Spatiotemporal signal propagation in complex networks View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Chittaranjan Hens, Uzi Harush, Simi Haber, Reuven Cohen, Baruch Barzel

ABSTRACT

A major achievement in the study of complex networks is the realization that diverse systems, from sub-cellular biology to social networks, exhibit universal topological characteristics. Yet, such universality does not naturally translate to the dynamics of these systems, as dynamic behaviour cannot be uniquely predicted from topology alone. Rather, it depends on the interplay of the network’s topology with the dynamic mechanisms of interaction between the nodes. Hence, systems with similar structure may exhibit profoundly different dynamic behaviour. We therefore seek a general theoretical framework to help us systematically translate topological elements into their predicted dynamic outcome. Here, we offer such a translation in the context of signal propagation, linking the topology of a network to the observed spatiotemporal spread of perturbative signals across it, thus capturing the network’s role in propagating local information. For a range of nonlinear dynamic models, we predict that the propagation rules condense into three highly distinctive dynamic regimes, characterized by the interplay between network paths, degree distribution and the interaction dynamics. As a result, classifying a system’s intrinsic interaction mechanisms into the relevant dynamic regime allows us to systematically translate topology into dynamic patterns of information propagation. Complex networks with identical topology may exhibit different dynamics. A systematic analysis of signal propagation in networks reveals the existence of three specific dynamic regimes that connect topological features to dynamic patterns. More... »

PAGES

403-412

Journal

TITLE

Nature Physics

ISSUE

4

VOLUME

15

From Grant

  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41567-018-0409-0

    DOI

    http://dx.doi.org/10.1038/s41567-018-0409-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111673471


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Indian Statistical Institute", 
              "id": "https://www.grid.ac/institutes/grid.39953.35", 
              "name": [
                "Department of Mathematics, Bar-Ilan University, Ramat-Gan, Israel", 
                "Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hens", 
            "givenName": "Chittaranjan", 
            "id": "sg:person.0777147567.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777147567.55"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Bar-Ilan University", 
              "id": "https://www.grid.ac/institutes/grid.22098.31", 
              "name": [
                "Department of Mathematics, Bar-Ilan University, Ramat-Gan, Israel"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Harush", 
            "givenName": "Uzi", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Bar-Ilan University", 
              "id": "https://www.grid.ac/institutes/grid.22098.31", 
              "name": [
                "Department of Mathematics, Bar-Ilan University, Ramat-Gan, Israel"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Haber", 
            "givenName": "Simi", 
            "id": "sg:person.011455012055.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011455012055.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Bar-Ilan University", 
              "id": "https://www.grid.ac/institutes/grid.22098.31", 
              "name": [
                "Department of Mathematics, Bar-Ilan University, Ramat-Gan, Israel"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cohen", 
            "givenName": "Reuven", 
            "id": "sg:person.013647657237.68", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013647657237.68"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Bar-Ilan University", 
              "id": "https://www.grid.ac/institutes/grid.22098.31", 
              "name": [
                "Department of Mathematics, Bar-Ilan University, Ramat-Gan, Israel"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Barzel", 
            "givenName": "Baruch", 
            "id": "sg:person.0726036351.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726036351.79"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nrn2886", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001312578", 
              "https://doi.org/10.1038/nrn2886"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrn2886", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001312578", 
              "https://doi.org/10.1038/nrn2886"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.69.045104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002793274"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.69.045104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002793274"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-69689-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004761286", 
              "https://doi.org/10.1007/978-3-642-69689-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-69689-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004761286", 
              "https://doi.org/10.1007/978-3-642-69689-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrn2575", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004953014", 
              "https://doi.org/10.1038/nrn2575"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/asi.21426", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005831504"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/asi.21426", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005831504"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04209", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006733745", 
              "https://doi.org/10.1038/nature04209"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04209", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006733745", 
              "https://doi.org/10.1038/nature04209"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1158684", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007743479"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.67.026112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008006377"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.67.026112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008006377"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0405728101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009231270"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.socnet.2009.02.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009304801"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.286.5439.509", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010080128"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.90.062710", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013220809"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.90.062710", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013220809"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.0010042", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014334566"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.0010042", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014334566"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms11061", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015650982", 
              "https://doi.org/10.1038/ncomms11061"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0308344101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016076593"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.86.3200", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018922144"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.86.3200", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018922144"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys2741", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022099795", 
              "https://doi.org/10.1038/nphys2741"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jtbi.2004.09.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024061493"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-7091-6601-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026774532", 
              "https://doi.org/10.1007/978-3-7091-6601-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-7091-6601-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026774532", 
              "https://doi.org/10.1007/978-3-7091-6601-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0702905104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028750812"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrm2503", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032681491", 
              "https://doi.org/10.1038/nrm2503"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.90.058701", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033811365"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.90.058701", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033811365"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.87.925", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034261529"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.87.925", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034261529"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms8186", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038598759", 
              "https://doi.org/10.1038/ncomms8186"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physa.2004.05.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040810946"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.98.4.1693", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042360588"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bib/bbk006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045656580"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature16948", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051997515", 
              "https://doi.org/10.1038/nature16948"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature16948", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051997515", 
              "https://doi.org/10.1038/nature16948"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.2737822", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057861862"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0951-7715/20/7/011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059109664"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.80.046104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060739637"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.80.046104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060739637"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.47.773", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060838809"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.47.773", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060838809"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.81.591", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060839683"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.81.591", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060839683"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1245200", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062469061"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/0471643505", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098661198"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/0471643505", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098661198"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511791383", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098667199"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/acprof:oso/9780199211517.001.0001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098746504"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/acprof:oso/9780199206650.001.0001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098762313"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-017-01916-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099714794", 
              "https://doi.org/10.1038/s41467-017-01916-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-05389-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1108493702", 
              "https://doi.org/10.1007/978-3-662-05389-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-05389-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1108493702", 
              "https://doi.org/10.1007/978-3-662-05389-8"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-04", 
        "datePublishedReg": "2019-04-01", 
        "description": "A major achievement in the study of complex networks is the realization that diverse systems, from sub-cellular biology to social networks, exhibit universal topological characteristics. Yet, such universality does not naturally translate to the dynamics of these systems, as dynamic behaviour cannot be uniquely predicted from topology alone. Rather, it depends on the interplay of the network\u2019s topology with the dynamic mechanisms of interaction between the nodes. Hence, systems with similar structure may exhibit profoundly different dynamic behaviour. We therefore seek a general theoretical framework to help us systematically translate topological elements into their predicted dynamic outcome. Here, we offer such a translation in the context of signal propagation, linking the topology of a network to the observed spatiotemporal spread of perturbative signals across it, thus capturing the network\u2019s role in propagating local information. For a range of nonlinear dynamic models, we predict that the propagation rules condense into three highly distinctive dynamic regimes, characterized by the interplay between network paths, degree distribution and the interaction dynamics. As a result, classifying a system\u2019s intrinsic interaction mechanisms into the relevant dynamic regime allows us to systematically translate topology into dynamic patterns of information propagation. Complex networks with identical topology may exhibit different dynamics. A systematic analysis of signal propagation in networks reveals the existence of three specific dynamic regimes that connect topological features to dynamic patterns.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41567-018-0409-0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7057168", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1034717", 
            "issn": [
              "1745-2473", 
              "1745-2481"
            ], 
            "name": "Nature Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "15"
          }
        ], 
        "name": "Spatiotemporal signal propagation in complex networks", 
        "pagination": "403-412", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "7e5d61b09164ed823f9f76173142d3c304a9bc464a5ebbb12e3ec65ed547cbed"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41567-018-0409-0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111673471"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41567-018-0409-0", 
          "https://app.dimensions.ai/details/publication/pub.1111673471"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T14:00", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130826_00000006.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/s41567-018-0409-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41567-018-0409-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41567-018-0409-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41567-018-0409-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41567-018-0409-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    226 TRIPLES      21 PREDICATES      67 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41567-018-0409-0 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nc560576a97054009a01efb4f2d330c54
    4 schema:citation sg:pub.10.1007/978-3-642-69689-3
    5 sg:pub.10.1007/978-3-662-05389-8
    6 sg:pub.10.1007/978-3-7091-6601-7
    7 sg:pub.10.1038/nature04209
    8 sg:pub.10.1038/nature16948
    9 sg:pub.10.1038/ncomms11061
    10 sg:pub.10.1038/ncomms8186
    11 sg:pub.10.1038/nphys2741
    12 sg:pub.10.1038/nrm2503
    13 sg:pub.10.1038/nrn2575
    14 sg:pub.10.1038/nrn2886
    15 sg:pub.10.1038/s41467-017-01916-3
    16 https://doi.org/10.1002/0471643505
    17 https://doi.org/10.1002/asi.21426
    18 https://doi.org/10.1016/j.jtbi.2004.09.006
    19 https://doi.org/10.1016/j.physa.2004.05.018
    20 https://doi.org/10.1016/j.socnet.2009.02.002
    21 https://doi.org/10.1017/cbo9780511791383
    22 https://doi.org/10.1063/1.2737822
    23 https://doi.org/10.1073/pnas.0308344101
    24 https://doi.org/10.1073/pnas.0405728101
    25 https://doi.org/10.1073/pnas.0702905104
    26 https://doi.org/10.1073/pnas.98.4.1693
    27 https://doi.org/10.1088/0951-7715/20/7/011
    28 https://doi.org/10.1093/acprof:oso/9780199206650.001.0001
    29 https://doi.org/10.1093/acprof:oso/9780199211517.001.0001
    30 https://doi.org/10.1093/bib/bbk006
    31 https://doi.org/10.1103/physreve.67.026112
    32 https://doi.org/10.1103/physreve.69.045104
    33 https://doi.org/10.1103/physreve.80.046104
    34 https://doi.org/10.1103/physreve.90.062710
    35 https://doi.org/10.1103/physrevlett.86.3200
    36 https://doi.org/10.1103/physrevlett.90.058701
    37 https://doi.org/10.1103/revmodphys.47.773
    38 https://doi.org/10.1103/revmodphys.81.591
    39 https://doi.org/10.1103/revmodphys.87.925
    40 https://doi.org/10.1126/science.1158684
    41 https://doi.org/10.1126/science.1245200
    42 https://doi.org/10.1126/science.286.5439.509
    43 https://doi.org/10.1371/journal.pcbi.0010042
    44 schema:datePublished 2019-04
    45 schema:datePublishedReg 2019-04-01
    46 schema:description A major achievement in the study of complex networks is the realization that diverse systems, from sub-cellular biology to social networks, exhibit universal topological characteristics. Yet, such universality does not naturally translate to the dynamics of these systems, as dynamic behaviour cannot be uniquely predicted from topology alone. Rather, it depends on the interplay of the network’s topology with the dynamic mechanisms of interaction between the nodes. Hence, systems with similar structure may exhibit profoundly different dynamic behaviour. We therefore seek a general theoretical framework to help us systematically translate topological elements into their predicted dynamic outcome. Here, we offer such a translation in the context of signal propagation, linking the topology of a network to the observed spatiotemporal spread of perturbative signals across it, thus capturing the network’s role in propagating local information. For a range of nonlinear dynamic models, we predict that the propagation rules condense into three highly distinctive dynamic regimes, characterized by the interplay between network paths, degree distribution and the interaction dynamics. As a result, classifying a system’s intrinsic interaction mechanisms into the relevant dynamic regime allows us to systematically translate topology into dynamic patterns of information propagation. Complex networks with identical topology may exhibit different dynamics. A systematic analysis of signal propagation in networks reveals the existence of three specific dynamic regimes that connect topological features to dynamic patterns.
    47 schema:genre research_article
    48 schema:inLanguage en
    49 schema:isAccessibleForFree false
    50 schema:isPartOf N44293f7a162d44d1b1d951ce2339f287
    51 N83db2ea4525840d6aff147273f9e8505
    52 sg:journal.1034717
    53 schema:name Spatiotemporal signal propagation in complex networks
    54 schema:pagination 403-412
    55 schema:productId N269367014f9b472eaf29b7b87a09f567
    56 N5a69fe5d786f43f2981ebe90777529de
    57 Nd5b1a78e0e12442a922c41282f8f9f7d
    58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111673471
    59 https://doi.org/10.1038/s41567-018-0409-0
    60 schema:sdDatePublished 2019-04-11T14:00
    61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    62 schema:sdPublisher N69c276afd3cc400b977ea1ebdd6b01ba
    63 schema:url https://www.nature.com/articles/s41567-018-0409-0
    64 sgo:license sg:explorer/license/
    65 sgo:sdDataset articles
    66 rdf:type schema:ScholarlyArticle
    67 N0c92d5ac62b84ffb9545c5daf6b6848e schema:affiliation https://www.grid.ac/institutes/grid.22098.31
    68 schema:familyName Harush
    69 schema:givenName Uzi
    70 rdf:type schema:Person
    71 N269367014f9b472eaf29b7b87a09f567 schema:name doi
    72 schema:value 10.1038/s41567-018-0409-0
    73 rdf:type schema:PropertyValue
    74 N44293f7a162d44d1b1d951ce2339f287 schema:issueNumber 4
    75 rdf:type schema:PublicationIssue
    76 N522c93be19e94a8285236d259cd7e3f8 rdf:first sg:person.0726036351.79
    77 rdf:rest rdf:nil
    78 N5a69fe5d786f43f2981ebe90777529de schema:name readcube_id
    79 schema:value 7e5d61b09164ed823f9f76173142d3c304a9bc464a5ebbb12e3ec65ed547cbed
    80 rdf:type schema:PropertyValue
    81 N66755447bec04fb188ec61bd9a536fde rdf:first N0c92d5ac62b84ffb9545c5daf6b6848e
    82 rdf:rest N6fe3ae13a2ab493ebab54102c134a34b
    83 N69c276afd3cc400b977ea1ebdd6b01ba schema:name Springer Nature - SN SciGraph project
    84 rdf:type schema:Organization
    85 N6fe3ae13a2ab493ebab54102c134a34b rdf:first sg:person.011455012055.20
    86 rdf:rest N8e0ac84c0adf40e2bd2f6b1b6a2d3b15
    87 N83db2ea4525840d6aff147273f9e8505 schema:volumeNumber 15
    88 rdf:type schema:PublicationVolume
    89 N8e0ac84c0adf40e2bd2f6b1b6a2d3b15 rdf:first sg:person.013647657237.68
    90 rdf:rest N522c93be19e94a8285236d259cd7e3f8
    91 Nc560576a97054009a01efb4f2d330c54 rdf:first sg:person.0777147567.55
    92 rdf:rest N66755447bec04fb188ec61bd9a536fde
    93 Nd5b1a78e0e12442a922c41282f8f9f7d schema:name dimensions_id
    94 schema:value pub.1111673471
    95 rdf:type schema:PropertyValue
    96 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    97 schema:name Mathematical Sciences
    98 rdf:type schema:DefinedTerm
    99 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    100 schema:name Pure Mathematics
    101 rdf:type schema:DefinedTerm
    102 sg:grant.7057168 http://pending.schema.org/fundedItem sg:pub.10.1038/s41567-018-0409-0
    103 rdf:type schema:MonetaryGrant
    104 sg:journal.1034717 schema:issn 1745-2473
    105 1745-2481
    106 schema:name Nature Physics
    107 rdf:type schema:Periodical
    108 sg:person.011455012055.20 schema:affiliation https://www.grid.ac/institutes/grid.22098.31
    109 schema:familyName Haber
    110 schema:givenName Simi
    111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011455012055.20
    112 rdf:type schema:Person
    113 sg:person.013647657237.68 schema:affiliation https://www.grid.ac/institutes/grid.22098.31
    114 schema:familyName Cohen
    115 schema:givenName Reuven
    116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013647657237.68
    117 rdf:type schema:Person
    118 sg:person.0726036351.79 schema:affiliation https://www.grid.ac/institutes/grid.22098.31
    119 schema:familyName Barzel
    120 schema:givenName Baruch
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726036351.79
    122 rdf:type schema:Person
    123 sg:person.0777147567.55 schema:affiliation https://www.grid.ac/institutes/grid.39953.35
    124 schema:familyName Hens
    125 schema:givenName Chittaranjan
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777147567.55
    127 rdf:type schema:Person
    128 sg:pub.10.1007/978-3-642-69689-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004761286
    129 https://doi.org/10.1007/978-3-642-69689-3
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/978-3-662-05389-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108493702
    132 https://doi.org/10.1007/978-3-662-05389-8
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/978-3-7091-6601-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026774532
    135 https://doi.org/10.1007/978-3-7091-6601-7
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1038/nature04209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006733745
    138 https://doi.org/10.1038/nature04209
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1038/nature16948 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051997515
    141 https://doi.org/10.1038/nature16948
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1038/ncomms11061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015650982
    144 https://doi.org/10.1038/ncomms11061
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1038/ncomms8186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038598759
    147 https://doi.org/10.1038/ncomms8186
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1038/nphys2741 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022099795
    150 https://doi.org/10.1038/nphys2741
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1038/nrm2503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032681491
    153 https://doi.org/10.1038/nrm2503
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1038/nrn2575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004953014
    156 https://doi.org/10.1038/nrn2575
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1038/nrn2886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001312578
    159 https://doi.org/10.1038/nrn2886
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1038/s41467-017-01916-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099714794
    162 https://doi.org/10.1038/s41467-017-01916-3
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1002/0471643505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661198
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1002/asi.21426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005831504
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1016/j.jtbi.2004.09.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024061493
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1016/j.physa.2004.05.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040810946
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1016/j.socnet.2009.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009304801
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1017/cbo9780511791383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098667199
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1063/1.2737822 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057861862
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1073/pnas.0308344101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016076593
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1073/pnas.0405728101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009231270
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1073/pnas.0702905104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028750812
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1073/pnas.98.4.1693 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042360588
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1088/0951-7715/20/7/011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059109664
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1093/acprof:oso/9780199206650.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098762313
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1093/acprof:oso/9780199211517.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098746504
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1093/bib/bbk006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045656580
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1103/physreve.67.026112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008006377
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1103/physreve.69.045104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002793274
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1103/physreve.80.046104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060739637
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1103/physreve.90.062710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013220809
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1103/physrevlett.86.3200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018922144
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1103/physrevlett.90.058701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033811365
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1103/revmodphys.47.773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060838809
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1103/revmodphys.81.591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839683
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1103/revmodphys.87.925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034261529
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1126/science.1158684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007743479
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1126/science.1245200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062469061
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1126/science.286.5439.509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010080128
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1371/journal.pcbi.0010042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014334566
    219 rdf:type schema:CreativeWork
    220 https://www.grid.ac/institutes/grid.22098.31 schema:alternateName Bar-Ilan University
    221 schema:name Department of Mathematics, Bar-Ilan University, Ramat-Gan, Israel
    222 rdf:type schema:Organization
    223 https://www.grid.ac/institutes/grid.39953.35 schema:alternateName Indian Statistical Institute
    224 schema:name Department of Mathematics, Bar-Ilan University, Ramat-Gan, Israel
    225 Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata, India
    226 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...