Large work extraction and the Landauer limit in a continuous Maxwell demon View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-04-01

AUTHORS

M. Ribezzi-Crivellari, F. Ritort

ABSTRACT

The relation between entropy and information dates back to the classical Maxwell demon paradox1, a thought experiment proposed in 1867 by James Clerk Maxwell to violate the second law of thermodynamics. A variant of the classical Maxwell demon is the Szilard engine, proposed by Leo Szilard in 19291. In it, at a given time, the demon observes the compartment occupied by a single molecule in a vessel and extracts work by operating a pulley device. Here, we introduce the continuous Maxwell demon, a device capable of extracting arbitrarily large amounts of work per cycle by repeated measurements of the state of a system, and experimentally test it in single DNA hairpin pulling experiments. In the continuous Maxwell demon, the demon monitors the state of the DNA hairpin (folded or unfolded) by observing it at equally spaced time intervals, but it extracts work only when the molecule changes state. We demonstrate that the average maximum work per cycle that can be extracted by the continuous Maxwell demon is limited by the information content of the stored sequences, in agreement with the second law. Work extraction efficiency is found to be maximal in the large information-content limit where work extraction is fuelled by rare events. More... »

PAGES

660-664

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41567-019-0481-0

DOI

http://dx.doi.org/10.1038/s41567-019-0481-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113157430


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Laboratoire de Biochimie, Institute of Chemistry, Biology and Innovation (CBI), UMR 8231, ESPCI Paris/CNRS, PSL Research University, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.503307.2", 
          "name": [
            "Condensed Matter Physics Department, University of Barcelona, Barcelona, Spain", 
            "Laboratoire de Biochimie, Institute of Chemistry, Biology and Innovation (CBI), UMR 8231, ESPCI Paris/CNRS, PSL Research University, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ribezzi-Crivellari", 
        "givenName": "M.", 
        "id": "sg:person.01362034160.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362034160.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CIBER-BBN de Bioingenier\u00eda, Biomateriales y Nanomedicina, Instituto de Sanidad Carlos III, Madrid, Spain", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Condensed Matter Physics Department, University of Barcelona, Barcelona, Spain", 
            "CIBER-BBN de Bioingenier\u00eda, Biomateriales y Nanomedicina, Instituto de Sanidad Carlos III, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ritort", 
        "givenName": "F.", 
        "id": "sg:person.0643446011.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643446011.60"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ncomms8498", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002226109", 
          "https://doi.org/10.1038/ncomms8498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2940", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005234533", 
          "https://doi.org/10.1038/nphys2940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029804773", 
          "https://doi.org/10.1038/nphys3230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010952195", 
          "https://doi.org/10.1038/nphys3169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms5721", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003065899", 
          "https://doi.org/10.1038/ncomms5721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018501444", 
          "https://doi.org/10.1038/nphys1821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036208115", 
          "https://doi.org/10.1038/nature10872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02084158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014354438", 
          "https://doi.org/10.1007/bf02084158"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04-01", 
    "datePublishedReg": "2019-04-01", 
    "description": "The relation between entropy and information dates back to the classical Maxwell demon paradox1, a thought experiment proposed in 1867 by James Clerk Maxwell to violate the second law of thermodynamics. A variant of the classical Maxwell demon is the Szilard engine, proposed by Leo Szilard in 19291. In it, at a given time, the demon observes the compartment occupied by a single molecule in a vessel and extracts work by operating a pulley device. Here, we introduce the continuous Maxwell demon, a device capable of extracting arbitrarily large amounts of work per cycle by repeated measurements of the state of a system, and experimentally test it in single DNA hairpin pulling experiments. In the continuous Maxwell demon, the demon monitors the state of the DNA hairpin (folded or unfolded) by observing it at equally spaced time intervals, but it extracts work only when the molecule changes state. We demonstrate that the average maximum work per cycle that can be extracted by the continuous Maxwell demon is limited by the information content of the stored sequences, in agreement with the second law. Work extraction efficiency is found to be maximal in the large information-content limit where work extraction is fuelled by rare events.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41567-019-0481-0", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3786292", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6623292", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3793749", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1034717", 
        "issn": [
          "1745-2473", 
          "1745-2481"
        ], 
        "name": "Nature Physics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "keywords": [
      "Maxwell's demon", 
      "single DNA hairpins", 
      "work extraction", 
      "DNA hairpins", 
      "James Clerk Maxwell", 
      "second law", 
      "Leo Szilard", 
      "Landauer limit", 
      "single molecules", 
      "Szilard engine", 
      "Clerk Maxwell", 
      "thought experiment", 
      "devices", 
      "state", 
      "Szilard", 
      "limit", 
      "extraction efficiency", 
      "molecules", 
      "Maxwell", 
      "measurements", 
      "experiments", 
      "thermodynamics", 
      "maximum work", 
      "agreement", 
      "demons", 
      "work", 
      "entropy", 
      "law", 
      "information content", 
      "efficiency", 
      "time interval", 
      "hairpin", 
      "rare event", 
      "large amount", 
      "system", 
      "time", 
      "relation", 
      "information", 
      "events", 
      "extraction", 
      "amount", 
      "cycle", 
      "intervals", 
      "engine", 
      "content", 
      "sequence", 
      "vessels", 
      "variants", 
      "compartments", 
      "pulley device", 
      "classical Maxwell demon paradox1", 
      "Maxwell demon paradox1", 
      "demon paradox1", 
      "paradox1", 
      "classical Maxwell demon", 
      "continuous Maxwell demon", 
      "average maximum work", 
      "Work extraction efficiency", 
      "large information-content limit", 
      "information-content limit", 
      "Large work extraction"
    ], 
    "name": "Large work extraction and the Landauer limit in a continuous Maxwell demon", 
    "pagination": "660-664", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113157430"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41567-019-0481-0"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41567-019-0481-0", 
      "https://app.dimensions.ai/details/publication/pub.1113157430"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_815.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41567-019-0481-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41567-019-0481-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41567-019-0481-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41567-019-0481-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41567-019-0481-0'


 

This table displays all metadata directly associated to this object as RDF triples.

169 TRIPLES      22 PREDICATES      94 URIs      78 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41567-019-0481-0 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Nf250f6590c93473fb4f62f2f39a78099
4 schema:citation sg:pub.10.1007/bf02084158
5 sg:pub.10.1038/nature10872
6 sg:pub.10.1038/ncomms5721
7 sg:pub.10.1038/ncomms8498
8 sg:pub.10.1038/nphys1821
9 sg:pub.10.1038/nphys2940
10 sg:pub.10.1038/nphys3169
11 sg:pub.10.1038/nphys3230
12 schema:datePublished 2019-04-01
13 schema:datePublishedReg 2019-04-01
14 schema:description The relation between entropy and information dates back to the classical Maxwell demon paradox1, a thought experiment proposed in 1867 by James Clerk Maxwell to violate the second law of thermodynamics. A variant of the classical Maxwell demon is the Szilard engine, proposed by Leo Szilard in 19291. In it, at a given time, the demon observes the compartment occupied by a single molecule in a vessel and extracts work by operating a pulley device. Here, we introduce the continuous Maxwell demon, a device capable of extracting arbitrarily large amounts of work per cycle by repeated measurements of the state of a system, and experimentally test it in single DNA hairpin pulling experiments. In the continuous Maxwell demon, the demon monitors the state of the DNA hairpin (folded or unfolded) by observing it at equally spaced time intervals, but it extracts work only when the molecule changes state. We demonstrate that the average maximum work per cycle that can be extracted by the continuous Maxwell demon is limited by the information content of the stored sequences, in agreement with the second law. Work extraction efficiency is found to be maximal in the large information-content limit where work extraction is fuelled by rare events.
15 schema:genre article
16 schema:inLanguage en
17 schema:isAccessibleForFree true
18 schema:isPartOf Nf260d51b355d48c5afecb63f40c03a5a
19 Nfe1b9efea4d5441994ffdebcb7d6a404
20 sg:journal.1034717
21 schema:keywords Clerk Maxwell
22 DNA hairpins
23 James Clerk Maxwell
24 Landauer limit
25 Large work extraction
26 Leo Szilard
27 Maxwell
28 Maxwell demon paradox1
29 Maxwell's demon
30 Szilard
31 Szilard engine
32 Work extraction efficiency
33 agreement
34 amount
35 average maximum work
36 classical Maxwell demon
37 classical Maxwell demon paradox1
38 compartments
39 content
40 continuous Maxwell demon
41 cycle
42 demon paradox1
43 demons
44 devices
45 efficiency
46 engine
47 entropy
48 events
49 experiments
50 extraction
51 extraction efficiency
52 hairpin
53 information
54 information content
55 information-content limit
56 intervals
57 large amount
58 large information-content limit
59 law
60 limit
61 maximum work
62 measurements
63 molecules
64 paradox1
65 pulley device
66 rare event
67 relation
68 second law
69 sequence
70 single DNA hairpins
71 single molecules
72 state
73 system
74 thermodynamics
75 thought experiment
76 time
77 time interval
78 variants
79 vessels
80 work
81 work extraction
82 schema:name Large work extraction and the Landauer limit in a continuous Maxwell demon
83 schema:pagination 660-664
84 schema:productId N6aadf0ea0c7140ff8815b81a7a0a0b45
85 Nf78e4d996326415fb061334c89530ec2
86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113157430
87 https://doi.org/10.1038/s41567-019-0481-0
88 schema:sdDatePublished 2021-11-01T18:36
89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
90 schema:sdPublisher N31e1754f5b09481d8417b38be5ee5c96
91 schema:url https://doi.org/10.1038/s41567-019-0481-0
92 sgo:license sg:explorer/license/
93 sgo:sdDataset articles
94 rdf:type schema:ScholarlyArticle
95 N31e1754f5b09481d8417b38be5ee5c96 schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 N6aadf0ea0c7140ff8815b81a7a0a0b45 schema:name doi
98 schema:value 10.1038/s41567-019-0481-0
99 rdf:type schema:PropertyValue
100 Nf250f6590c93473fb4f62f2f39a78099 rdf:first sg:person.01362034160.79
101 rdf:rest Nfc0e9cce3a0a4b78b3db4c5e1126bc6b
102 Nf260d51b355d48c5afecb63f40c03a5a schema:issueNumber 7
103 rdf:type schema:PublicationIssue
104 Nf78e4d996326415fb061334c89530ec2 schema:name dimensions_id
105 schema:value pub.1113157430
106 rdf:type schema:PropertyValue
107 Nfc0e9cce3a0a4b78b3db4c5e1126bc6b rdf:first sg:person.0643446011.60
108 rdf:rest rdf:nil
109 Nfe1b9efea4d5441994ffdebcb7d6a404 schema:volumeNumber 15
110 rdf:type schema:PublicationVolume
111 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
112 schema:name Physical Sciences
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
115 schema:name Other Physical Sciences
116 rdf:type schema:DefinedTerm
117 sg:grant.3786292 http://pending.schema.org/fundedItem sg:pub.10.1038/s41567-019-0481-0
118 rdf:type schema:MonetaryGrant
119 sg:grant.3793749 http://pending.schema.org/fundedItem sg:pub.10.1038/s41567-019-0481-0
120 rdf:type schema:MonetaryGrant
121 sg:grant.6623292 http://pending.schema.org/fundedItem sg:pub.10.1038/s41567-019-0481-0
122 rdf:type schema:MonetaryGrant
123 sg:journal.1034717 schema:issn 1745-2473
124 1745-2481
125 schema:name Nature Physics
126 schema:publisher Springer Nature
127 rdf:type schema:Periodical
128 sg:person.01362034160.79 schema:affiliation grid-institutes:grid.503307.2
129 schema:familyName Ribezzi-Crivellari
130 schema:givenName M.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362034160.79
132 rdf:type schema:Person
133 sg:person.0643446011.60 schema:affiliation grid-institutes:None
134 schema:familyName Ritort
135 schema:givenName F.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643446011.60
137 rdf:type schema:Person
138 sg:pub.10.1007/bf02084158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014354438
139 https://doi.org/10.1007/bf02084158
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/nature10872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036208115
142 https://doi.org/10.1038/nature10872
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/ncomms5721 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003065899
145 https://doi.org/10.1038/ncomms5721
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/ncomms8498 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002226109
148 https://doi.org/10.1038/ncomms8498
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/nphys1821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018501444
151 https://doi.org/10.1038/nphys1821
152 rdf:type schema:CreativeWork
153 sg:pub.10.1038/nphys2940 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005234533
154 https://doi.org/10.1038/nphys2940
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/nphys3169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010952195
157 https://doi.org/10.1038/nphys3169
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/nphys3230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029804773
160 https://doi.org/10.1038/nphys3230
161 rdf:type schema:CreativeWork
162 grid-institutes:None schema:alternateName CIBER-BBN de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Sanidad Carlos III, Madrid, Spain
163 schema:name CIBER-BBN de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Sanidad Carlos III, Madrid, Spain
164 Condensed Matter Physics Department, University of Barcelona, Barcelona, Spain
165 rdf:type schema:Organization
166 grid-institutes:grid.503307.2 schema:alternateName Laboratoire de Biochimie, Institute of Chemistry, Biology and Innovation (CBI), UMR 8231, ESPCI Paris/CNRS, PSL Research University, Paris, France
167 schema:name Condensed Matter Physics Department, University of Barcelona, Barcelona, Spain
168 Laboratoire de Biochimie, Institute of Chemistry, Biology and Innovation (CBI), UMR 8231, ESPCI Paris/CNRS, PSL Research University, Paris, France
169 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...