Quantum hardware simulating four-dimensional inelastic neutron scattering View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-03-04

AUTHORS

A. Chiesa, F. Tacchino, M. Grossi, P. Santini, I. Tavernelli, D. Gerace, S. Carretta

ABSTRACT

Magnetic molecules, modelled as finite-size spin systems, are test-beds for quantum phenomena1 and could constitute key elements in future spintronics devices2–5, long-lasting nanoscale memories6 or noise-resilient quantum computing platforms7–10. Inelastic neutron scattering is the technique of choice to probe them, characterizing molecular eigenstates on atomic scales11–14. However, although large magnetic molecules can be controllably synthesized15–18, simulating their dynamics and interpreting spectroscopic measurements is challenging because of the exponential scaling of the required resources on a classical computer. Here, we show that quantum computers19–22 have the potential to efficiently extract dynamical correlations and the associated magnetic neutron cross-section by simulating prototypical spin systems on a quantum hardware22. We identify the main gate errors and show the potential scalability of our approach. The synergy between developments in neutron scattering and quantum processors will help design spin clusters for future applications. More... »

PAGES

455-459

References to SciGraph publications

  • 2013-02-03. Strong spin–phonon coupling between a single-molecule magnet and a carbon nanotube nanoelectromechanical system in NATURE NANOTECHNOLOGY
  • 2018-03-19. Quantum Landauer erasure with a molecular nanomagnet in NATURE PHYSICS
  • 2015-04-29. Demonstration of a quantum error detection code using a square lattice of four superconducting qubits in NATURE COMMUNICATIONS
  • 2016-03-16. Enhancing coherence in molecular spin qubits via atomic clock transitions in NATURE
  • 2017-02-20. Portraying entanglement between molecular qubits with four-dimensional inelastic neutron scattering in NATURE COMMUNICATIONS
  • 2017-08-24. Molecular magnetic hysteresis at 60 kelvin in dysprosocenium in NATURE
  • 2015-11-13. Digital quantum simulators in a scalable architecture of hybrid spin-photon qubits in SCIENTIFIC REPORTS
  • 2018-02-26. High spin cycles: topping the spin record for a single molecule verging on quantum criticality in NPJ QUANTUM MATERIALS
  • 2012-09-30. Spin dynamics of molecular nanomagnets unravelled at atomic scale by four-dimensional inelastic neutron scattering in NATURE PHYSICS
  • 2017-09-14. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets in NATURE
  • 2013-10-06. Spintronic magnetic anisotropy in NATURE PHYSICS
  • 2017-01-13. Building logical qubits in a superconducting quantum computing system in NPJ QUANTUM INFORMATION
  • 2012-08-15. Electronic read-out of a single nuclear spin using a molecular spin transistor in NATURE
  • 2015-03-04. State preservation by repetitive error detection in a superconducting quantum circuit in NATURE
  • 2016-04-25. A modular design of molecular qubits to implement universal quantum gates in NATURE COMMUNICATIONS
  • 2015-12-07. The classical and quantum dynamics of molecular spins on graphene in NATURE MATERIALS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41567-019-0437-4

    DOI

    http://dx.doi.org/10.1038/s41567-019-0437-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112506067


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Other Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Universit\u00e0 di Parma, Parma, Italy", 
              "id": "http://www.grid.ac/institutes/grid.10383.39", 
              "name": [
                "Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Universit\u00e0 di Parma, Parma, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chiesa", 
            "givenName": "A.", 
            "id": "sg:person.01033420117.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033420117.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Dipartimento di Fisica, Universit\u00e0 di Pavia, Pavia, Italy", 
              "id": "http://www.grid.ac/institutes/grid.470213.3", 
              "name": [
                "Dipartimento di Fisica, Universit\u00e0 di Pavia, Pavia, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tacchino", 
            "givenName": "F.", 
            "id": "sg:person.07526047240.72", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07526047240.72"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "IBM Italia s.p.a., Circonvallazione Idroscalo, Segrate, Italy", 
              "id": "http://www.grid.ac/institutes/grid.435339.b", 
              "name": [
                "Dipartimento di Fisica, Universit\u00e0 di Pavia, Pavia, Italy", 
                "IBM Italia s.p.a., Circonvallazione Idroscalo, Segrate, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Grossi", 
            "givenName": "M.", 
            "id": "sg:person.016173140664.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016173140664.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Universit\u00e0 di Parma, Parma, Italy", 
              "id": "http://www.grid.ac/institutes/grid.10383.39", 
              "name": [
                "Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Universit\u00e0 di Parma, Parma, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Santini", 
            "givenName": "P.", 
            "id": "sg:person.01221632746.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221632746.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "IBM Research, Zurich Research Laboratory, Zurich, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.410387.9", 
              "name": [
                "IBM Research, Zurich Research Laboratory, Zurich, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tavernelli", 
            "givenName": "I.", 
            "id": "sg:person.01224433021.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01224433021.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Dipartimento di Fisica, Universit\u00e0 di Pavia, Pavia, Italy", 
              "id": "http://www.grid.ac/institutes/grid.470213.3", 
              "name": [
                "Dipartimento di Fisica, Universit\u00e0 di Pavia, Pavia, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gerace", 
            "givenName": "D.", 
            "id": "sg:person.01200417554.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200417554.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Universit\u00e0 di Parma, Parma, Italy", 
              "id": "http://www.grid.ac/institutes/grid.10383.39", 
              "name": [
                "Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Universit\u00e0 di Parma, Parma, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Carretta", 
            "givenName": "S.", 
            "id": "sg:person.0651066246.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651066246.66"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/ncomms14543", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083849581", 
              "https://doi.org/10.1038/ncomms14543"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature16984", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047595349", 
              "https://doi.org/10.1038/nature16984"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4490", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045827695", 
              "https://doi.org/10.1038/nmat4490"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2012.258", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040311716", 
              "https://doi.org/10.1038/nnano.2012.258"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14270", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006434277", 
              "https://doi.org/10.1038/nature14270"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature23447", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091311103", 
              "https://doi.org/10.1038/nature23447"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep16036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039806371", 
              "https://doi.org/10.1038/srep16036"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys2766", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000419132", 
              "https://doi.org/10.1038/nphys2766"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms7979", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043603568", 
              "https://doi.org/10.1038/ncomms7979"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11341", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015361904", 
              "https://doi.org/10.1038/nature11341"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms11377", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040373065", 
              "https://doi.org/10.1038/ncomms11377"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41534-016-0004-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029399663", 
              "https://doi.org/10.1038/s41534-016-0004-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature23879", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091591998", 
              "https://doi.org/10.1038/nature23879"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41567-018-0070-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101558854", 
              "https://doi.org/10.1038/s41567-018-0070-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys2431", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033556494", 
              "https://doi.org/10.1038/nphys2431"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41535-018-0082-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101130590", 
              "https://doi.org/10.1038/s41535-018-0082-7"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03-04", 
        "datePublishedReg": "2019-03-04", 
        "description": "Magnetic molecules, modelled as finite-size spin systems, are test-beds for quantum phenomena1 and could constitute key elements in future spintronics devices2\u20135, long-lasting nanoscale memories6 or noise-resilient quantum computing platforms7\u201310. Inelastic neutron scattering is the technique of choice to probe them, characterizing molecular eigenstates on atomic scales11\u201314. However, although large magnetic molecules can be controllably synthesized15\u201318, simulating their dynamics and interpreting spectroscopic measurements is challenging because of the exponential scaling of the required resources on a classical computer. Here, we show that quantum computers19\u201322 have the potential to efficiently extract dynamical correlations and the associated magnetic neutron cross-section by simulating prototypical spin systems on a quantum hardware22. We identify the main gate errors and show the potential scalability of our approach. The synergy between developments in neutron scattering and quantum processors will help design spin clusters for future applications.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41567-019-0437-4", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6858656", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1034717", 
            "issn": [
              "1745-2473", 
              "1745-2481"
            ], 
            "name": "Nature Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "15"
          }
        ], 
        "keywords": [
          "inelastic neutron scattering", 
          "neutron scattering", 
          "four-dimensional inelastic neutron scattering", 
          "magnetic molecules", 
          "spin systems", 
          "finite-size spin systems", 
          "magnetic neutron", 
          "quantum processor", 
          "molecular eigenstates", 
          "classical computers", 
          "quantum hardware", 
          "gate errors", 
          "large magnetic molecules", 
          "dynamical correlations", 
          "spin clusters", 
          "spectroscopic measurements", 
          "exponential scaling", 
          "scattering", 
          "potential scalability", 
          "quantum", 
          "future applications", 
          "neutrons", 
          "eigenstates", 
          "technique of choice", 
          "molecules", 
          "measurements", 
          "scaling", 
          "dynamics", 
          "error", 
          "system", 
          "clusters", 
          "computer", 
          "applications", 
          "scalability", 
          "approach", 
          "processors", 
          "technique", 
          "hardware", 
          "potential", 
          "elements", 
          "choice", 
          "key elements", 
          "correlation", 
          "resources", 
          "synergy", 
          "development"
        ], 
        "name": "Quantum hardware simulating four-dimensional inelastic neutron scattering", 
        "pagination": "455-459", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112506067"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41567-019-0437-4"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41567-019-0437-4", 
          "https://app.dimensions.ai/details/publication/pub.1112506067"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:04", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_820.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41567-019-0437-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41567-019-0437-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41567-019-0437-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41567-019-0437-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41567-019-0437-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    225 TRIPLES      21 PREDICATES      87 URIs      62 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41567-019-0437-4 schema:about anzsrc-for:02
    2 anzsrc-for:0202
    3 anzsrc-for:0299
    4 schema:author Nfe52a490592144a088820b6aa894a96c
    5 schema:citation sg:pub.10.1038/nature11341
    6 sg:pub.10.1038/nature14270
    7 sg:pub.10.1038/nature16984
    8 sg:pub.10.1038/nature23447
    9 sg:pub.10.1038/nature23879
    10 sg:pub.10.1038/ncomms11377
    11 sg:pub.10.1038/ncomms14543
    12 sg:pub.10.1038/ncomms7979
    13 sg:pub.10.1038/nmat4490
    14 sg:pub.10.1038/nnano.2012.258
    15 sg:pub.10.1038/nphys2431
    16 sg:pub.10.1038/nphys2766
    17 sg:pub.10.1038/s41534-016-0004-0
    18 sg:pub.10.1038/s41535-018-0082-7
    19 sg:pub.10.1038/s41567-018-0070-7
    20 sg:pub.10.1038/srep16036
    21 schema:datePublished 2019-03-04
    22 schema:datePublishedReg 2019-03-04
    23 schema:description Magnetic molecules, modelled as finite-size spin systems, are test-beds for quantum phenomena1 and could constitute key elements in future spintronics devices2–5, long-lasting nanoscale memories6 or noise-resilient quantum computing platforms7–10. Inelastic neutron scattering is the technique of choice to probe them, characterizing molecular eigenstates on atomic scales11–14. However, although large magnetic molecules can be controllably synthesized15–18, simulating their dynamics and interpreting spectroscopic measurements is challenging because of the exponential scaling of the required resources on a classical computer. Here, we show that quantum computers19–22 have the potential to efficiently extract dynamical correlations and the associated magnetic neutron cross-section by simulating prototypical spin systems on a quantum hardware22. We identify the main gate errors and show the potential scalability of our approach. The synergy between developments in neutron scattering and quantum processors will help design spin clusters for future applications.
    24 schema:genre article
    25 schema:isAccessibleForFree true
    26 schema:isPartOf N5ea67db7aa85444b8ae5a16d2e58a95a
    27 Nffc394a33af04175be13555fe103c546
    28 sg:journal.1034717
    29 schema:keywords applications
    30 approach
    31 choice
    32 classical computers
    33 clusters
    34 computer
    35 correlation
    36 development
    37 dynamical correlations
    38 dynamics
    39 eigenstates
    40 elements
    41 error
    42 exponential scaling
    43 finite-size spin systems
    44 four-dimensional inelastic neutron scattering
    45 future applications
    46 gate errors
    47 hardware
    48 inelastic neutron scattering
    49 key elements
    50 large magnetic molecules
    51 magnetic molecules
    52 magnetic neutron
    53 measurements
    54 molecular eigenstates
    55 molecules
    56 neutron scattering
    57 neutrons
    58 potential
    59 potential scalability
    60 processors
    61 quantum
    62 quantum hardware
    63 quantum processor
    64 resources
    65 scalability
    66 scaling
    67 scattering
    68 spectroscopic measurements
    69 spin clusters
    70 spin systems
    71 synergy
    72 system
    73 technique
    74 technique of choice
    75 schema:name Quantum hardware simulating four-dimensional inelastic neutron scattering
    76 schema:pagination 455-459
    77 schema:productId N05a824074e4e45f19e4d0e90e27fec77
    78 N5b0774c14a3a4745a667d1fb87cd5e23
    79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112506067
    80 https://doi.org/10.1038/s41567-019-0437-4
    81 schema:sdDatePublished 2022-09-02T16:04
    82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    83 schema:sdPublisher Ncc5db2f3e4364634a4585a61f286419d
    84 schema:url https://doi.org/10.1038/s41567-019-0437-4
    85 sgo:license sg:explorer/license/
    86 sgo:sdDataset articles
    87 rdf:type schema:ScholarlyArticle
    88 N05a824074e4e45f19e4d0e90e27fec77 schema:name dimensions_id
    89 schema:value pub.1112506067
    90 rdf:type schema:PropertyValue
    91 N133a4096a50a46f4b77f34a72192eb50 rdf:first sg:person.016173140664.13
    92 rdf:rest N607a1faf86a849e58bfd071f48474dad
    93 N43fd6074276e43cb81667a2920d00617 rdf:first sg:person.01224433021.49
    94 rdf:rest N75574a99ca7346a5a334b03debe5debd
    95 N5b0774c14a3a4745a667d1fb87cd5e23 schema:name doi
    96 schema:value 10.1038/s41567-019-0437-4
    97 rdf:type schema:PropertyValue
    98 N5ea67db7aa85444b8ae5a16d2e58a95a schema:volumeNumber 15
    99 rdf:type schema:PublicationVolume
    100 N607a1faf86a849e58bfd071f48474dad rdf:first sg:person.01221632746.28
    101 rdf:rest N43fd6074276e43cb81667a2920d00617
    102 N75574a99ca7346a5a334b03debe5debd rdf:first sg:person.01200417554.24
    103 rdf:rest N8d36ebc4b04a477393326674f1f5941d
    104 N8d36ebc4b04a477393326674f1f5941d rdf:first sg:person.0651066246.66
    105 rdf:rest rdf:nil
    106 Ncc5db2f3e4364634a4585a61f286419d schema:name Springer Nature - SN SciGraph project
    107 rdf:type schema:Organization
    108 Ndf39cf98ee8845798b955ec8d47a5a5f rdf:first sg:person.07526047240.72
    109 rdf:rest N133a4096a50a46f4b77f34a72192eb50
    110 Nfe52a490592144a088820b6aa894a96c rdf:first sg:person.01033420117.26
    111 rdf:rest Ndf39cf98ee8845798b955ec8d47a5a5f
    112 Nffc394a33af04175be13555fe103c546 schema:issueNumber 5
    113 rdf:type schema:PublicationIssue
    114 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    115 schema:name Physical Sciences
    116 rdf:type schema:DefinedTerm
    117 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
    118 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
    119 rdf:type schema:DefinedTerm
    120 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
    121 schema:name Other Physical Sciences
    122 rdf:type schema:DefinedTerm
    123 sg:grant.6858656 http://pending.schema.org/fundedItem sg:pub.10.1038/s41567-019-0437-4
    124 rdf:type schema:MonetaryGrant
    125 sg:journal.1034717 schema:issn 1745-2473
    126 1745-2481
    127 schema:name Nature Physics
    128 schema:publisher Springer Nature
    129 rdf:type schema:Periodical
    130 sg:person.01033420117.26 schema:affiliation grid-institutes:grid.10383.39
    131 schema:familyName Chiesa
    132 schema:givenName A.
    133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033420117.26
    134 rdf:type schema:Person
    135 sg:person.01200417554.24 schema:affiliation grid-institutes:grid.470213.3
    136 schema:familyName Gerace
    137 schema:givenName D.
    138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200417554.24
    139 rdf:type schema:Person
    140 sg:person.01221632746.28 schema:affiliation grid-institutes:grid.10383.39
    141 schema:familyName Santini
    142 schema:givenName P.
    143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221632746.28
    144 rdf:type schema:Person
    145 sg:person.01224433021.49 schema:affiliation grid-institutes:grid.410387.9
    146 schema:familyName Tavernelli
    147 schema:givenName I.
    148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01224433021.49
    149 rdf:type schema:Person
    150 sg:person.016173140664.13 schema:affiliation grid-institutes:grid.435339.b
    151 schema:familyName Grossi
    152 schema:givenName M.
    153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016173140664.13
    154 rdf:type schema:Person
    155 sg:person.0651066246.66 schema:affiliation grid-institutes:grid.10383.39
    156 schema:familyName Carretta
    157 schema:givenName S.
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651066246.66
    159 rdf:type schema:Person
    160 sg:person.07526047240.72 schema:affiliation grid-institutes:grid.470213.3
    161 schema:familyName Tacchino
    162 schema:givenName F.
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07526047240.72
    164 rdf:type schema:Person
    165 sg:pub.10.1038/nature11341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015361904
    166 https://doi.org/10.1038/nature11341
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1038/nature14270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006434277
    169 https://doi.org/10.1038/nature14270
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1038/nature16984 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047595349
    172 https://doi.org/10.1038/nature16984
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1038/nature23447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091311103
    175 https://doi.org/10.1038/nature23447
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1038/nature23879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091591998
    178 https://doi.org/10.1038/nature23879
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1038/ncomms11377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040373065
    181 https://doi.org/10.1038/ncomms11377
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1038/ncomms14543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083849581
    184 https://doi.org/10.1038/ncomms14543
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1038/ncomms7979 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043603568
    187 https://doi.org/10.1038/ncomms7979
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1038/nmat4490 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045827695
    190 https://doi.org/10.1038/nmat4490
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1038/nnano.2012.258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040311716
    193 https://doi.org/10.1038/nnano.2012.258
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1038/nphys2431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033556494
    196 https://doi.org/10.1038/nphys2431
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1038/nphys2766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000419132
    199 https://doi.org/10.1038/nphys2766
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1038/s41534-016-0004-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029399663
    202 https://doi.org/10.1038/s41534-016-0004-0
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1038/s41535-018-0082-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101130590
    205 https://doi.org/10.1038/s41535-018-0082-7
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1038/s41567-018-0070-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101558854
    208 https://doi.org/10.1038/s41567-018-0070-7
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1038/srep16036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039806371
    211 https://doi.org/10.1038/srep16036
    212 rdf:type schema:CreativeWork
    213 grid-institutes:grid.10383.39 schema:alternateName Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parma, Italy
    214 schema:name Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parma, Italy
    215 rdf:type schema:Organization
    216 grid-institutes:grid.410387.9 schema:alternateName IBM Research, Zurich Research Laboratory, Zurich, Switzerland
    217 schema:name IBM Research, Zurich Research Laboratory, Zurich, Switzerland
    218 rdf:type schema:Organization
    219 grid-institutes:grid.435339.b schema:alternateName IBM Italia s.p.a., Circonvallazione Idroscalo, Segrate, Italy
    220 schema:name Dipartimento di Fisica, Università di Pavia, Pavia, Italy
    221 IBM Italia s.p.a., Circonvallazione Idroscalo, Segrate, Italy
    222 rdf:type schema:Organization
    223 grid-institutes:grid.470213.3 schema:alternateName Dipartimento di Fisica, Università di Pavia, Pavia, Italy
    224 schema:name Dipartimento di Fisica, Università di Pavia, Pavia, Italy
    225 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...