Quantum stochastic resonance in an a.c.-driven single-electron quantum dot View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Timo Wagner, Peter Talkner, Johannes C. Bayer, Eddy P. Rugeramigabo, Peter Hänggi, Rolf J. Haug

ABSTRACT

In stochastic resonance, the combination of a weak signal with noise leads to its amplification and optimization1. This phenomenon has been observed in several systems in contexts ranging from palaeoclimatology, biology, medicine, sociology and economics to physics1–9. In all these cases, the systems were either operating in the presence of thermal noise or were exposed to external classical noise sources. For quantum-mechanical systems, it has been theoretically predicted that intrinsic fluctuations lead to stochastic resonance as well, a phenomenon referred to as quantum stochastic resonance1,10,11, but this has not been reported experimentally so far. Here we demonstrate tunnelling-controlled quantum stochastic resonance in the a.c.-driven charging and discharging of single electrons on a quantum dot. By analysing the counting statistics12–16, we demonstrate that synchronization between the sequential tunnelling processes and a periodic driving signal passes through an optimum, irrespective of whether the external frequency or the internal tunnel coupling is tuned. Quantum stochastic resonance, in which the quantum fluctuation represents the noise needed to amplify an otherwise weak signal, is reported in the charging and discharging of a single-electron quantum dot. More... »

PAGES

330-334

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41567-018-0412-5

DOI

http://dx.doi.org/10.1038/s41567-018-0412-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111908888


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Hannover", 
          "id": "https://www.grid.ac/institutes/grid.9122.8", 
          "name": [
            "Institut f\u00fcr Festk\u00f6rperphysik, Leibniz Universit\u00e4t Hannover, Hanover, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wagner", 
        "givenName": "Timo", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Augsburg", 
          "id": "https://www.grid.ac/institutes/grid.7307.3", 
          "name": [
            "Institut f\u00fcr Physik, Universit\u00e4t Augsburg, Augsburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Talkner", 
        "givenName": "Peter", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hannover", 
          "id": "https://www.grid.ac/institutes/grid.9122.8", 
          "name": [
            "Institut f\u00fcr Festk\u00f6rperphysik, Leibniz Universit\u00e4t Hannover, Hanover, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bayer", 
        "givenName": "Johannes C.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hannover", 
          "id": "https://www.grid.ac/institutes/grid.9122.8", 
          "name": [
            "Institut f\u00fcr Festk\u00f6rperphysik, Leibniz Universit\u00e4t Hannover, Hanover, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rugeramigabo", 
        "givenName": "Eddy P.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanosystems Initiative Munich", 
          "id": "https://www.grid.ac/institutes/grid.452665.6", 
          "name": [
            "Institut f\u00fcr Physik, Universit\u00e4t Augsburg, Augsburg, Germany", 
            "Nanosystems Initiative Munich, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "H\u00e4nggi", 
        "givenName": "Peter", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hannover", 
          "id": "https://www.grid.ac/institutes/grid.9122.8", 
          "name": [
            "Institut f\u00fcr Festk\u00f6rperphysik, Leibniz Universit\u00e4t Hannover, Hanover, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Haug", 
        "givenName": "Rolf J.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.96.076605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002906607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.076605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002906607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/64/6/201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002971979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/7/1/014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002997551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010952195", 
          "https://doi.org/10.1038/nphys3169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys582", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013015298", 
          "https://doi.org/10.1038/nphys582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys582", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013015298", 
          "https://doi.org/10.1038/nphys582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.106801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015987655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.106801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015987655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2016.73", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018617797", 
          "https://doi.org/10.1038/nphoton.2016.73"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4919539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020302295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms3624", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021936368", 
          "https://doi.org/10.1038/ncomms3624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.057401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032362293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.057401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032362293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2016.225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032452514", 
          "https://doi.org/10.1038/nnano.2016.225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035005465", 
          "https://doi.org/10.1038/nature04124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035005465", 
          "https://doi.org/10.1038/nature04124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035005465", 
          "https://doi.org/10.1038/nature04124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.086805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035338377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.086805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035338377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.65.045317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037244222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.65.045317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037244222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.018303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037431371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.018303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037431371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.85.1421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046153171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.85.1421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046153171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-4371(03)00191-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049861561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-4371(03)00191-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049861561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0348239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056215710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0348239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056215710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4766946", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058063474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.65.051110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060728405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.65.051110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060728405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.117.206803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060766714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.117.206803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060766714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.117.243005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060766890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.117.243005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060766890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.1626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060803149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.1626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060803149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.1947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060808692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.1947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060808692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.1610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060811603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.1610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060811603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.4157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060812244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.4157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060812244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.1611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060812647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.1611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060812647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.70.223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.70.223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1094419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062449364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1141243", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062455941"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "In stochastic resonance, the combination of a weak signal with noise leads to its amplification and optimization1. This phenomenon has been observed in several systems in contexts ranging from palaeoclimatology, biology, medicine, sociology and economics to physics1\u20139. In all these cases, the systems were either operating in the presence of thermal noise or were exposed to external classical noise sources. For quantum-mechanical systems, it has been theoretically predicted that intrinsic fluctuations lead to stochastic resonance as well, a phenomenon referred to as quantum stochastic resonance1,10,11, but this has not been reported experimentally so far. Here we demonstrate tunnelling-controlled quantum stochastic resonance in the a.c.-driven charging and discharging of single electrons on a quantum dot. By analysing the counting statistics12\u201316, we demonstrate that synchronization between the sequential tunnelling processes and a periodic driving signal passes through an optimum, irrespective of whether the external frequency or the internal tunnel coupling is tuned. Quantum stochastic resonance, in which the quantum fluctuation represents the noise needed to amplify an otherwise weak signal, is reported in the charging and discharging of a single-electron quantum dot.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41567-018-0412-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1034717", 
        "issn": [
          "1745-2473", 
          "1745-2481"
        ], 
        "name": "Nature Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "name": "Quantum stochastic resonance in an a.c.-driven single-electron quantum dot", 
    "pagination": "330-334", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "32d6ad3a864902cb2aeaf92253e79ddbffbde7cb9eac6b8d1cac95b1e616922c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41567-018-0412-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111908888"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41567-018-0412-5", 
      "https://app.dimensions.ai/details/publication/pub.1111908888"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130820_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41567-018-0412-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41567-018-0412-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41567-018-0412-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41567-018-0412-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41567-018-0412-5'


 

This table displays all metadata directly associated to this object as RDF triples.

193 TRIPLES      21 PREDICATES      57 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41567-018-0412-5 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N5b4c3dc1484f4968be5d98ed405d508a
4 schema:citation sg:pub.10.1038/nature04124
5 sg:pub.10.1038/ncomms3624
6 sg:pub.10.1038/nnano.2016.225
7 sg:pub.10.1038/nphoton.2016.73
8 sg:pub.10.1038/nphys3169
9 sg:pub.10.1038/nphys582
10 https://doi.org/10.1016/s0378-4371(03)00191-2
11 https://doi.org/10.1021/nl0348239
12 https://doi.org/10.1063/1.4766946
13 https://doi.org/10.1063/1.4919539
14 https://doi.org/10.1088/0034-4885/64/6/201
15 https://doi.org/10.1088/1367-2630/7/1/014
16 https://doi.org/10.1103/physrevb.65.045317
17 https://doi.org/10.1103/physreve.65.051110
18 https://doi.org/10.1103/physrevlett.107.086805
19 https://doi.org/10.1103/physrevlett.113.057401
20 https://doi.org/10.1103/physrevlett.115.106801
21 https://doi.org/10.1103/physrevlett.117.206803
22 https://doi.org/10.1103/physrevlett.117.243005
23 https://doi.org/10.1103/physrevlett.67.1626
24 https://doi.org/10.1103/physrevlett.72.1947
25 https://doi.org/10.1103/physrevlett.75.1610
26 https://doi.org/10.1103/physrevlett.75.4157
27 https://doi.org/10.1103/physrevlett.76.1611
28 https://doi.org/10.1103/physrevlett.92.018303
29 https://doi.org/10.1103/physrevlett.96.076605
30 https://doi.org/10.1103/revmodphys.70.223
31 https://doi.org/10.1103/revmodphys.85.1421
32 https://doi.org/10.1126/science.1094419
33 https://doi.org/10.1126/science.1141243
34 schema:datePublished 2019-04
35 schema:datePublishedReg 2019-04-01
36 schema:description In stochastic resonance, the combination of a weak signal with noise leads to its amplification and optimization1. This phenomenon has been observed in several systems in contexts ranging from palaeoclimatology, biology, medicine, sociology and economics to physics1–9. In all these cases, the systems were either operating in the presence of thermal noise or were exposed to external classical noise sources. For quantum-mechanical systems, it has been theoretically predicted that intrinsic fluctuations lead to stochastic resonance as well, a phenomenon referred to as quantum stochastic resonance1,10,11, but this has not been reported experimentally so far. Here we demonstrate tunnelling-controlled quantum stochastic resonance in the a.c.-driven charging and discharging of single electrons on a quantum dot. By analysing the counting statistics12–16, we demonstrate that synchronization between the sequential tunnelling processes and a periodic driving signal passes through an optimum, irrespective of whether the external frequency or the internal tunnel coupling is tuned. Quantum stochastic resonance, in which the quantum fluctuation represents the noise needed to amplify an otherwise weak signal, is reported in the charging and discharging of a single-electron quantum dot.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf N3eb40caea6124dacacbf1c01f820f61b
41 N4415ed032cad4455bb830fb8e938e9bc
42 sg:journal.1034717
43 schema:name Quantum stochastic resonance in an a.c.-driven single-electron quantum dot
44 schema:pagination 330-334
45 schema:productId N09c45a26d25545c69c0a89e326bac6ee
46 N3677911d237840b49bb879738fb9df13
47 N7df513ed536848e4bf7da78be191edb9
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111908888
49 https://doi.org/10.1038/s41567-018-0412-5
50 schema:sdDatePublished 2019-04-11T13:58
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher Ne6d0a62f3ca54aa69a1cec05134b3011
53 schema:url https://www.nature.com/articles/s41567-018-0412-5
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N09c45a26d25545c69c0a89e326bac6ee schema:name dimensions_id
58 schema:value pub.1111908888
59 rdf:type schema:PropertyValue
60 N1e95b242c2ad4f58b0621574c0e2c02e schema:affiliation https://www.grid.ac/institutes/grid.9122.8
61 schema:familyName Bayer
62 schema:givenName Johannes C.
63 rdf:type schema:Person
64 N2d985e5f36f840028a123205f7781729 schema:affiliation https://www.grid.ac/institutes/grid.9122.8
65 schema:familyName Wagner
66 schema:givenName Timo
67 rdf:type schema:Person
68 N3677911d237840b49bb879738fb9df13 schema:name doi
69 schema:value 10.1038/s41567-018-0412-5
70 rdf:type schema:PropertyValue
71 N3eb40caea6124dacacbf1c01f820f61b schema:volumeNumber 15
72 rdf:type schema:PublicationVolume
73 N4415ed032cad4455bb830fb8e938e9bc schema:issueNumber 4
74 rdf:type schema:PublicationIssue
75 N5b4c3dc1484f4968be5d98ed405d508a rdf:first N2d985e5f36f840028a123205f7781729
76 rdf:rest Nbd7ff3c8891a4883ac038b69cbd5b1a4
77 N649d67d5db4843168cf570284b00f4f9 schema:affiliation https://www.grid.ac/institutes/grid.9122.8
78 schema:familyName Haug
79 schema:givenName Rolf J.
80 rdf:type schema:Person
81 N6fa91eda211548aab0c11181d205e2b7 rdf:first N1e95b242c2ad4f58b0621574c0e2c02e
82 rdf:rest Nc43eecb3d2f646f3b3c1690f185a7b7f
83 N75d8cae4e5a94f1e9d1adc1ffba932f8 schema:affiliation https://www.grid.ac/institutes/grid.9122.8
84 schema:familyName Rugeramigabo
85 schema:givenName Eddy P.
86 rdf:type schema:Person
87 N7df513ed536848e4bf7da78be191edb9 schema:name readcube_id
88 schema:value 32d6ad3a864902cb2aeaf92253e79ddbffbde7cb9eac6b8d1cac95b1e616922c
89 rdf:type schema:PropertyValue
90 N8f89bfd1d0ec4895ad5c10537c666bb0 rdf:first Nebd6ac34dd4a4590818d10a91b5f0e17
91 rdf:rest Nf1507cee998d44f09d028e864cc1044f
92 Nbd7ff3c8891a4883ac038b69cbd5b1a4 rdf:first Nfcdea12057ef49a2ae90fa6e00eb954f
93 rdf:rest N6fa91eda211548aab0c11181d205e2b7
94 Nc43eecb3d2f646f3b3c1690f185a7b7f rdf:first N75d8cae4e5a94f1e9d1adc1ffba932f8
95 rdf:rest N8f89bfd1d0ec4895ad5c10537c666bb0
96 Ne6d0a62f3ca54aa69a1cec05134b3011 schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 Nebd6ac34dd4a4590818d10a91b5f0e17 schema:affiliation https://www.grid.ac/institutes/grid.452665.6
99 schema:familyName Hänggi
100 schema:givenName Peter
101 rdf:type schema:Person
102 Nf1507cee998d44f09d028e864cc1044f rdf:first N649d67d5db4843168cf570284b00f4f9
103 rdf:rest rdf:nil
104 Nfcdea12057ef49a2ae90fa6e00eb954f schema:affiliation https://www.grid.ac/institutes/grid.7307.3
105 schema:familyName Talkner
106 schema:givenName Peter
107 rdf:type schema:Person
108 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
109 schema:name Mathematical Sciences
110 rdf:type schema:DefinedTerm
111 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
112 schema:name Statistics
113 rdf:type schema:DefinedTerm
114 sg:journal.1034717 schema:issn 1745-2473
115 1745-2481
116 schema:name Nature Physics
117 rdf:type schema:Periodical
118 sg:pub.10.1038/nature04124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035005465
119 https://doi.org/10.1038/nature04124
120 rdf:type schema:CreativeWork
121 sg:pub.10.1038/ncomms3624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021936368
122 https://doi.org/10.1038/ncomms3624
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/nnano.2016.225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032452514
125 https://doi.org/10.1038/nnano.2016.225
126 rdf:type schema:CreativeWork
127 sg:pub.10.1038/nphoton.2016.73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018617797
128 https://doi.org/10.1038/nphoton.2016.73
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/nphys3169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010952195
131 https://doi.org/10.1038/nphys3169
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/nphys582 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013015298
134 https://doi.org/10.1038/nphys582
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/s0378-4371(03)00191-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049861561
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1021/nl0348239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056215710
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1063/1.4766946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058063474
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1063/1.4919539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020302295
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1088/0034-4885/64/6/201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002971979
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1088/1367-2630/7/1/014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002997551
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1103/physrevb.65.045317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037244222
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1103/physreve.65.051110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060728405
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1103/physrevlett.107.086805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035338377
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1103/physrevlett.113.057401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032362293
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1103/physrevlett.115.106801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015987655
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1103/physrevlett.117.206803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060766714
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1103/physrevlett.117.243005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060766890
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1103/physrevlett.67.1626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060803149
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1103/physrevlett.72.1947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060808692
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1103/physrevlett.75.1610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060811603
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1103/physrevlett.75.4157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060812244
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1103/physrevlett.76.1611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060812647
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1103/physrevlett.92.018303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037431371
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1103/physrevlett.96.076605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002906607
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1103/revmodphys.70.223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839421
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1103/revmodphys.85.1421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046153171
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1126/science.1094419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062449364
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1126/science.1141243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062455941
183 rdf:type schema:CreativeWork
184 https://www.grid.ac/institutes/grid.452665.6 schema:alternateName Nanosystems Initiative Munich
185 schema:name Institut für Physik, Universität Augsburg, Augsburg, Germany
186 Nanosystems Initiative Munich, Munich, Germany
187 rdf:type schema:Organization
188 https://www.grid.ac/institutes/grid.7307.3 schema:alternateName University of Augsburg
189 schema:name Institut für Physik, Universität Augsburg, Augsburg, Germany
190 rdf:type schema:Organization
191 https://www.grid.ac/institutes/grid.9122.8 schema:alternateName University of Hannover
192 schema:name Institut für Festkörperphysik, Leibniz Universität Hannover, Hanover, Germany
193 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...