Biexcitonic optical Stark effects in monolayer molybdenum diselenide View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-11

AUTHORS

Chaw-Keong Yong, Jason Horng, Yuxia Shen, Hui Cai, Alex Wang, Chan-Shan Yang, Chung-Kuan Lin, Shilong Zhao, Kenji Watanabe, Takashi Taniguchi, Sefaattin Tongay, Feng Wang

ABSTRACT

Floquet states, where a periodic optical field coherently drives electrons in solids1–3, can enable novel quantum states of matter4–6. A prominent approach to realize Floquet states is based on the optical Stark effect. Previous studies on the optical Stark effect often treated the excited state in solids as free quasi-particles3,7–12. However, exciton–exciton interactions can be sizeably enhanced in low-dimensional systems and may lead to light–matter interactions that are qualitatively different from those in the non-interacting picture. Here we use monolayer molybdenum diselenide (MoSe2) as a model system to demonstrate that the driving optical field can couple a hierarchy of excitonic states, and the many-body inter-valley biexciton state plays a dominant role in the optical Stark effect. Specifically, the exciton–biexciton coupling in monolayer MoSe2 breaks down the valley selection rules based on the non-interacting exciton picture. The photon-dressed excitonic states exhibit an energy redshift, splitting or blueshift as the driving photon frequency varies below the exciton transition. We determine a binding energy of 21 meV for the inter-valley biexciton and a transition dipole moment of 9.3 debye for the exciton–biexciton transition. Our study reveals the crucial role of many-body effects in coherent light–matter interaction in atomically thin two-dimensional materials. Light–matter interactions in monolayer MoSe2 can be dramatically modified by the interactions between the excitonic states, leading to a rich set of light-driven coherent phenomena. More... »

PAGES

1092-1096

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41567-018-0216-7

DOI

http://dx.doi.org/10.1038/s41567-018-0216-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105832113


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Optical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "https://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Department of Physics, University of California at Berkeley, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yong", 
        "givenName": "Chaw-Keong", 
        "id": "sg:person.01023271320.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023271320.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "https://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Department of Physics, University of California at Berkeley, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Horng", 
        "givenName": "Jason", 
        "id": "sg:person.0623450157.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623450157.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Arizona State University", 
          "id": "https://www.grid.ac/institutes/grid.215654.1", 
          "name": [
            "School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shen", 
        "givenName": "Yuxia", 
        "id": "sg:person.012176304517.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012176304517.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Arizona State University", 
          "id": "https://www.grid.ac/institutes/grid.215654.1", 
          "name": [
            "School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cai", 
        "givenName": "Hui", 
        "id": "sg:person.01235671063.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235671063.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "https://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Department of Physics, University of California at Berkeley, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Alex", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "https://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Department of Physics, University of California at Berkeley, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Chan-Shan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "https://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Department of Physics, University of California at Berkeley, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Chung-Kuan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tsinghua\u2013Berkeley Shenzhen Institute", 
          "id": "https://www.grid.ac/institutes/grid.499361.0", 
          "name": [
            "Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Shilong", 
        "id": "sg:person.01044120424.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044120424.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.21941.3f", 
          "name": [
            "National Institute for Materials Science, Tsukuba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Watanabe", 
        "givenName": "Kenji", 
        "id": "sg:person.010026307551.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010026307551.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.21941.3f", 
          "name": [
            "National Institute for Materials Science, Tsukuba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Taniguchi", 
        "givenName": "Takashi", 
        "id": "sg:person.0765715521.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765715521.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Arizona State University", 
          "id": "https://www.grid.ac/institutes/grid.215654.1", 
          "name": [
            "School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tongay", 
        "givenName": "Sefaattin", 
        "id": "sg:person.0642257241.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642257241.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kavli Energy NanoScience Institute", 
          "id": "https://www.grid.ac/institutes/grid.494610.e", 
          "name": [
            "Department of Physics, University of California at Berkeley, Berkeley, CA, USA", 
            "Material Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA", 
            "Kavli Energy NanoScience Institute at University of California Berkeley and Lawrence Berkeley National Laboratory, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Feng", 
        "id": "sg:person.015133744140.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015133744140.57"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1126/science.aac7820", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008311347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009145791", 
          "https://doi.org/10.1038/nmat3505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat4156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017980983", 
          "https://doi.org/10.1038/nmat4156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2942", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018699053", 
          "https://doi.org/10.1038/nphys2942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3928", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022320212", 
          "https://doi.org/10.1038/nphys3928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms13074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024220979", 
          "https://doi.org/10.1038/ncomms13074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.92.205418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026351770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.92.205418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026351770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms9315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030430438", 
          "https://doi.org/10.1038/ncomms9315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3891", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030701671", 
          "https://doi.org/10.1038/nphys3891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl903868w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031417418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl903868w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031417418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1154798", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032645529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1250140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036074202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.5b03009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036620642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037682572", 
          "https://doi.org/10.1038/nphys3324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2012.96", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038550073", 
          "https://doi.org/10.1038/nnano.2012.96"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1926", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041781555", 
          "https://doi.org/10.1038/nphys1926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1882", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049548334", 
          "https://doi.org/10.1038/ncomms1882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat4061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051148621", 
          "https://doi.org/10.1038/nmat4061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.196802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053264408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.196802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053264408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.6b02998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055121749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.6b04419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055122001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3700/10/3/005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058947482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.100.703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060416861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.100.703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060416861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.138.b979", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060430850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.138.b979", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060430850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.126802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060764119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.126802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060764119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1061169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062445077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1258122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062470253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.11.000609", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065211221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aal2241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084500548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms15552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090275464", 
          "https://doi.org/10.1038/ncomms15552"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11", 
    "datePublishedReg": "2018-11-01", 
    "description": "Floquet states, where a periodic optical field coherently drives electrons in solids1\u20133, can enable novel quantum states of matter4\u20136. A prominent approach to realize Floquet states is based on the optical Stark effect. Previous studies on the optical Stark effect often treated the excited state in solids as free quasi-particles3,7\u201312. However, exciton\u2013exciton interactions can be sizeably enhanced in low-dimensional systems and may lead to light\u2013matter interactions that are qualitatively different from those in the non-interacting picture. Here we use monolayer molybdenum diselenide (MoSe2) as a model system to demonstrate that the driving optical field can couple a hierarchy of excitonic states, and the many-body inter-valley biexciton state plays a dominant role in the optical Stark effect. Specifically, the exciton\u2013biexciton coupling in monolayer MoSe2 breaks down the valley selection rules based on the non-interacting exciton picture. The photon-dressed excitonic states exhibit an energy redshift, splitting or blueshift as the driving photon frequency varies below the exciton transition. We determine a binding energy of 21 meV for the inter-valley biexciton and a transition dipole moment of 9.3 debye for the exciton\u2013biexciton transition. Our study reveals the crucial role of many-body effects in coherent light\u2013matter interaction in atomically thin two-dimensional materials. Light\u2013matter interactions in monolayer MoSe2 can be dramatically modified by the interactions between the excitonic states, leading to a rich set of light-driven coherent phenomena.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41567-018-0216-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4314170", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5885411", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4457042", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1034717", 
        "issn": [
          "1745-2473", 
          "1745-2481"
        ], 
        "name": "Nature Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "name": "Biexcitonic optical Stark effects in monolayer molybdenum diselenide", 
    "pagination": "1092-1096", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "71988d5e0d108160a8f20fffb32eefe07eef6ff390d70b97da4bca50da758563"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41567-018-0216-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105832113"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41567-018-0216-7", 
      "https://app.dimensions.ai/details/publication/pub.1105832113"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29197_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41567-018-0216-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41567-018-0216-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41567-018-0216-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41567-018-0216-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41567-018-0216-7'


 

This table displays all metadata directly associated to this object as RDF triples.

258 TRIPLES      21 PREDICATES      57 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41567-018-0216-7 schema:about anzsrc-for:02
2 anzsrc-for:0205
3 schema:author Nd4fdabc0a4da41239117e28ce6c1e280
4 schema:citation sg:pub.10.1038/ncomms13074
5 sg:pub.10.1038/ncomms15552
6 sg:pub.10.1038/ncomms1882
7 sg:pub.10.1038/ncomms9315
8 sg:pub.10.1038/nmat3505
9 sg:pub.10.1038/nmat4061
10 sg:pub.10.1038/nmat4156
11 sg:pub.10.1038/nnano.2012.96
12 sg:pub.10.1038/nphys1926
13 sg:pub.10.1038/nphys2942
14 sg:pub.10.1038/nphys3324
15 sg:pub.10.1038/nphys3891
16 sg:pub.10.1038/nphys3928
17 https://doi.org/10.1021/acs.nanolett.5b03009
18 https://doi.org/10.1021/acs.nanolett.6b02998
19 https://doi.org/10.1021/acs.nanolett.6b04419
20 https://doi.org/10.1021/nl903868w
21 https://doi.org/10.1088/0022-3700/10/3/005
22 https://doi.org/10.1103/physrev.100.703
23 https://doi.org/10.1103/physrev.138.b979
24 https://doi.org/10.1103/physrevb.92.205418
25 https://doi.org/10.1103/physrevlett.108.196802
26 https://doi.org/10.1103/physrevlett.115.126802
27 https://doi.org/10.1126/science.1061169
28 https://doi.org/10.1126/science.1154798
29 https://doi.org/10.1126/science.1250140
30 https://doi.org/10.1126/science.1258122
31 https://doi.org/10.1126/science.aac7820
32 https://doi.org/10.1126/science.aal2241
33 https://doi.org/10.1364/ol.11.000609
34 schema:datePublished 2018-11
35 schema:datePublishedReg 2018-11-01
36 schema:description Floquet states, where a periodic optical field coherently drives electrons in solids1–3, can enable novel quantum states of matter4–6. A prominent approach to realize Floquet states is based on the optical Stark effect. Previous studies on the optical Stark effect often treated the excited state in solids as free quasi-particles3,7–12. However, exciton–exciton interactions can be sizeably enhanced in low-dimensional systems and may lead to light–matter interactions that are qualitatively different from those in the non-interacting picture. Here we use monolayer molybdenum diselenide (MoSe2) as a model system to demonstrate that the driving optical field can couple a hierarchy of excitonic states, and the many-body inter-valley biexciton state plays a dominant role in the optical Stark effect. Specifically, the exciton–biexciton coupling in monolayer MoSe2 breaks down the valley selection rules based on the non-interacting exciton picture. The photon-dressed excitonic states exhibit an energy redshift, splitting or blueshift as the driving photon frequency varies below the exciton transition. We determine a binding energy of 21 meV for the inter-valley biexciton and a transition dipole moment of 9.3 debye for the exciton–biexciton transition. Our study reveals the crucial role of many-body effects in coherent light–matter interaction in atomically thin two-dimensional materials. Light–matter interactions in monolayer MoSe2 can be dramatically modified by the interactions between the excitonic states, leading to a rich set of light-driven coherent phenomena.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree true
40 schema:isPartOf N2a5286567d564ff4941ed09f5e4ec030
41 N439a8e6b42ab4d29a26c520f4a9bfb24
42 sg:journal.1034717
43 schema:name Biexcitonic optical Stark effects in monolayer molybdenum diselenide
44 schema:pagination 1092-1096
45 schema:productId N0d31a0285e384ada9e7927ef1a2f3e0c
46 N1154c66e9da7422f80ee05ebc3dd7989
47 Na0ea2522a723439fa3c2c0023ec24e5f
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105832113
49 https://doi.org/10.1038/s41567-018-0216-7
50 schema:sdDatePublished 2019-04-11T11:53
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N8fa84b391da4467eaa01074b1b4eef73
53 schema:url https://www.nature.com/articles/s41567-018-0216-7
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N0d31a0285e384ada9e7927ef1a2f3e0c schema:name dimensions_id
58 schema:value pub.1105832113
59 rdf:type schema:PropertyValue
60 N1154c66e9da7422f80ee05ebc3dd7989 schema:name readcube_id
61 schema:value 71988d5e0d108160a8f20fffb32eefe07eef6ff390d70b97da4bca50da758563
62 rdf:type schema:PropertyValue
63 N1540efa59ce94707a69adc4c77550ab0 rdf:first sg:person.0765715521.02
64 rdf:rest Nc815a4887eae45409a5a535416a2862d
65 N19f5feb00ece499797d539a0ef2cecc1 rdf:first Na6ac395ea3ce4ec88ff856a19b10fe56
66 rdf:rest N6214cbaef5284b7a94f0f1706ebdd8b9
67 N29b241fe723d4afbbdd3edeef4a8723a rdf:first sg:person.010026307551.76
68 rdf:rest N1540efa59ce94707a69adc4c77550ab0
69 N2a5286567d564ff4941ed09f5e4ec030 schema:volumeNumber 14
70 rdf:type schema:PublicationVolume
71 N400f71edb7934c0cbccf14edd8846940 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
72 schema:familyName Yang
73 schema:givenName Chan-Shan
74 rdf:type schema:Person
75 N439a8e6b42ab4d29a26c520f4a9bfb24 schema:issueNumber 11
76 rdf:type schema:PublicationIssue
77 N4640351efbb34439a02287089d63a601 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
78 schema:familyName Wang
79 schema:givenName Alex
80 rdf:type schema:Person
81 N6214cbaef5284b7a94f0f1706ebdd8b9 rdf:first sg:person.01044120424.89
82 rdf:rest N29b241fe723d4afbbdd3edeef4a8723a
83 N66be5601dae742168a527f9aabe60007 rdf:first N4640351efbb34439a02287089d63a601
84 rdf:rest Nc05b41a4ba674384b8c7b8b9ce70dae9
85 N7788eb81e3f243339fe7ed262d5ec0da rdf:first sg:person.01235671063.15
86 rdf:rest N66be5601dae742168a527f9aabe60007
87 N8d89aa3ea1dd4fcaa20abca2b51f981b rdf:first sg:person.0623450157.31
88 rdf:rest Nb568e852263a4cec87dc85cc9514362d
89 N8fa84b391da4467eaa01074b1b4eef73 schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 Na0ea2522a723439fa3c2c0023ec24e5f schema:name doi
92 schema:value 10.1038/s41567-018-0216-7
93 rdf:type schema:PropertyValue
94 Na6ac395ea3ce4ec88ff856a19b10fe56 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
95 schema:familyName Lin
96 schema:givenName Chung-Kuan
97 rdf:type schema:Person
98 Nb568e852263a4cec87dc85cc9514362d rdf:first sg:person.012176304517.40
99 rdf:rest N7788eb81e3f243339fe7ed262d5ec0da
100 Nc05b41a4ba674384b8c7b8b9ce70dae9 rdf:first N400f71edb7934c0cbccf14edd8846940
101 rdf:rest N19f5feb00ece499797d539a0ef2cecc1
102 Nc815a4887eae45409a5a535416a2862d rdf:first sg:person.0642257241.12
103 rdf:rest Nf64380a6dce84643ba4e19725054df27
104 Nd4fdabc0a4da41239117e28ce6c1e280 rdf:first sg:person.01023271320.19
105 rdf:rest N8d89aa3ea1dd4fcaa20abca2b51f981b
106 Nf64380a6dce84643ba4e19725054df27 rdf:first sg:person.015133744140.57
107 rdf:rest rdf:nil
108 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
109 schema:name Physical Sciences
110 rdf:type schema:DefinedTerm
111 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
112 schema:name Optical Physics
113 rdf:type schema:DefinedTerm
114 sg:grant.4314170 http://pending.schema.org/fundedItem sg:pub.10.1038/s41567-018-0216-7
115 rdf:type schema:MonetaryGrant
116 sg:grant.4457042 http://pending.schema.org/fundedItem sg:pub.10.1038/s41567-018-0216-7
117 rdf:type schema:MonetaryGrant
118 sg:grant.5885411 http://pending.schema.org/fundedItem sg:pub.10.1038/s41567-018-0216-7
119 rdf:type schema:MonetaryGrant
120 sg:journal.1034717 schema:issn 1745-2473
121 1745-2481
122 schema:name Nature Physics
123 rdf:type schema:Periodical
124 sg:person.010026307551.76 schema:affiliation https://www.grid.ac/institutes/grid.21941.3f
125 schema:familyName Watanabe
126 schema:givenName Kenji
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010026307551.76
128 rdf:type schema:Person
129 sg:person.01023271320.19 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
130 schema:familyName Yong
131 schema:givenName Chaw-Keong
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023271320.19
133 rdf:type schema:Person
134 sg:person.01044120424.89 schema:affiliation https://www.grid.ac/institutes/grid.499361.0
135 schema:familyName Zhao
136 schema:givenName Shilong
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044120424.89
138 rdf:type schema:Person
139 sg:person.012176304517.40 schema:affiliation https://www.grid.ac/institutes/grid.215654.1
140 schema:familyName Shen
141 schema:givenName Yuxia
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012176304517.40
143 rdf:type schema:Person
144 sg:person.01235671063.15 schema:affiliation https://www.grid.ac/institutes/grid.215654.1
145 schema:familyName Cai
146 schema:givenName Hui
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235671063.15
148 rdf:type schema:Person
149 sg:person.015133744140.57 schema:affiliation https://www.grid.ac/institutes/grid.494610.e
150 schema:familyName Wang
151 schema:givenName Feng
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015133744140.57
153 rdf:type schema:Person
154 sg:person.0623450157.31 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
155 schema:familyName Horng
156 schema:givenName Jason
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623450157.31
158 rdf:type schema:Person
159 sg:person.0642257241.12 schema:affiliation https://www.grid.ac/institutes/grid.215654.1
160 schema:familyName Tongay
161 schema:givenName Sefaattin
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642257241.12
163 rdf:type schema:Person
164 sg:person.0765715521.02 schema:affiliation https://www.grid.ac/institutes/grid.21941.3f
165 schema:familyName Taniguchi
166 schema:givenName Takashi
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765715521.02
168 rdf:type schema:Person
169 sg:pub.10.1038/ncomms13074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024220979
170 https://doi.org/10.1038/ncomms13074
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/ncomms15552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090275464
173 https://doi.org/10.1038/ncomms15552
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/ncomms1882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049548334
176 https://doi.org/10.1038/ncomms1882
177 rdf:type schema:CreativeWork
178 sg:pub.10.1038/ncomms9315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030430438
179 https://doi.org/10.1038/ncomms9315
180 rdf:type schema:CreativeWork
181 sg:pub.10.1038/nmat3505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009145791
182 https://doi.org/10.1038/nmat3505
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/nmat4061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051148621
185 https://doi.org/10.1038/nmat4061
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/nmat4156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017980983
188 https://doi.org/10.1038/nmat4156
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/nnano.2012.96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038550073
191 https://doi.org/10.1038/nnano.2012.96
192 rdf:type schema:CreativeWork
193 sg:pub.10.1038/nphys1926 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041781555
194 https://doi.org/10.1038/nphys1926
195 rdf:type schema:CreativeWork
196 sg:pub.10.1038/nphys2942 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018699053
197 https://doi.org/10.1038/nphys2942
198 rdf:type schema:CreativeWork
199 sg:pub.10.1038/nphys3324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037682572
200 https://doi.org/10.1038/nphys3324
201 rdf:type schema:CreativeWork
202 sg:pub.10.1038/nphys3891 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030701671
203 https://doi.org/10.1038/nphys3891
204 rdf:type schema:CreativeWork
205 sg:pub.10.1038/nphys3928 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022320212
206 https://doi.org/10.1038/nphys3928
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1021/acs.nanolett.5b03009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036620642
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1021/acs.nanolett.6b02998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055121749
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1021/acs.nanolett.6b04419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055122001
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1021/nl903868w schema:sameAs https://app.dimensions.ai/details/publication/pub.1031417418
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1088/0022-3700/10/3/005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058947482
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1103/physrev.100.703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060416861
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1103/physrev.138.b979 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060430850
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1103/physrevb.92.205418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026351770
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1103/physrevlett.108.196802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053264408
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1103/physrevlett.115.126802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060764119
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1126/science.1061169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062445077
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1126/science.1154798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032645529
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1126/science.1250140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036074202
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1126/science.1258122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062470253
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1126/science.aac7820 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008311347
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1126/science.aal2241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084500548
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1364/ol.11.000609 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065211221
241 rdf:type schema:CreativeWork
242 https://www.grid.ac/institutes/grid.215654.1 schema:alternateName Arizona State University
243 schema:name School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
244 rdf:type schema:Organization
245 https://www.grid.ac/institutes/grid.21941.3f schema:alternateName National Institute for Materials Science
246 schema:name National Institute for Materials Science, Tsukuba, Japan
247 rdf:type schema:Organization
248 https://www.grid.ac/institutes/grid.47840.3f schema:alternateName University of California, Berkeley
249 schema:name Department of Physics, University of California at Berkeley, Berkeley, CA, USA
250 rdf:type schema:Organization
251 https://www.grid.ac/institutes/grid.494610.e schema:alternateName Kavli Energy NanoScience Institute
252 schema:name Department of Physics, University of California at Berkeley, Berkeley, CA, USA
253 Kavli Energy NanoScience Institute at University of California Berkeley and Lawrence Berkeley National Laboratory, Berkeley, CA, USA
254 Material Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
255 rdf:type schema:Organization
256 https://www.grid.ac/institutes/grid.499361.0 schema:alternateName Tsinghua–Berkeley Shenzhen Institute
257 schema:name Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
258 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...