Acoustic Landau quantization and quantum-Hall-like edge states View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Xinhua Wen, Chunyin Qiu, Yajuan Qi, Liping Ye, Manzhu Ke, Fan Zhang, Zhengyou Liu

ABSTRACT

Many intriguing phenomena occur for electrons under strong magnetic fields1,2. Recently, it was shown that an appropriate strain texture in graphene could induce a synthetic gauge field3–6, in which electrons behave as they do in a real magnetic field7–11. This enabled the control of quantum transport by mechanical means and allowed the unreached high-field regime to be explored. Such synthetic gauge fields have been achieved in molecular12 and photonic13 lattices. Here we report an experimental realization of a giant uniform pseudomagnetic field in acoustics by introducing a simple uniaxial deformation to the acoustic graphene. The controllability of our macroscopic platform enables us to observe the acoustic Landau levels in frequency-resolved spectroscopy and their spatial localization in pressure-field distributions. We further visualize the quantum-Hall-like edge states (connected to the zeroth Landau level), which have been elusive owing to the difficulty in creating large-area uniform pseudomagnetic fields5,6. These results, consistent with our full-wave simulations, establish a complete framework for artificial structures under constant pseudomagnetic fields. Our findings may also offer opportunities to manipulate sound in conceptually novel ways. A graphene-like two-dimensional sonic crystal, under uniaxial deformation, experiences a giant uniform pseudomagnetic field. This leads to the quantization of the cyclotron orbits—a kind of acoustic Landau level—that is observed here. More... »

PAGES

352-356

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41567-019-0446-3

DOI

http://dx.doi.org/10.1038/s41567-019-0446-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112505382


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Wuhan University", 
          "id": "https://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wen", 
        "givenName": "Xinhua", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wuhan University", 
          "id": "https://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qiu", 
        "givenName": "Chunyin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wuhan University", 
          "id": "https://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qi", 
        "givenName": "Yajuan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wuhan University", 
          "id": "https://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ye", 
        "givenName": "Liping", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wuhan University", 
          "id": "https://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ke", 
        "givenName": "Manzhu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas at Dallas", 
          "id": "https://www.grid.ac/institutes/grid.267323.1", 
          "name": [
            "Department of Physics, University of Texas at Dallas, Richardson, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Fan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wuhan University", 
          "id": "https://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, China", 
            "Institute for Advanced Studies, Wuhan University, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Zhengyou", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nphoton.2012.302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000051323", 
          "https://doi.org/10.1038/nphoton.2012.302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3867", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000609444", 
          "https://doi.org/10.1038/nphys3867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001061831", 
          "https://doi.org/10.1038/nature04233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001061831", 
          "https://doi.org/10.1038/nature04233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001061831", 
          "https://doi.org/10.1038/nature04233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.013903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003607775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.013903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003607775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.83.1193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003709862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.83.1193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003709862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10941", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004075194", 
          "https://doi.org/10.1038/nature10941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009714128", 
          "https://doi.org/10.1038/nature04235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009714128", 
          "https://doi.org/10.1038/nature04235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009714128", 
          "https://doi.org/10.1038/nature04235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011191271", 
          "https://doi.org/10.1038/nphys1420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018990280", 
          "https://doi.org/10.1038/nature12066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019227493", 
          "https://doi.org/10.1038/nphys3228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aab0239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024197249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aab0239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024197249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1818", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031257683", 
          "https://doi.org/10.1038/ncomms1818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1137201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033456804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035368720", 
          "https://doi.org/10.1038/nature08293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035368720", 
          "https://doi.org/10.1038/nature08293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3999", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049074694", 
          "https://doi.org/10.1038/nphys3999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050408744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050408744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl1018063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056218051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl1018063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056218051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.25.2185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060530222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.25.2185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060530222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.45.494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060785679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.45.494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060785679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.49.405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060787923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.49.405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060787923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1191700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062462530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aaa9273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062665571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1615503114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084781118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.118.194301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085483090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.118.194301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085483090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys4275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092054479", 
          "https://doi.org/10.1038/nphys4275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys4275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092054479", 
          "https://doi.org/10.1038/nphys4275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.119.195502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092625131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.119.195502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092625131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature25156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100351792", 
          "https://doi.org/10.1038/nature25156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature25156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100351792", 
          "https://doi.org/10.1038/nature25156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature25777", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101522627", 
          "https://doi.org/10.1038/nature25777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature25777", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101522627", 
          "https://doi.org/10.1038/nature25777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature25777", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101522627", 
          "https://doi.org/10.1038/nature25777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevapplied.10.014017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105686224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevapplied.10.014017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105686224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41586-018-0367-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105814127", 
          "https://doi.org/10.1038/s41586-018-0367-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "Many intriguing phenomena occur for electrons under strong magnetic fields1,2. Recently, it was shown that an appropriate strain texture in graphene could induce a synthetic gauge field3\u20136, in which electrons behave as they do in a real magnetic field7\u201311. This enabled the control of quantum transport by mechanical means and allowed the unreached high-field regime to be explored. Such synthetic gauge fields have been achieved in molecular12 and photonic13 lattices. Here we report an experimental realization of a giant uniform pseudomagnetic field in acoustics by introducing a simple uniaxial deformation to the acoustic graphene. The controllability of our macroscopic platform enables us to observe the acoustic Landau levels in frequency-resolved spectroscopy and their spatial localization in pressure-field distributions. We further visualize the quantum-Hall-like edge states (connected to the zeroth Landau level), which have been elusive owing to the difficulty in creating large-area uniform pseudomagnetic fields5,6. These results, consistent with our full-wave simulations, establish a complete framework for artificial structures under constant pseudomagnetic fields. Our findings may also offer opportunities to manipulate sound in conceptually novel ways. A graphene-like two-dimensional sonic crystal, under uniaxial deformation, experiences a giant uniform pseudomagnetic field. This leads to the quantization of the cyclotron orbits\u2014a kind of acoustic Landau level\u2014that is observed here.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41567-019-0446-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1034717", 
        "issn": [
          "1745-2473", 
          "1745-2481"
        ], 
        "name": "Nature Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "name": "Acoustic Landau quantization and quantum-Hall-like edge states", 
    "pagination": "352-356", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0319f78a91a6eee40feef67eb2ee4008f7969bb4e50b575253cae21154fa0f3a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41567-019-0446-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112505382"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41567-019-0446-3", 
      "https://app.dimensions.ai/details/publication/pub.1112505382"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130811_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41567-019-0446-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41567-019-0446-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41567-019-0446-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41567-019-0446-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41567-019-0446-3'


 

This table displays all metadata directly associated to this object as RDF triples.

205 TRIPLES      21 PREDICATES      57 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41567-019-0446-3 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N49cd6902171740efae0514776e44e30d
4 schema:citation sg:pub.10.1038/nature04233
5 sg:pub.10.1038/nature04235
6 sg:pub.10.1038/nature08293
7 sg:pub.10.1038/nature10941
8 sg:pub.10.1038/nature12066
9 sg:pub.10.1038/nature25156
10 sg:pub.10.1038/nature25777
11 sg:pub.10.1038/ncomms1818
12 sg:pub.10.1038/nphoton.2012.302
13 sg:pub.10.1038/nphys1420
14 sg:pub.10.1038/nphys3228
15 sg:pub.10.1038/nphys3867
16 sg:pub.10.1038/nphys3999
17 sg:pub.10.1038/nphys4275
18 sg:pub.10.1038/s41586-018-0367-9
19 https://doi.org/10.1021/nl1018063
20 https://doi.org/10.1073/pnas.1615503114
21 https://doi.org/10.1103/physrevapplied.10.014017
22 https://doi.org/10.1103/physrevb.25.2185
23 https://doi.org/10.1103/physrevlett.110.013903
24 https://doi.org/10.1103/physrevlett.118.194301
25 https://doi.org/10.1103/physrevlett.119.195502
26 https://doi.org/10.1103/physrevlett.45.494
27 https://doi.org/10.1103/physrevlett.49.405
28 https://doi.org/10.1103/revmodphys.81.109
29 https://doi.org/10.1103/revmodphys.83.1193
30 https://doi.org/10.1126/science.1137201
31 https://doi.org/10.1126/science.1191700
32 https://doi.org/10.1126/science.aaa9273
33 https://doi.org/10.1126/science.aab0239
34 schema:datePublished 2019-04
35 schema:datePublishedReg 2019-04-01
36 schema:description Many intriguing phenomena occur for electrons under strong magnetic fields1,2. Recently, it was shown that an appropriate strain texture in graphene could induce a synthetic gauge field3–6, in which electrons behave as they do in a real magnetic field7–11. This enabled the control of quantum transport by mechanical means and allowed the unreached high-field regime to be explored. Such synthetic gauge fields have been achieved in molecular12 and photonic13 lattices. Here we report an experimental realization of a giant uniform pseudomagnetic field in acoustics by introducing a simple uniaxial deformation to the acoustic graphene. The controllability of our macroscopic platform enables us to observe the acoustic Landau levels in frequency-resolved spectroscopy and their spatial localization in pressure-field distributions. We further visualize the quantum-Hall-like edge states (connected to the zeroth Landau level), which have been elusive owing to the difficulty in creating large-area uniform pseudomagnetic fields5,6. These results, consistent with our full-wave simulations, establish a complete framework for artificial structures under constant pseudomagnetic fields. Our findings may also offer opportunities to manipulate sound in conceptually novel ways. A graphene-like two-dimensional sonic crystal, under uniaxial deformation, experiences a giant uniform pseudomagnetic field. This leads to the quantization of the cyclotron orbits—a kind of acoustic Landau level—that is observed here.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf N10e0820cd8134023aa979f76d4d76261
41 N373e6026ce0f4c438e5e5d1437e7009f
42 sg:journal.1034717
43 schema:name Acoustic Landau quantization and quantum-Hall-like edge states
44 schema:pagination 352-356
45 schema:productId N8dbcf6b6c616432dadfe77bed6186cd1
46 Na2d451ac800c4e639566d23e8624a39c
47 Ndb988c68ca1b457c98db2fd92d2afcdb
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112505382
49 https://doi.org/10.1038/s41567-019-0446-3
50 schema:sdDatePublished 2019-04-11T13:55
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N5504dd3b4c6c47fe9b82a6c7946db67b
53 schema:url https://www.nature.com/articles/s41567-019-0446-3
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N092e5cbd02114dafba33bb33e3e15008 schema:affiliation https://www.grid.ac/institutes/grid.49470.3e
58 schema:familyName Wen
59 schema:givenName Xinhua
60 rdf:type schema:Person
61 N10e0820cd8134023aa979f76d4d76261 schema:issueNumber 4
62 rdf:type schema:PublicationIssue
63 N13cb180c158b499fa9a080d984ccbd89 rdf:first Ne2b1b2713e044ceea19ec6a432f27d5b
64 rdf:rest N6ccaa95100a741a6a92a4d2466366603
65 N201fcec94614429498f915e654323989 rdf:first Nd206c3a3587a4d678d222e30fefcc20b
66 rdf:rest N37ee076bd08c47c78b499b5515197ff6
67 N373e6026ce0f4c438e5e5d1437e7009f schema:volumeNumber 15
68 rdf:type schema:PublicationVolume
69 N37ee076bd08c47c78b499b5515197ff6 rdf:first Nac39ae71505d4fb8b8c2d2564cc489ae
70 rdf:rest N13cb180c158b499fa9a080d984ccbd89
71 N476aa1083618460c9c20a144f93ab00e schema:affiliation https://www.grid.ac/institutes/grid.49470.3e
72 schema:familyName Ke
73 schema:givenName Manzhu
74 rdf:type schema:Person
75 N49cd6902171740efae0514776e44e30d rdf:first N092e5cbd02114dafba33bb33e3e15008
76 rdf:rest N201fcec94614429498f915e654323989
77 N5504dd3b4c6c47fe9b82a6c7946db67b schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 N65b4ba0a410345f589551ef9f85877e6 schema:affiliation https://www.grid.ac/institutes/grid.267323.1
80 schema:familyName Zhang
81 schema:givenName Fan
82 rdf:type schema:Person
83 N6ccaa95100a741a6a92a4d2466366603 rdf:first N476aa1083618460c9c20a144f93ab00e
84 rdf:rest Nf88fe930019e4cf5b033c204f43cb4de
85 N7c2211abe8df4d76b6d9b2c8f37427e6 schema:affiliation https://www.grid.ac/institutes/grid.49470.3e
86 schema:familyName Liu
87 schema:givenName Zhengyou
88 rdf:type schema:Person
89 N8dbcf6b6c616432dadfe77bed6186cd1 schema:name readcube_id
90 schema:value 0319f78a91a6eee40feef67eb2ee4008f7969bb4e50b575253cae21154fa0f3a
91 rdf:type schema:PropertyValue
92 Na2d451ac800c4e639566d23e8624a39c schema:name doi
93 schema:value 10.1038/s41567-019-0446-3
94 rdf:type schema:PropertyValue
95 Nac39ae71505d4fb8b8c2d2564cc489ae schema:affiliation https://www.grid.ac/institutes/grid.49470.3e
96 schema:familyName Qi
97 schema:givenName Yajuan
98 rdf:type schema:Person
99 Nb5e40bace454495caf31e13bcdf60654 rdf:first N7c2211abe8df4d76b6d9b2c8f37427e6
100 rdf:rest rdf:nil
101 Nd206c3a3587a4d678d222e30fefcc20b schema:affiliation https://www.grid.ac/institutes/grid.49470.3e
102 schema:familyName Qiu
103 schema:givenName Chunyin
104 rdf:type schema:Person
105 Ndb988c68ca1b457c98db2fd92d2afcdb schema:name dimensions_id
106 schema:value pub.1112505382
107 rdf:type schema:PropertyValue
108 Ne2b1b2713e044ceea19ec6a432f27d5b schema:affiliation https://www.grid.ac/institutes/grid.49470.3e
109 schema:familyName Ye
110 schema:givenName Liping
111 rdf:type schema:Person
112 Nf88fe930019e4cf5b033c204f43cb4de rdf:first N65b4ba0a410345f589551ef9f85877e6
113 rdf:rest Nb5e40bace454495caf31e13bcdf60654
114 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
115 schema:name Physical Sciences
116 rdf:type schema:DefinedTerm
117 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
118 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
119 rdf:type schema:DefinedTerm
120 sg:journal.1034717 schema:issn 1745-2473
121 1745-2481
122 schema:name Nature Physics
123 rdf:type schema:Periodical
124 sg:pub.10.1038/nature04233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001061831
125 https://doi.org/10.1038/nature04233
126 rdf:type schema:CreativeWork
127 sg:pub.10.1038/nature04235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009714128
128 https://doi.org/10.1038/nature04235
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/nature08293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035368720
131 https://doi.org/10.1038/nature08293
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/nature10941 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004075194
134 https://doi.org/10.1038/nature10941
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/nature12066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018990280
137 https://doi.org/10.1038/nature12066
138 rdf:type schema:CreativeWork
139 sg:pub.10.1038/nature25156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100351792
140 https://doi.org/10.1038/nature25156
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/nature25777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101522627
143 https://doi.org/10.1038/nature25777
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/ncomms1818 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031257683
146 https://doi.org/10.1038/ncomms1818
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/nphoton.2012.302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000051323
149 https://doi.org/10.1038/nphoton.2012.302
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/nphys1420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011191271
152 https://doi.org/10.1038/nphys1420
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/nphys3228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019227493
155 https://doi.org/10.1038/nphys3228
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/nphys3867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000609444
158 https://doi.org/10.1038/nphys3867
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/nphys3999 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049074694
161 https://doi.org/10.1038/nphys3999
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/nphys4275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092054479
164 https://doi.org/10.1038/nphys4275
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/s41586-018-0367-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105814127
167 https://doi.org/10.1038/s41586-018-0367-9
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1021/nl1018063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056218051
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1073/pnas.1615503114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084781118
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1103/physrevapplied.10.014017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105686224
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/physrevb.25.2185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060530222
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1103/physrevlett.110.013903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003607775
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1103/physrevlett.118.194301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085483090
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1103/physrevlett.119.195502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092625131
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1103/physrevlett.45.494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060785679
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1103/physrevlett.49.405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060787923
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1103/revmodphys.81.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050408744
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1103/revmodphys.83.1193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003709862
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1126/science.1137201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033456804
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1126/science.1191700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062462530
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1126/science.aaa9273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062665571
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1126/science.aab0239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024197249
198 rdf:type schema:CreativeWork
199 https://www.grid.ac/institutes/grid.267323.1 schema:alternateName The University of Texas at Dallas
200 schema:name Department of Physics, University of Texas at Dallas, Richardson, TX, USA
201 rdf:type schema:Organization
202 https://www.grid.ac/institutes/grid.49470.3e schema:alternateName Wuhan University
203 schema:name Institute for Advanced Studies, Wuhan University, Wuhan, China
204 Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, China
205 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...