Axial-field-induced chiral channels in an acoustic Weyl system View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-02-11

AUTHORS

Valerio Peri, Marc Serra-Garcia, Roni Ilan, Sebastian D. Huber

ABSTRACT

Condensed-matter and other engineered systems, such as cold atoms1, photonic2 or phononic metamaterials3, have proved to be versatile platforms for the observation of low-energy counterparts of elementary particles from relativistic field theories. These include the celebrated Majorana modes4, as well as Dirac5,6 and Weyl fermions7–9. An intriguing feature of the Weyl equation10 is the chiral symmetry, where the two chiral sectors have an independent gauge freedom. Although this freedom leads to a quantum anomaly11–15, there is no corresponding axial background field coupling differently to opposite chiralities in quantum electrodynamics. Here, we provide the experimental characterization of the effect of such an axial field in an acoustic metamaterial. We implement the axial field through an inhomogeneous potential16 and observe the induced chiral Landau levels. From the metamaterials perspective these chiral channels open the possibility for the observation of non-local Weyl orbits17 and might enable unidirectional bulk transport in a time-reversal-invariant system18. More... »

PAGES

357-361

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41567-019-0415-x

DOI

http://dx.doi.org/10.1038/s41567-019-0415-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112061407


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Theoretical Physics, ETH Zurich, Zurich, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "Institute for Theoretical Physics, ETH Zurich, Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peri", 
        "givenName": "Valerio", 
        "id": "sg:person.016667333435.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016667333435.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Theoretical Physics, ETH Zurich, Zurich, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "Institute for Theoretical Physics, ETH Zurich, Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Serra-Garcia", 
        "givenName": "Marc", 
        "id": "sg:person.0726731762.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726731762.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv, Israel", 
          "id": "http://www.grid.ac/institutes/grid.12136.37", 
          "name": [
            "Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ilan", 
        "givenName": "Roni", 
        "id": "sg:person.01360041050.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360041050.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Theoretical Physics, ETH Zurich, Zurich, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "Institute for Theoretical Physics, ETH Zurich, Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huber", 
        "givenName": "Sebastian D.", 
        "id": "sg:person.01130317055.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130317055.22"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature23005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090775029", 
          "https://doi.org/10.1038/nature23005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01339504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053715238", 
          "https://doi.org/10.1007/bf01339504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020033716", 
          "https://doi.org/10.1038/nphys3425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006547053", 
          "https://doi.org/10.1038/nphys3801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys4275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092054479", 
          "https://doi.org/10.1038/nphys4275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41586-018-0367-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105814127", 
          "https://doi.org/10.1038/s41586-018-0367-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms6161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000431298", 
          "https://doi.org/10.1038/ncomms6161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature18276", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041418715", 
          "https://doi.org/10.1038/nature18276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3454", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009183077", 
          "https://doi.org/10.1038/nphys3454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s42005-018-0035-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105646449", 
          "https://doi.org/10.1038/s42005-018-0035-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02823296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012901556", 
          "https://doi.org/10.1007/bf02823296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature15768", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028100728", 
          "https://doi.org/10.1038/nature15768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014295182", 
          "https://doi.org/10.1038/nphys3458"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02-11", 
    "datePublishedReg": "2019-02-11", 
    "description": "Condensed-matter and other engineered systems, such as cold atoms1, photonic2 or phononic metamaterials3, have proved to be versatile platforms for the observation of low-energy counterparts of elementary particles from relativistic field theories. These include the celebrated Majorana modes4, as well as Dirac5,6 and Weyl fermions7\u20139. An intriguing feature of the Weyl equation10 is the chiral symmetry, where the two chiral sectors have an independent gauge freedom. Although this freedom leads to a quantum anomaly11\u201315, there is no corresponding axial background field coupling differently to opposite chiralities in quantum electrodynamics. Here, we provide the experimental characterization of the effect of such an axial field in an acoustic metamaterial. We implement the axial field through an inhomogeneous potential16 and observe the induced chiral Landau levels. From the metamaterials perspective these chiral channels open the possibility for the observation of non-local Weyl orbits17 and might enable unidirectional bulk transport in a time-reversal-invariant system18.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41567-019-0415-x", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7506687", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1034717", 
        "issn": [
          "1745-2473", 
          "1745-2481"
        ], 
        "name": "Nature Physics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "keywords": [
      "low-energy counterparts", 
      "chiral Landau levels", 
      "axial field", 
      "chiral channels", 
      "relativistic field theory", 
      "quantum electrodynamics", 
      "Landau levels", 
      "elementary particles", 
      "Weyl systems", 
      "chiral symmetry", 
      "opposite chirality", 
      "field theory", 
      "background field", 
      "acoustic metamaterials", 
      "bulk transport", 
      "gauge freedom", 
      "metamaterials", 
      "chiral sector", 
      "intriguing features", 
      "experimental characterization", 
      "versatile platform", 
      "atoms1", 
      "field", 
      "electrodynamics", 
      "symmetry", 
      "chirality", 
      "particles", 
      "channels", 
      "freedom", 
      "theory", 
      "transport", 
      "system", 
      "possibility", 
      "characterization", 
      "counterparts", 
      "features", 
      "effect", 
      "platform", 
      "sector", 
      "levels", 
      "observations", 
      "cold atoms1", 
      "photonic2", 
      "phononic metamaterials3", 
      "metamaterials3", 
      "celebrated Majorana modes4", 
      "Majorana modes4", 
      "modes4", 
      "Weyl fermions7\u20139", 
      "fermions7\u20139", 
      "Weyl equation10", 
      "equation10", 
      "independent gauge freedom", 
      "quantum anomaly11\u201315", 
      "anomaly11\u201315", 
      "corresponding axial background field", 
      "axial background field", 
      "inhomogeneous potential16", 
      "potential16", 
      "non-local Weyl orbits17", 
      "Weyl orbits17", 
      "orbits17", 
      "unidirectional bulk transport", 
      "invariant system18", 
      "system18", 
      "acoustic Weyl system"
    ], 
    "name": "Axial-field-induced chiral channels in an acoustic Weyl system", 
    "pagination": "357-361", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112061407"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41567-019-0415-x"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41567-019-0415-x", 
      "https://app.dimensions.ai/details/publication/pub.1112061407"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_831.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41567-019-0415-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41567-019-0415-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41567-019-0415-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41567-019-0415-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41567-019-0415-x'


 

This table displays all metadata directly associated to this object as RDF triples.

202 TRIPLES      22 PREDICATES      104 URIs      83 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41567-019-0415-x schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Nde3adddb896b4d8ebc2260455c9883d7
4 schema:citation sg:pub.10.1007/bf01339504
5 sg:pub.10.1007/bf02823296
6 sg:pub.10.1038/nature15768
7 sg:pub.10.1038/nature18276
8 sg:pub.10.1038/nature23005
9 sg:pub.10.1038/ncomms6161
10 sg:pub.10.1038/nphys3425
11 sg:pub.10.1038/nphys3454
12 sg:pub.10.1038/nphys3458
13 sg:pub.10.1038/nphys3801
14 sg:pub.10.1038/nphys4275
15 sg:pub.10.1038/s41586-018-0367-9
16 sg:pub.10.1038/s42005-018-0035-2
17 schema:datePublished 2019-02-11
18 schema:datePublishedReg 2019-02-11
19 schema:description Condensed-matter and other engineered systems, such as cold atoms1, photonic2 or phononic metamaterials3, have proved to be versatile platforms for the observation of low-energy counterparts of elementary particles from relativistic field theories. These include the celebrated Majorana modes4, as well as Dirac5,6 and Weyl fermions7–9. An intriguing feature of the Weyl equation10 is the chiral symmetry, where the two chiral sectors have an independent gauge freedom. Although this freedom leads to a quantum anomaly11–15, there is no corresponding axial background field coupling differently to opposite chiralities in quantum electrodynamics. Here, we provide the experimental characterization of the effect of such an axial field in an acoustic metamaterial. We implement the axial field through an inhomogeneous potential16 and observe the induced chiral Landau levels. From the metamaterials perspective these chiral channels open the possibility for the observation of non-local Weyl orbits17 and might enable unidirectional bulk transport in a time-reversal-invariant system18.
20 schema:genre article
21 schema:inLanguage en
22 schema:isAccessibleForFree true
23 schema:isPartOf N7bafa6450699476fa5c384a3ab6b6281
24 N84f60969408e48e3b358f8ee3e9e0783
25 sg:journal.1034717
26 schema:keywords Landau levels
27 Majorana modes4
28 Weyl equation10
29 Weyl fermions7–9
30 Weyl orbits17
31 Weyl systems
32 acoustic Weyl system
33 acoustic metamaterials
34 anomaly11–15
35 atoms1
36 axial background field
37 axial field
38 background field
39 bulk transport
40 celebrated Majorana modes4
41 channels
42 characterization
43 chiral Landau levels
44 chiral channels
45 chiral sector
46 chiral symmetry
47 chirality
48 cold atoms1
49 corresponding axial background field
50 counterparts
51 effect
52 electrodynamics
53 elementary particles
54 equation10
55 experimental characterization
56 features
57 fermions7–9
58 field
59 field theory
60 freedom
61 gauge freedom
62 independent gauge freedom
63 inhomogeneous potential16
64 intriguing features
65 invariant system18
66 levels
67 low-energy counterparts
68 metamaterials
69 metamaterials3
70 modes4
71 non-local Weyl orbits17
72 observations
73 opposite chirality
74 orbits17
75 particles
76 phononic metamaterials3
77 photonic2
78 platform
79 possibility
80 potential16
81 quantum anomaly11–15
82 quantum electrodynamics
83 relativistic field theory
84 sector
85 symmetry
86 system
87 system18
88 theory
89 transport
90 unidirectional bulk transport
91 versatile platform
92 schema:name Axial-field-induced chiral channels in an acoustic Weyl system
93 schema:pagination 357-361
94 schema:productId N6ef02b1d0104447e914e00e9d7f2618b
95 N8f0e02b3737e448dafe0016c587252db
96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112061407
97 https://doi.org/10.1038/s41567-019-0415-x
98 schema:sdDatePublished 2021-12-01T19:46
99 schema:sdLicense https://scigraph.springernature.com/explorer/license/
100 schema:sdPublisher N8ac1afe341c74db7ab052b87af658df3
101 schema:url https://doi.org/10.1038/s41567-019-0415-x
102 sgo:license sg:explorer/license/
103 sgo:sdDataset articles
104 rdf:type schema:ScholarlyArticle
105 N5e5ec0fd742b43d59c093e60b5a3c1b9 rdf:first sg:person.01130317055.22
106 rdf:rest rdf:nil
107 N6ef02b1d0104447e914e00e9d7f2618b schema:name doi
108 schema:value 10.1038/s41567-019-0415-x
109 rdf:type schema:PropertyValue
110 N7bafa6450699476fa5c384a3ab6b6281 schema:volumeNumber 15
111 rdf:type schema:PublicationVolume
112 N84f60969408e48e3b358f8ee3e9e0783 schema:issueNumber 4
113 rdf:type schema:PublicationIssue
114 N8ac1afe341c74db7ab052b87af658df3 schema:name Springer Nature - SN SciGraph project
115 rdf:type schema:Organization
116 N8f0e02b3737e448dafe0016c587252db schema:name dimensions_id
117 schema:value pub.1112061407
118 rdf:type schema:PropertyValue
119 Na3a592967b61458fbb8159e50e794871 rdf:first sg:person.01360041050.94
120 rdf:rest N5e5ec0fd742b43d59c093e60b5a3c1b9
121 Nd474a0c786dc477a9791e248901d4b41 rdf:first sg:person.0726731762.84
122 rdf:rest Na3a592967b61458fbb8159e50e794871
123 Nde3adddb896b4d8ebc2260455c9883d7 rdf:first sg:person.016667333435.02
124 rdf:rest Nd474a0c786dc477a9791e248901d4b41
125 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
126 schema:name Physical Sciences
127 rdf:type schema:DefinedTerm
128 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
129 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
130 rdf:type schema:DefinedTerm
131 sg:grant.7506687 http://pending.schema.org/fundedItem sg:pub.10.1038/s41567-019-0415-x
132 rdf:type schema:MonetaryGrant
133 sg:journal.1034717 schema:issn 1745-2473
134 1745-2481
135 schema:name Nature Physics
136 schema:publisher Springer Nature
137 rdf:type schema:Periodical
138 sg:person.01130317055.22 schema:affiliation grid-institutes:grid.5801.c
139 schema:familyName Huber
140 schema:givenName Sebastian D.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130317055.22
142 rdf:type schema:Person
143 sg:person.01360041050.94 schema:affiliation grid-institutes:grid.12136.37
144 schema:familyName Ilan
145 schema:givenName Roni
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360041050.94
147 rdf:type schema:Person
148 sg:person.016667333435.02 schema:affiliation grid-institutes:grid.5801.c
149 schema:familyName Peri
150 schema:givenName Valerio
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016667333435.02
152 rdf:type schema:Person
153 sg:person.0726731762.84 schema:affiliation grid-institutes:grid.5801.c
154 schema:familyName Serra-Garcia
155 schema:givenName Marc
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726731762.84
157 rdf:type schema:Person
158 sg:pub.10.1007/bf01339504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053715238
159 https://doi.org/10.1007/bf01339504
160 rdf:type schema:CreativeWork
161 sg:pub.10.1007/bf02823296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012901556
162 https://doi.org/10.1007/bf02823296
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/nature15768 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028100728
165 https://doi.org/10.1038/nature15768
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/nature18276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041418715
168 https://doi.org/10.1038/nature18276
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/nature23005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090775029
171 https://doi.org/10.1038/nature23005
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/ncomms6161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000431298
174 https://doi.org/10.1038/ncomms6161
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/nphys3425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020033716
177 https://doi.org/10.1038/nphys3425
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/nphys3454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009183077
180 https://doi.org/10.1038/nphys3454
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/nphys3458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014295182
183 https://doi.org/10.1038/nphys3458
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/nphys3801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006547053
186 https://doi.org/10.1038/nphys3801
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/nphys4275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092054479
189 https://doi.org/10.1038/nphys4275
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/s41586-018-0367-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105814127
192 https://doi.org/10.1038/s41586-018-0367-9
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/s42005-018-0035-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105646449
195 https://doi.org/10.1038/s42005-018-0035-2
196 rdf:type schema:CreativeWork
197 grid-institutes:grid.12136.37 schema:alternateName Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv, Israel
198 schema:name Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv, Israel
199 rdf:type schema:Organization
200 grid-institutes:grid.5801.c schema:alternateName Institute for Theoretical Physics, ETH Zurich, Zurich, Switzerland
201 schema:name Institute for Theoretical Physics, ETH Zurich, Zurich, Switzerland
202 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...