Chiral exchange drag and chirality oscillations in synthetic antiferromagnets View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-11

AUTHORS

See-Hun Yang, Chirag Garg, Stuart S. P. Parkin

ABSTRACT

Long-range interactions between quasiparticles give rise to a ‘drag’ that affects the fundamental properties of many systems in condensed matter physics1–11. Drag typically involves the exchange of linear momentum between quasiparticles and strongly influences their transport properties. Here, we describe a kind of drag that involves the exchange of angular momentum between two current-driven magnetic domain walls. The motions of the domain walls are correlated and determined by the strength of the drag. When the drag is below a threshold value, the domain walls move together at a constant intermediate velocity with a steady leakage of angular momentum from the faster to the slower wall. However, we find that when the drag exceeds a threshold value, a different dynamic can take place in which the faster domain wall’s magnetization oscillates synchronously with a precessional motion of the slower domain wall’s magnetization, and angular momentum is continuously transferred between them. Our findings demonstrate a method for delivering spin angular momentum remotely to magnetic entities that otherwise could not be manipulated directly by current, for example, by coupling domain walls or other non-collinear spin textures in metallic and insulating media. Drag effects between interacting particles in nearby layers can impact their motion. Here, this idea is extended to angular momentum in domain walls in a synthetic antiferromagnet and synchronization is observed. More... »

PAGES

1-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41567-019-0438-3

DOI

http://dx.doi.org/10.1038/s41567-019-0438-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112678654


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "IBM Research - Almaden", 
          "id": "https://www.grid.ac/institutes/grid.481551.c", 
          "name": [
            "IBM Research - Almaden, San Jose, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "See-Hun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute of Microstructure Physics", 
          "id": "https://www.grid.ac/institutes/grid.450270.4", 
          "name": [
            "IBM Research - Almaden, San Jose, CA, USA", 
            "Max Planck Institute for Microstructure Physics, Halle (Saale), Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garg", 
        "givenName": "Chirag", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute of Microstructure Physics", 
          "id": "https://www.grid.ac/institutes/grid.450270.4", 
          "name": [
            "IBM Research - Almaden, San Jose, CA, USA", 
            "Max Planck Institute for Microstructure Physics, Halle (Saale), Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Parkin", 
        "givenName": "Stuart S. P.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1126/science.1218197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008401895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010264974", 
          "https://doi.org/10.1038/nmat3201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.89.144425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014697736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.89.144425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014697736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmag.2013.2262947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016192258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.096602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017455943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.096602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017455943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019327475", 
          "https://doi.org/10.1038/nphys2441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.5438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024224311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.5438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024224311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.246803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024853056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.246803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024853056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3675", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025553648", 
          "https://doi.org/10.1038/nmat3675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2014.324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025850891", 
          "https://doi.org/10.1038/nnano.2014.324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.165117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029900339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.165117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029900339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(89)90011-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032788950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(89)90011-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032788950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.116.126601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036044691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.116.126601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036044691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms4910", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037572327", 
          "https://doi.org/10.1038/ncomms4910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042873839", 
          "https://doi.org/10.1038/nature11302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2013.102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047913674", 
          "https://doi.org/10.1038/nnano.2013.102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.120.91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060423562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.120.91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060423562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.146.502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060433000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.146.502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060433000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.127202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060760344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.127202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060760344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.116.237202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060765708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.116.237202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060765708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.66.1216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060802086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.66.1216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060802086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.1196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060804081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.1196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060804081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.4051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060811047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.4051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060811047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.87.1213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.87.1213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.88.025003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.88.025003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1139227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062455285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jjap.45.3892", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063076812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.95.064401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083643155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.95.064401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083643155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.5009739", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100179285"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-11", 
    "datePublishedReg": "2019-03-11", 
    "description": "Long-range interactions between quasiparticles give rise to a \u2018drag\u2019 that affects the fundamental properties of many systems in condensed matter physics1\u201311. Drag typically involves the exchange of linear momentum between quasiparticles and strongly influences their transport properties. Here, we describe a kind of drag that involves the exchange of angular momentum between two current-driven magnetic domain walls. The motions of the domain walls are correlated and determined by the strength of the drag. When the drag is below a threshold value, the domain walls move together at a constant intermediate velocity with a steady leakage of angular momentum from the faster to the slower wall. However, we find that when the drag exceeds a threshold value, a different dynamic can take place in which the faster domain wall\u2019s magnetization oscillates synchronously with a precessional motion of the slower domain wall\u2019s magnetization, and angular momentum is continuously transferred between them. Our findings demonstrate a method for delivering spin angular momentum remotely to magnetic entities that otherwise could not be manipulated directly by current, for example, by coupling domain walls or other non-collinear spin textures in metallic and insulating media. Drag effects between interacting particles in nearby layers can impact their motion. Here, this idea is extended to angular momentum in domain walls in a synthetic antiferromagnet and synchronization is observed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41567-019-0438-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1034717", 
        "issn": [
          "1745-2473", 
          "1745-2481"
        ], 
        "name": "Nature Physics", 
        "type": "Periodical"
      }
    ], 
    "name": "Chiral exchange drag and chirality oscillations in synthetic antiferromagnets", 
    "pagination": "1-6", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e85342980ea4b69e158d5329b977bdebff026ff65270da15b55601bd2b668404"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41567-019-0438-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112678654"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41567-019-0438-3", 
      "https://app.dimensions.ai/details/publication/pub.1112678654"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000357_0000000357/records_99294_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41567-019-0438-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41567-019-0438-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41567-019-0438-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41567-019-0438-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41567-019-0438-3'


 

This table displays all metadata directly associated to this object as RDF triples.

164 TRIPLES      21 PREDICATES      53 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41567-019-0438-3 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author Ncee8e29f31f74c339bbbdd27a0de3b19
4 schema:citation sg:pub.10.1038/nature11302
5 sg:pub.10.1038/ncomms4910
6 sg:pub.10.1038/nmat3201
7 sg:pub.10.1038/nmat3675
8 sg:pub.10.1038/nnano.2013.102
9 sg:pub.10.1038/nnano.2014.324
10 sg:pub.10.1038/nphys2441
11 https://doi.org/10.1016/0370-1573(89)90011-2
12 https://doi.org/10.1063/1.5009739
13 https://doi.org/10.1103/physrev.120.91
14 https://doi.org/10.1103/physrev.146.502
15 https://doi.org/10.1103/physrevb.54.5438
16 https://doi.org/10.1103/physrevb.77.165117
17 https://doi.org/10.1103/physrevb.89.144425
18 https://doi.org/10.1103/physrevb.95.064401
19 https://doi.org/10.1103/physrevlett.109.096602
20 https://doi.org/10.1103/physrevlett.109.127202
21 https://doi.org/10.1103/physrevlett.116.126601
22 https://doi.org/10.1103/physrevlett.116.237202
23 https://doi.org/10.1103/physrevlett.66.1216
24 https://doi.org/10.1103/physrevlett.68.1196
25 https://doi.org/10.1103/physrevlett.74.4051
26 https://doi.org/10.1103/physrevlett.97.246803
27 https://doi.org/10.1103/revmodphys.87.1213
28 https://doi.org/10.1103/revmodphys.88.025003
29 https://doi.org/10.1109/tmag.2013.2262947
30 https://doi.org/10.1126/science.1139227
31 https://doi.org/10.1126/science.1218197
32 https://doi.org/10.1143/jjap.45.3892
33 schema:datePublished 2019-03-11
34 schema:datePublishedReg 2019-03-11
35 schema:description Long-range interactions between quasiparticles give rise to a ‘drag’ that affects the fundamental properties of many systems in condensed matter physics1–11. Drag typically involves the exchange of linear momentum between quasiparticles and strongly influences their transport properties. Here, we describe a kind of drag that involves the exchange of angular momentum between two current-driven magnetic domain walls. The motions of the domain walls are correlated and determined by the strength of the drag. When the drag is below a threshold value, the domain walls move together at a constant intermediate velocity with a steady leakage of angular momentum from the faster to the slower wall. However, we find that when the drag exceeds a threshold value, a different dynamic can take place in which the faster domain wall’s magnetization oscillates synchronously with a precessional motion of the slower domain wall’s magnetization, and angular momentum is continuously transferred between them. Our findings demonstrate a method for delivering spin angular momentum remotely to magnetic entities that otherwise could not be manipulated directly by current, for example, by coupling domain walls or other non-collinear spin textures in metallic and insulating media. Drag effects between interacting particles in nearby layers can impact their motion. Here, this idea is extended to angular momentum in domain walls in a synthetic antiferromagnet and synchronization is observed.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf sg:journal.1034717
40 schema:name Chiral exchange drag and chirality oscillations in synthetic antiferromagnets
41 schema:pagination 1-6
42 schema:productId Ncea29c76b6864379ac9f83f54f8fc57c
43 Nf3dce00f4b704744ae6c9470ad88b725
44 Nf68dc31c5a5845b6a1f116e34733d13e
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112678654
46 https://doi.org/10.1038/s41567-019-0438-3
47 schema:sdDatePublished 2019-04-11T11:30
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher Nf7e8949fe21040d88174824ed8eb4554
50 schema:url https://www.nature.com/articles/s41567-019-0438-3
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N06545ba20d1f45f185f5862275f2ee76 rdf:first Na38e0afbe409499fb6742b84ab0c164a
55 rdf:rest N405c06db020c4a9c80645cfdaf65de65
56 N405c06db020c4a9c80645cfdaf65de65 rdf:first N7a77c2fce3a84663ba8c485666ecf3d2
57 rdf:rest rdf:nil
58 N7a77c2fce3a84663ba8c485666ecf3d2 schema:affiliation https://www.grid.ac/institutes/grid.450270.4
59 schema:familyName Parkin
60 schema:givenName Stuart S. P.
61 rdf:type schema:Person
62 N8b4423ea5d2347acb6bc9f8893650f42 schema:affiliation https://www.grid.ac/institutes/grid.481551.c
63 schema:familyName Yang
64 schema:givenName See-Hun
65 rdf:type schema:Person
66 Na38e0afbe409499fb6742b84ab0c164a schema:affiliation https://www.grid.ac/institutes/grid.450270.4
67 schema:familyName Garg
68 schema:givenName Chirag
69 rdf:type schema:Person
70 Ncea29c76b6864379ac9f83f54f8fc57c schema:name dimensions_id
71 schema:value pub.1112678654
72 rdf:type schema:PropertyValue
73 Ncee8e29f31f74c339bbbdd27a0de3b19 rdf:first N8b4423ea5d2347acb6bc9f8893650f42
74 rdf:rest N06545ba20d1f45f185f5862275f2ee76
75 Nf3dce00f4b704744ae6c9470ad88b725 schema:name readcube_id
76 schema:value e85342980ea4b69e158d5329b977bdebff026ff65270da15b55601bd2b668404
77 rdf:type schema:PropertyValue
78 Nf68dc31c5a5845b6a1f116e34733d13e schema:name doi
79 schema:value 10.1038/s41567-019-0438-3
80 rdf:type schema:PropertyValue
81 Nf7e8949fe21040d88174824ed8eb4554 schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
84 schema:name Engineering
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
87 schema:name Interdisciplinary Engineering
88 rdf:type schema:DefinedTerm
89 sg:journal.1034717 schema:issn 1745-2473
90 1745-2481
91 schema:name Nature Physics
92 rdf:type schema:Periodical
93 sg:pub.10.1038/nature11302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042873839
94 https://doi.org/10.1038/nature11302
95 rdf:type schema:CreativeWork
96 sg:pub.10.1038/ncomms4910 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037572327
97 https://doi.org/10.1038/ncomms4910
98 rdf:type schema:CreativeWork
99 sg:pub.10.1038/nmat3201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010264974
100 https://doi.org/10.1038/nmat3201
101 rdf:type schema:CreativeWork
102 sg:pub.10.1038/nmat3675 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025553648
103 https://doi.org/10.1038/nmat3675
104 rdf:type schema:CreativeWork
105 sg:pub.10.1038/nnano.2013.102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047913674
106 https://doi.org/10.1038/nnano.2013.102
107 rdf:type schema:CreativeWork
108 sg:pub.10.1038/nnano.2014.324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025850891
109 https://doi.org/10.1038/nnano.2014.324
110 rdf:type schema:CreativeWork
111 sg:pub.10.1038/nphys2441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019327475
112 https://doi.org/10.1038/nphys2441
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/0370-1573(89)90011-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032788950
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1063/1.5009739 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100179285
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1103/physrev.120.91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060423562
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1103/physrev.146.502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060433000
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1103/physrevb.54.5438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024224311
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1103/physrevb.77.165117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029900339
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1103/physrevb.89.144425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014697736
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1103/physrevb.95.064401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083643155
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1103/physrevlett.109.096602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017455943
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1103/physrevlett.109.127202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060760344
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1103/physrevlett.116.126601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036044691
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1103/physrevlett.116.237202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060765708
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1103/physrevlett.66.1216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060802086
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1103/physrevlett.68.1196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060804081
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1103/physrevlett.74.4051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060811047
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1103/physrevlett.97.246803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024853056
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1103/revmodphys.87.1213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839776
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1103/revmodphys.88.025003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839801
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1109/tmag.2013.2262947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016192258
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1126/science.1139227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062455285
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1126/science.1218197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008401895
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1143/jjap.45.3892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063076812
157 rdf:type schema:CreativeWork
158 https://www.grid.ac/institutes/grid.450270.4 schema:alternateName Max Planck Institute of Microstructure Physics
159 schema:name IBM Research - Almaden, San Jose, CA, USA
160 Max Planck Institute for Microstructure Physics, Halle (Saale), Germany
161 rdf:type schema:Organization
162 https://www.grid.ac/institutes/grid.481551.c schema:alternateName IBM Research - Almaden
163 schema:name IBM Research - Almaden, San Jose, CA, USA
164 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...