Audible Landau levels View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Baile Zhang

ABSTRACT

Artificial magnetic fields have been constructed in 2D and 3D acoustic structures to manipulate sound, in much the same way as Dirac and Weyl fermions respond to magnetic fields in their quantum levels.

PAGES

307-308

Journal

TITLE

Nature Physics

ISSUE

4

VOLUME

15

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41567-019-0479-7

DOI

http://dx.doi.org/10.1038/s41567-019-0479-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112543913


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "Nanyang Technological University", 
          "id": "https://www.grid.ac/institutes/grid.59025.3b", 
          "name": [
            "Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Baile", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nphoton.2012.302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000051323", 
          "https://doi.org/10.1038/nphoton.2012.302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014295182", 
          "https://doi.org/10.1038/nphys3458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1137201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033456804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1191700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062462530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.90.015001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100580273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.90.015001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100580273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41567-019-0415-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112061407", 
          "https://doi.org/10.1038/s41567-019-0415-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41567-019-0415-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112061407", 
          "https://doi.org/10.1038/s41567-019-0415-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41567-019-0415-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112061407", 
          "https://doi.org/10.1038/s41567-019-0415-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41567-019-0446-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112505382", 
          "https://doi.org/10.1038/s41567-019-0446-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41567-019-0446-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112505382", 
          "https://doi.org/10.1038/s41567-019-0446-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41567-019-0446-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112505382", 
          "https://doi.org/10.1038/s41567-019-0446-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41567-019-0446-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112505382", 
          "https://doi.org/10.1038/s41567-019-0446-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "Artificial magnetic fields have been constructed in 2D and 3D acoustic structures to manipulate sound, in much the same way as Dirac and Weyl fermions respond to magnetic fields in their quantum levels.", 
    "genre": "non_research_article", 
    "id": "sg:pub.10.1038/s41567-019-0479-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1034717", 
        "issn": [
          "1745-2473", 
          "1745-2481"
        ], 
        "name": "Nature Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "name": "Audible Landau levels", 
    "pagination": "307-308", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fb843eab17caac94b32958e41a178e1fc8d30cb34e7a0ea92efe1ed2eb02726f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41567-019-0479-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112543913"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41567-019-0479-7", 
      "https://app.dimensions.ai/details/publication/pub.1112543913"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130823_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41567-019-0479-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41567-019-0479-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41567-019-0479-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41567-019-0479-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41567-019-0479-7'


 

This table displays all metadata directly associated to this object as RDF triples.

77 TRIPLES      20 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41567-019-0479-7 schema:author Nfd960f4eff67496d9d6c1f2e87249572
2 schema:citation sg:pub.10.1038/nphoton.2012.302
3 sg:pub.10.1038/nphys3458
4 sg:pub.10.1038/s41567-019-0415-x
5 sg:pub.10.1038/s41567-019-0446-3
6 https://doi.org/10.1103/revmodphys.90.015001
7 https://doi.org/10.1126/science.1137201
8 https://doi.org/10.1126/science.1191700
9 schema:datePublished 2019-04
10 schema:datePublishedReg 2019-04-01
11 schema:description Artificial magnetic fields have been constructed in 2D and 3D acoustic structures to manipulate sound, in much the same way as Dirac and Weyl fermions respond to magnetic fields in their quantum levels.
12 schema:genre non_research_article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N4c2c4bdeb82b466ea41c86e597bc31be
16 Nb48ba47ca4b94ce9bd5a3f28a623c898
17 sg:journal.1034717
18 schema:name Audible Landau levels
19 schema:pagination 307-308
20 schema:productId N74ece76c9dc94615bf4cd7866946af2e
21 N75489ce863f44c87b7be44bd8090a54f
22 Nff952a1f284447f781181551b593f528
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112543913
24 https://doi.org/10.1038/s41567-019-0479-7
25 schema:sdDatePublished 2019-04-11T13:59
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher N69e9afdd815d4968b431416426d117cc
28 schema:url https://www.nature.com/articles/s41567-019-0479-7
29 sgo:license sg:explorer/license/
30 sgo:sdDataset articles
31 rdf:type schema:ScholarlyArticle
32 N4c2c4bdeb82b466ea41c86e597bc31be schema:issueNumber 4
33 rdf:type schema:PublicationIssue
34 N69e9afdd815d4968b431416426d117cc schema:name Springer Nature - SN SciGraph project
35 rdf:type schema:Organization
36 N6cdf6c270c754ec0bc4a9d0173e0a42c schema:affiliation https://www.grid.ac/institutes/grid.59025.3b
37 schema:familyName Zhang
38 schema:givenName Baile
39 rdf:type schema:Person
40 N74ece76c9dc94615bf4cd7866946af2e schema:name readcube_id
41 schema:value fb843eab17caac94b32958e41a178e1fc8d30cb34e7a0ea92efe1ed2eb02726f
42 rdf:type schema:PropertyValue
43 N75489ce863f44c87b7be44bd8090a54f schema:name doi
44 schema:value 10.1038/s41567-019-0479-7
45 rdf:type schema:PropertyValue
46 Nb48ba47ca4b94ce9bd5a3f28a623c898 schema:volumeNumber 15
47 rdf:type schema:PublicationVolume
48 Nfd960f4eff67496d9d6c1f2e87249572 rdf:first N6cdf6c270c754ec0bc4a9d0173e0a42c
49 rdf:rest rdf:nil
50 Nff952a1f284447f781181551b593f528 schema:name dimensions_id
51 schema:value pub.1112543913
52 rdf:type schema:PropertyValue
53 sg:journal.1034717 schema:issn 1745-2473
54 1745-2481
55 schema:name Nature Physics
56 rdf:type schema:Periodical
57 sg:pub.10.1038/nphoton.2012.302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000051323
58 https://doi.org/10.1038/nphoton.2012.302
59 rdf:type schema:CreativeWork
60 sg:pub.10.1038/nphys3458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014295182
61 https://doi.org/10.1038/nphys3458
62 rdf:type schema:CreativeWork
63 sg:pub.10.1038/s41567-019-0415-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1112061407
64 https://doi.org/10.1038/s41567-019-0415-x
65 rdf:type schema:CreativeWork
66 sg:pub.10.1038/s41567-019-0446-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112505382
67 https://doi.org/10.1038/s41567-019-0446-3
68 rdf:type schema:CreativeWork
69 https://doi.org/10.1103/revmodphys.90.015001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100580273
70 rdf:type schema:CreativeWork
71 https://doi.org/10.1126/science.1137201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033456804
72 rdf:type schema:CreativeWork
73 https://doi.org/10.1126/science.1191700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062462530
74 rdf:type schema:CreativeWork
75 https://www.grid.ac/institutes/grid.59025.3b schema:alternateName Nanyang Technological University
76 schema:name Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
77 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...