453c37c21a6c15aa382f9fa5e9c80607a464bfb4c6c9c2f0"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41567-019-0481-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113157430"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41567-019-0481-0", 
      "https://app.dimensions.ai/details/publication/pub.1113157430"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130831_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41567-019-0481-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41567-019-0481-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41567-019-0481-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41567-019-0481-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41567-019-0481-0'


 

This table displays all metadata directly associated to this object as RDF triples.

166 TRIPLES      21 PREDICATES      53 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41567-019-0481-0 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Ndd067ccc17714139951c3b427e0872a7
4 schema:citation sg:pub.10.1007/bf02084158
5 sg:pub.10.1038/nature10872
6 sg:pub.10.1038/ncomms5721
7 sg:pub.10.1038/ncomms8498
8 sg:pub.10.1038/nphys1821
9 sg:pub.10.1038/nphys2940
10 sg:pub.10.1038/nphys3169
11 sg:pub.10.1038/nphys3230
12 https://doi.org/10.1002/0471200611
13 https://doi.org/10.1016/j.physa.2017.12.149
14 https://doi.org/10.1073/pnas.1001454107
15 https://doi.org/10.1073/pnas.1204263109
16 https://doi.org/10.1073/pnas.1406966111
17 https://doi.org/10.1088/0034-4885/75/12/126001
18 https://doi.org/10.1088/1367-2630/16/12/125007
19 https://doi.org/10.1088/1367-2630/17/6/065011
20 https://doi.org/10.1088/1742-5468/2014/03/p03025
21 https://doi.org/10.1098/rspa.2015.0813
22 https://doi.org/10.1103/physreve.82.061120
23 https://doi.org/10.1103/physrevlett.104.090602
24 https://doi.org/10.1103/physrevlett.113.190601
25 https://doi.org/10.1103/physrevlett.121.180601
26 https://doi.org/10.1103/physrevlett.85.461
27 https://doi.org/10.1103/physrevx.7.021051
28 https://doi.org/10.1103/revmodphys.81.1665
29 https://doi.org/10.1126/sciadv.1501492
30 https://doi.org/10.1126/science.aah4077
31 https://doi.org/10.1147/rd.53.0183
32 https://doi.org/10.1887/0750307595
33 schema:datePublished 2019-04-01
34 schema:datePublishedReg 2019-04-01
35 schema:description The relation between entropy and information dates back to the classical Maxwell demon paradox1, a thought experiment proposed in 1867 by James Clerk Maxwell to violate the second law of thermodynamics. A variant of the classical Maxwell demon is the Szilard engine, proposed by Leo Szilard in 19291. In it, at a given time, the demon observes the compartment occupied by a single molecule in a vessel and extracts work by operating a pulley device. Here, we introduce the continuous Maxwell demon, a device capable of extracting arbitrarily large amounts of work per cycle by repeated measurements of the state of a system, and experimentally test it in single DNA hairpin pulling experiments. In the continuous Maxwell demon, the demon monitors the state of the DNA hairpin (folded or unfolded) by observing it at equally spaced time intervals, but it extracts work only when the molecule changes state. We demonstrate that the average maximum work per cycle that can be extracted by the continuous Maxwell demon is limited by the information content of the stored sequences, in agreement with the second law. Work extraction efficiency is found to be maximal in the large information-content limit where work extraction is fuelled by rare events. A continuous version of the Maxwell demon is a machine that repeatedly monitors a system, but extracts work only on state change. Arbitrarily large quantities of work can thus be extracted, as demonstrated by DNA hairpin pulling experiments.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf sg:journal.1034717
40 schema:name Large work extraction and the Landauer limit in a continuous Maxwell demon
41 schema:pagination 1-5
42 schema:productId N537d63100cf341199ed8a9e8f9bbc388
43 N74b579e4fdb444cfb9f8fc612051c3b8
44 N80de011156254e498b479421b7da38ba
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113157430
46 https://doi.org/10.1038/s41567-019-0481-0
47 schema:sdDatePublished 2019-04-11T14:03
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N89cbf83506b54f6ab6eb2899e658e4c6
50 schema:url https://www.nature.com/articles/s41567-019-0481-0
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N5162f73970294a9ab5b98166b4d729ef rdf:first N517dec70a9554aea9b7947f784981cf9
55 rdf:rest rdf:nil
56 N517dec70a9554aea9b7947f784981cf9 schema:affiliation https://www.grid.ac/institutes/grid.5841.8
57 schema:familyName Ritort
58 schema:givenName F.
59 rdf:type schema:Person
60 N537d63100cf341199ed8a9e8f9bbc388 schema:name dimensions_id
61 schema:value pub.1113157430
62 rdf:type schema:PropertyValue
63 N74b579e4fdb444cfb9f8fc612051c3b8 schema:name readcube_id
64 schema:value 1171a8b16016c9dc453c37c21a6c15aa382f9fa5e9c80607a464bfb4c6c9c2f0
65 rdf:type schema:PropertyValue
66 N80de011156254e498b479421b7da38ba schema:name doi
67 schema:value 10.1038/s41567-019-0481-0
68 rdf:type schema:PropertyValue
69 N89cbf83506b54f6ab6eb2899e658e4c6 schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 Nc64ab0658582446e8bd2d14a57968145 schema:affiliation https://www.grid.ac/institutes/grid.15736.36
72 schema:familyName Ribezzi-Crivellari
73 schema:givenName M.
74 rdf:type schema:Person
75 Ndd067ccc17714139951c3b427e0872a7 rdf:first Nc64ab0658582446e8bd2d14a57968145
76 rdf:rest N5162f73970294a9ab5b98166b4d729ef
77 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
78 schema:name Information and Computing Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
81 schema:name Artificial Intelligence and Image Processing
82 rdf:type schema:DefinedTerm
83 sg:grant.3786292 http://pending.schema.org/fundedItem sg:pub.10.1038/s41567-019-0481-0
84 rdf:type schema:MonetaryGrant
85 sg:grant.3793749 http://pending.schema.org/fundedItem sg:pub.10.1038/s41567-019-0481-0
86 rdf:type schema:MonetaryGrant
87 sg:grant.6623292 http://pending.schema.org/fundedItem sg:pub.10.1038/s41567-019-0481-0
88 rdf:type schema:MonetaryGrant
89 sg:journal.1034717 schema:issn 1745-2473
90 1745-2481
91 schema:name Nature Physics
92 rdf:type schema:Periodical
93 sg:pub.10.1007/bf02084158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014354438
94 https://doi.org/10.1007/bf02084158
95 rdf:type schema:CreativeWork
96 sg:pub.10.1038/nature10872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036208115
97 https://doi.org/10.1038/nature10872
98 rdf:type schema:CreativeWork
99 sg:pub.10.1038/ncomms5721 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003065899
100 https://doi.org/10.1038/ncomms5721
101 rdf:type schema:CreativeWork
102 sg:pub.10.1038/ncomms8498 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002226109
103 https://doi.org/10.1038/ncomms8498
104 rdf:type schema:CreativeWork
105 sg:pub.10.1038/nphys1821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018501444
106 https://doi.org/10.1038/nphys1821
107 rdf:type schema:CreativeWork
108 sg:pub.10.1038/nphys2940 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005234533
109 https://doi.org/10.1038/nphys2940
110 rdf:type schema:CreativeWork
111 sg:pub.10.1038/nphys3169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010952195
112 https://doi.org/10.1038/nphys3169
113 rdf:type schema:CreativeWork
114 sg:pub.10.1038/nphys3230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029804773
115 https://doi.org/10.1038/nphys3230
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1002/0471200611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661155
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.physa.2017.12.149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100162370
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1073/pnas.1001454107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008502337
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1073/pnas.1204263109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031848569
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1073/pnas.1406966111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025071901
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1088/0034-4885/75/12/126001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014658892
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1088/1367-2630/16/12/125007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023466262
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1088/1367-2630/17/6/065011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031088555
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1088/1742-5468/2014/03/p03025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043628866
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1098/rspa.2015.0813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023717013
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1103/physreve.82.061120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028958631
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1103/physrevlett.104.090602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052926340
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1103/physrevlett.113.190601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046555274
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1103/physrevlett.121.180601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107971094
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1103/physrevlett.85.461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050376104
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1103/physrevx.7.021051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090319817
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1103/revmodphys.81.1665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050240206
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1126/sciadv.1501492 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062440026
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1126/science.aah4077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079403055
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1147/rd.53.0183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063183065
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1887/0750307595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109736194
158 rdf:type schema:CreativeWork
159 https://www.grid.ac/institutes/grid.15736.36 schema:alternateName ESPCI Paris
160 schema:name Condensed Matter Physics Department, University of Barcelona, Barcelona, Spain
161 Laboratoire de Biochimie, Institute of Chemistry, Biology and Innovation (CBI), UMR 8231, ESPCI Paris/CNRS, PSL Research University, Paris, France
162 rdf:type schema:Organization
163 https://www.grid.ac/institutes/grid.5841.8 schema:alternateName University of Barcelona
164 schema:name CIBER-BBN de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Sanidad Carlos III, Madrid, Spain
165 Condensed Matter Physics Department, University of Barcelona, Barcelona, Spain
166 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...