Axial-field-induced chiral channels in an acoustic Weyl system View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Valerio Peri, Marc Serra-Garcia, Roni Ilan, Sebastian D. Huber

ABSTRACT

Condensed-matter and other engineered systems, such as cold atoms1, photonic2 or phononic metamaterials3, have proved to be versatile platforms for the observation of low-energy counterparts of elementary particles from relativistic field theories. These include the celebrated Majorana modes4, as well as Dirac5,6 and Weyl fermions7–9. An intriguing feature of the Weyl equation10 is the chiral symmetry, where the two chiral sectors have an independent gauge freedom. Although this freedom leads to a quantum anomaly11–15, there is no corresponding axial background field coupling differently to opposite chiralities in quantum electrodynamics. Here, we provide the experimental characterization of the effect of such an axial field in an acoustic metamaterial. We implement the axial field through an inhomogeneous potential16 and observe the induced chiral Landau levels. From the metamaterials perspective these chiral channels open the possibility for the observation of non-local Weyl orbits17 and might enable unidirectional bulk transport in a time-reversal-invariant system18. Axial fields couple to the states of different chiralities with opposite signs. In an acoustic Weyl system, the implementation of such fields induces chiral Landau levels, which is now observed experimentally. More... »

PAGES

357-361

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41567-019-0415-x

DOI

http://dx.doi.org/10.1038/s41567-019-0415-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112061407


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Swiss Federal Institute of Technology in Zurich", 
          "id": "https://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "Institute for Theoretical Physics, ETH Zurich, Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peri", 
        "givenName": "Valerio", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Swiss Federal Institute of Technology in Zurich", 
          "id": "https://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "Institute for Theoretical Physics, ETH Zurich, Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Serra-Garcia", 
        "givenName": "Marc", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tel Aviv University", 
          "id": "https://www.grid.ac/institutes/grid.12136.37", 
          "name": [
            "Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ilan", 
        "givenName": "Roni", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Swiss Federal Institute of Technology in Zurich", 
          "id": "https://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "Institute for Theoretical Physics, ETH Zurich, Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huber", 
        "givenName": "Sebastian D.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ncomms6161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000431298", 
          "https://doi.org/10.1038/ncomms6161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.78.074033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001879914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.78.074033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001879914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006547053", 
          "https://doi.org/10.1038/nphys3801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3454", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009183077", 
          "https://doi.org/10.1038/nphys3454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(83)91529-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009993034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(83)91529-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009993034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02823296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012901556", 
          "https://doi.org/10.1007/bf02823296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02823296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012901556", 
          "https://doi.org/10.1007/bf02823296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.235306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013935029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.235306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013935029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014295182", 
          "https://doi.org/10.1038/nphys3458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.027603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016127489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.027603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016127489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020033716", 
          "https://doi.org/10.1038/nphys3425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.6.041021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026621793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.6.041021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026621793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature15768", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028100728", 
          "https://doi.org/10.1038/nature15768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.5.011029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034242879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.5.011029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034242879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature18276", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041418715", 
          "https://doi.org/10.1038/nature18276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2010.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042282311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.6.041046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042658324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.6.041046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042658324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aaa9297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044122552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.5.031013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051462898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.5.031013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051462898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01339504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053715238", 
          "https://doi.org/10.1007/bf01339504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.177.2426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060440460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.177.2426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060440460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.95.041201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060653831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.95.041201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060653831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.177202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060764318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.177202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060764318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.116.166601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060765436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.116.166601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060765436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.45.494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060785679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.45.494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060785679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1191700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062462530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1222360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062466698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1245085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062469056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aaa9273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062665571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5506/aphyspolb.47.2617", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072930025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.118.045701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083506787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.118.045701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083506787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.118.194301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085483090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.118.194301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085483090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature23005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090775029", 
          "https://doi.org/10.1038/nature23005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature23005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090775029", 
          "https://doi.org/10.1038/nature23005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys4275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092054479", 
          "https://doi.org/10.1038/nphys4275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys4275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092054479", 
          "https://doi.org/10.1038/nphys4275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.119.195502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092625131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.119.195502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092625131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/acprof:oso/9780198507628.001.0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098729012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/2053-1583/aaa577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100214363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1720828115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101901217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s42005-018-0035-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105646449", 
          "https://doi.org/10.1038/s42005-018-0035-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41586-018-0367-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105814127", 
          "https://doi.org/10.1038/s41586-018-0367-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "Condensed-matter and other engineered systems, such as cold atoms1, photonic2 or phononic metamaterials3, have proved to be versatile platforms for the observation of low-energy counterparts of elementary particles from relativistic field theories. These include the celebrated Majorana modes4, as well as Dirac5,6 and Weyl fermions7\u20139. An intriguing feature of the Weyl equation10 is the chiral symmetry, where the two chiral sectors have an independent gauge freedom. Although this freedom leads to a quantum anomaly11\u201315, there is no corresponding axial background field coupling differently to opposite chiralities in quantum electrodynamics. Here, we provide the experimental characterization of the effect of such an axial field in an acoustic metamaterial. We implement the axial field through an inhomogeneous potential16 and observe the induced chiral Landau levels. From the metamaterials perspective these chiral channels open the possibility for the observation of non-local Weyl orbits17 and might enable unidirectional bulk transport in a time-reversal-invariant system18. Axial fields couple to the states of different chiralities with opposite signs. In an acoustic Weyl system, the implementation of such fields induces chiral Landau levels, which is now observed experimentally.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41567-019-0415-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7506687", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1034717", 
        "issn": [
          "1745-2473", 
          "1745-2481"
        ], 
        "name": "Nature Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "name": "Axial-field-induced chiral channels in an acoustic Weyl system", 
    "pagination": "357-361", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f4369be6e5217c29219c38b9e9e2a9061e5e8bca56ac343374bd21d7d19a23a6"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41567-019-0415-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112061407"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41567-019-0415-x", 
      "https://app.dimensions.ai/details/publication/pub.1112061407"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130793_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41567-019-0415-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41567-019-0415-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41567-019-0415-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41567-019-0415-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41567-019-0415-x'


 

This table displays all metadata directly associated to this object as RDF triples.

213 TRIPLES      21 PREDICATES      66 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41567-019-0415-x schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Ndc6bc7517585400c9b6d81b17281594d
4 schema:citation sg:pub.10.1007/bf01339504
5 sg:pub.10.1007/bf02823296
6 sg:pub.10.1038/nature15768
7 sg:pub.10.1038/nature18276
8 sg:pub.10.1038/nature23005
9 sg:pub.10.1038/ncomms6161
10 sg:pub.10.1038/nphys3425
11 sg:pub.10.1038/nphys3454
12 sg:pub.10.1038/nphys3458
13 sg:pub.10.1038/nphys3801
14 sg:pub.10.1038/nphys4275
15 sg:pub.10.1038/s41586-018-0367-9
16 sg:pub.10.1038/s42005-018-0035-2
17 https://doi.org/10.1016/0370-2693(83)91529-0
18 https://doi.org/10.1016/j.physrep.2010.07.003
19 https://doi.org/10.1073/pnas.1720828115
20 https://doi.org/10.1088/2053-1583/aaa577
21 https://doi.org/10.1093/acprof:oso/9780198507628.001.0001
22 https://doi.org/10.1103/physrev.177.2426
23 https://doi.org/10.1103/physrevb.87.235306
24 https://doi.org/10.1103/physrevb.95.041201
25 https://doi.org/10.1103/physrevd.78.074033
26 https://doi.org/10.1103/physrevlett.113.027603
27 https://doi.org/10.1103/physrevlett.115.177202
28 https://doi.org/10.1103/physrevlett.116.166601
29 https://doi.org/10.1103/physrevlett.118.045701
30 https://doi.org/10.1103/physrevlett.118.194301
31 https://doi.org/10.1103/physrevlett.119.195502
32 https://doi.org/10.1103/physrevlett.45.494
33 https://doi.org/10.1103/physrevx.5.011029
34 https://doi.org/10.1103/physrevx.5.031013
35 https://doi.org/10.1103/physrevx.6.041021
36 https://doi.org/10.1103/physrevx.6.041046
37 https://doi.org/10.1126/science.1191700
38 https://doi.org/10.1126/science.1222360
39 https://doi.org/10.1126/science.1245085
40 https://doi.org/10.1126/science.aaa9273
41 https://doi.org/10.1126/science.aaa9297
42 https://doi.org/10.5506/aphyspolb.47.2617
43 schema:datePublished 2019-04
44 schema:datePublishedReg 2019-04-01
45 schema:description Condensed-matter and other engineered systems, such as cold atoms1, photonic2 or phononic metamaterials3, have proved to be versatile platforms for the observation of low-energy counterparts of elementary particles from relativistic field theories. These include the celebrated Majorana modes4, as well as Dirac5,6 and Weyl fermions7–9. An intriguing feature of the Weyl equation10 is the chiral symmetry, where the two chiral sectors have an independent gauge freedom. Although this freedom leads to a quantum anomaly11–15, there is no corresponding axial background field coupling differently to opposite chiralities in quantum electrodynamics. Here, we provide the experimental characterization of the effect of such an axial field in an acoustic metamaterial. We implement the axial field through an inhomogeneous potential16 and observe the induced chiral Landau levels. From the metamaterials perspective these chiral channels open the possibility for the observation of non-local Weyl orbits17 and might enable unidirectional bulk transport in a time-reversal-invariant system18. Axial fields couple to the states of different chiralities with opposite signs. In an acoustic Weyl system, the implementation of such fields induces chiral Landau levels, which is now observed experimentally.
46 schema:genre research_article
47 schema:inLanguage en
48 schema:isAccessibleForFree false
49 schema:isPartOf Nb3fee46c15ca47e7a8e9e0fba44fc406
50 Nbfdf152f92de4907ba28f5ee13ff2d98
51 sg:journal.1034717
52 schema:name Axial-field-induced chiral channels in an acoustic Weyl system
53 schema:pagination 357-361
54 schema:productId N94120890c4b74a20a1802a4ed5a6afc1
55 Nb0ba8c60bada4781bc7040c96017abdf
56 Nda17c16ec69e45549a44e0133e7df0c2
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112061407
58 https://doi.org/10.1038/s41567-019-0415-x
59 schema:sdDatePublished 2019-04-11T13:49
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N448d85d4275e42a9bb6bb09c7c119a7f
62 schema:url https://www.nature.com/articles/s41567-019-0415-x
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N1bc26c5efff845019aa9250874337780 rdf:first N6d2f2645ba414017a5209fec3769d4ff
67 rdf:rest rdf:nil
68 N448d85d4275e42a9bb6bb09c7c119a7f schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 N4ee0936a5af44abda4f27793aa99a6f1 rdf:first Nb971397b551941718970af6ab6efa9cd
71 rdf:rest Ne8c7e119d4a247689f6aad3eeda99db6
72 N6d2f2645ba414017a5209fec3769d4ff schema:affiliation https://www.grid.ac/institutes/grid.5801.c
73 schema:familyName Huber
74 schema:givenName Sebastian D.
75 rdf:type schema:Person
76 N79795d1955224e5ba57fafe222d55755 schema:affiliation https://www.grid.ac/institutes/grid.5801.c
77 schema:familyName Peri
78 schema:givenName Valerio
79 rdf:type schema:Person
80 N94120890c4b74a20a1802a4ed5a6afc1 schema:name readcube_id
81 schema:value f4369be6e5217c29219c38b9e9e2a9061e5e8bca56ac343374bd21d7d19a23a6
82 rdf:type schema:PropertyValue
83 Nb0ba8c60bada4781bc7040c96017abdf schema:name dimensions_id
84 schema:value pub.1112061407
85 rdf:type schema:PropertyValue
86 Nb3fee46c15ca47e7a8e9e0fba44fc406 schema:volumeNumber 15
87 rdf:type schema:PublicationVolume
88 Nb971397b551941718970af6ab6efa9cd schema:affiliation https://www.grid.ac/institutes/grid.5801.c
89 schema:familyName Serra-Garcia
90 schema:givenName Marc
91 rdf:type schema:Person
92 Nbbbf77ad1a3c4c4e8f16a36b3bb12b0b schema:affiliation https://www.grid.ac/institutes/grid.12136.37
93 schema:familyName Ilan
94 schema:givenName Roni
95 rdf:type schema:Person
96 Nbfdf152f92de4907ba28f5ee13ff2d98 schema:issueNumber 4
97 rdf:type schema:PublicationIssue
98 Nda17c16ec69e45549a44e0133e7df0c2 schema:name doi
99 schema:value 10.1038/s41567-019-0415-x
100 rdf:type schema:PropertyValue
101 Ndc6bc7517585400c9b6d81b17281594d rdf:first N79795d1955224e5ba57fafe222d55755
102 rdf:rest N4ee0936a5af44abda4f27793aa99a6f1
103 Ne8c7e119d4a247689f6aad3eeda99db6 rdf:first Nbbbf77ad1a3c4c4e8f16a36b3bb12b0b
104 rdf:rest N1bc26c5efff845019aa9250874337780
105 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
106 schema:name Physical Sciences
107 rdf:type schema:DefinedTerm
108 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
109 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
110 rdf:type schema:DefinedTerm
111 sg:grant.7506687 http://pending.schema.org/fundedItem sg:pub.10.1038/s41567-019-0415-x
112 rdf:type schema:MonetaryGrant
113 sg:journal.1034717 schema:issn 1745-2473
114 1745-2481
115 schema:name Nature Physics
116 rdf:type schema:Periodical
117 sg:pub.10.1007/bf01339504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053715238
118 https://doi.org/10.1007/bf01339504
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/bf02823296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012901556
121 https://doi.org/10.1007/bf02823296
122 rdf:type schema:CreativeWork
123 sg:pub.10.1038/nature15768 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028100728
124 https://doi.org/10.1038/nature15768
125 rdf:type schema:CreativeWork
126 sg:pub.10.1038/nature18276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041418715
127 https://doi.org/10.1038/nature18276
128 rdf:type schema:CreativeWork
129 sg:pub.10.1038/nature23005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090775029
130 https://doi.org/10.1038/nature23005
131 rdf:type schema:CreativeWork
132 sg:pub.10.1038/ncomms6161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000431298
133 https://doi.org/10.1038/ncomms6161
134 rdf:type schema:CreativeWork
135 sg:pub.10.1038/nphys3425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020033716
136 https://doi.org/10.1038/nphys3425
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/nphys3454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009183077
139 https://doi.org/10.1038/nphys3454
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/nphys3458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014295182
142 https://doi.org/10.1038/nphys3458
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/nphys3801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006547053
145 https://doi.org/10.1038/nphys3801
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/nphys4275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092054479
148 https://doi.org/10.1038/nphys4275
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/s41586-018-0367-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105814127
151 https://doi.org/10.1038/s41586-018-0367-9
152 rdf:type schema:CreativeWork
153 sg:pub.10.1038/s42005-018-0035-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105646449
154 https://doi.org/10.1038/s42005-018-0035-2
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/0370-2693(83)91529-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009993034
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.physrep.2010.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042282311
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1073/pnas.1720828115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101901217
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1088/2053-1583/aaa577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100214363
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1093/acprof:oso/9780198507628.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098729012
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1103/physrev.177.2426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060440460
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1103/physrevb.87.235306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013935029
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1103/physrevb.95.041201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060653831
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1103/physrevd.78.074033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001879914
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1103/physrevlett.113.027603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016127489
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1103/physrevlett.115.177202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060764318
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1103/physrevlett.116.166601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060765436
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1103/physrevlett.118.045701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083506787
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1103/physrevlett.118.194301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085483090
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1103/physrevlett.119.195502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092625131
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1103/physrevlett.45.494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060785679
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1103/physrevx.5.011029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034242879
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1103/physrevx.5.031013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051462898
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1103/physrevx.6.041021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026621793
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1103/physrevx.6.041046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042658324
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1126/science.1191700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062462530
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1126/science.1222360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062466698
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1126/science.1245085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062469056
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1126/science.aaa9273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062665571
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1126/science.aaa9297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044122552
205 rdf:type schema:CreativeWork
206 https://doi.org/10.5506/aphyspolb.47.2617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072930025
207 rdf:type schema:CreativeWork
208 https://www.grid.ac/institutes/grid.12136.37 schema:alternateName Tel Aviv University
209 schema:name Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv, Israel
210 rdf:type schema:Organization
211 https://www.grid.ac/institutes/grid.5801.c schema:alternateName Swiss Federal Institute of Technology in Zurich
212 schema:name Institute for Theoretical Physics, ETH Zurich, Zurich, Switzerland
213 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...