Measurements in two bases are sufficient for certifying high-dimensional entanglement View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-10

AUTHORS

Jessica Bavaresco, Natalia Herrera Valencia, Claude Klöckl, Matej Pivoluska, Paul Erker, Nicolai Friis, Mehul Malik, Marcus Huber

ABSTRACT

High-dimensional encoding of quantum information provides a way of transcending the limitations of current approaches to quantum communication, which are mostly based on the entanglement between qubits—two-dimensional quantum systems. One of the central challenges in the pursuit of high-dimensional alternatives is ascertaining the presence of high-dimensional entanglement within a given high-dimensional quantum state. In particular, it would be desirable to carry out such entanglement certification without resorting to inefficient full state tomography. Here, we show how carefully constructed measurements in two bases (one of which is not orthonormal) can be used to faithfully and efficiently certify bipartite high-dimensional states and their entanglement for any physical platform. To showcase the practicality of this approach under realistic conditions, we put it to the test for photons entangled in their orbital angular momentum. In our experimental set-up, we are able to verify 9-dimensional entanglement for a pair of photons on a 11-dimensional subspace each, at present the highest amount certified without any assumptions on the state. Certification of high-dimensional entanglement is required for improved quantum communication protocols, and is now shown to be achievable in an efficient manner by measuring quantum states twice in two different bases. More... »

PAGES

1032-1037

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41567-018-0203-z

DOI

http://dx.doi.org/10.1038/s41567-018-0203-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105584559


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Austrian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4299.6", 
          "name": [
            "Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bavaresco", 
        "givenName": "Jessica", 
        "id": "sg:person.016471110457.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016471110457.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aix-Marseille University", 
          "id": "https://www.grid.ac/institutes/grid.5399.6", 
          "name": [
            "Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, Vienna, Austria", 
            "Universit\u00e9 d\u2019Aix-Marseille, Centre de Saint-J\u00e9r\u00f4me, Marseille, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Valencia", 
        "givenName": "Natalia Herrera", 
        "id": "sg:person.016464263144.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016464263144.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Masaryk University", 
          "id": "https://www.grid.ac/institutes/grid.10267.32", 
          "name": [
            "Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, Vienna, Austria", 
            "Institute of Computer Science, Masaryk University, Brno, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kl\u00f6ckl", 
        "givenName": "Claude", 
        "id": "sg:person.013134615026.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013134615026.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physics", 
          "id": "https://www.grid.ac/institutes/grid.424884.6", 
          "name": [
            "Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, Vienna, Austria", 
            "Institute of Computer Science, Masaryk University, Brno, Czech Republic", 
            "Institute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pivoluska", 
        "givenName": "Matej", 
        "id": "sg:person.015157166437.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015157166437.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Autonomous University of Barcelona", 
          "id": "https://www.grid.ac/institutes/grid.7080.f", 
          "name": [
            "Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, Vienna, Austria", 
            "Faculty of Informatics, Universit\u00e0 della Svizzera italiana, Lugano, Switzerland", 
            "Universitat Autonoma de Barcelona, Bellaterra, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Erker", 
        "givenName": "Paul", 
        "id": "sg:person.010401641353.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010401641353.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Austrian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4299.6", 
          "name": [
            "Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Friis", 
        "givenName": "Nicolai", 
        "id": "sg:person.01324247237.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324247237.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Heriot-Watt University", 
          "id": "https://www.grid.ac/institutes/grid.9531.e", 
          "name": [
            "Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, Vienna, Austria", 
            "Institute of Photonics and Quantum Sciences (IPaQS), Heriot-Watt University, Edinburgh, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Malik", 
        "givenName": "Mehul", 
        "id": "sg:person.0653026633.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653026633.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Austrian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4299.6", 
          "name": [
            "Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huber", 
        "givenName": "Marcus", 
        "id": "sg:person.0601146377.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601146377.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/revmodphys.81.865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002548185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002548185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.140501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005675438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.140501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005675438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms10628", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006596153", 
          "https://doi.org/10.1038/ncomms10628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/104/30003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007487930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.2245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008906037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.2245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008906037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.87.062322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012608694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.87.062322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012608694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.010503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014879979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.010503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014879979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2016.12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016549874", 
          "https://doi.org/10.1038/nphoton.2016.12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms3781", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017489417", 
          "https://doi.org/10.1038/ncomms3781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/41/23/235303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018924146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.127902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022308394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.127902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022308394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.54.3824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022782738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.54.3824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022782738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2014.149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025448691", 
          "https://doi.org/10.1038/nphoton.2014.149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/8/5/075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025520135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/optica.2.000523", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025686794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.260501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026268148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.260501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026268148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.86.022311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027447176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.86.022311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027447176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/47/42/424005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031939764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms5502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036757588", 
          "https://doi.org/10.1038/ncomms5502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1402365111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038406568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.170409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038769832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.170409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038769832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.143601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043919435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.143601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043919435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.75.012305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044718863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.75.012305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044718863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsta.2015.0442", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046496575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0003-4916(89)90322-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050246099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.88.032309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052053490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.88.032309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052053490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.230501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052676371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.230501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052676371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1996", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053672994", 
          "https://doi.org/10.1038/nphys1996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.90.032328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060512787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.90.032328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060512787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.94.012303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060516125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.94.012303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060516125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.180405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060754278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.180405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060754278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.153601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060757514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.153601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060757514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.114.240401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060763719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.114.240401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060763719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.116.090405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060765109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.116.090405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060765109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.557", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060804963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.557", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060804963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.240401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060825701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.240401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060825701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2002.802612", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061649633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josaa.24.003500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065161842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.118.110501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084199170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.118.110501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084199170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.95.042315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084823996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.95.042315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084823996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms15485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085600763", 
          "https://doi.org/10.1038/ncomms15485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature22986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090279981", 
          "https://doi.org/10.1038/nature22986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature22986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090279981", 
          "https://doi.org/10.1038/nature22986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature22986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090279981", 
          "https://doi.org/10.1038/nature22986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms15971", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090878365", 
          "https://doi.org/10.1038/ncomms15971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.22331/q-2017-07-28-22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090983615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-017-01215-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092252225", 
          "https://doi.org/10.1038/s41467-017-01215-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.120.040403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100639780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.120.040403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100639780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.97.042312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103337768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.97.042312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103337768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.97.042338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106249712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.97.042338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106249712"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-10", 
    "datePublishedReg": "2018-10-01", 
    "description": "High-dimensional encoding of quantum information provides a way of transcending the limitations of current approaches to quantum communication, which are mostly based on the entanglement between qubits\u2014two-dimensional quantum systems. One of the central challenges in the pursuit of high-dimensional alternatives is ascertaining the presence of high-dimensional entanglement within a given high-dimensional quantum state. In particular, it would be desirable to carry out such entanglement certification without resorting to inefficient full state tomography. Here, we show how carefully constructed measurements in two bases (one of which is not orthonormal) can be used to faithfully and efficiently certify bipartite high-dimensional states and their entanglement for any physical platform. To showcase the practicality of this approach under realistic conditions, we put it to the test for photons entangled in their orbital angular momentum. In our experimental set-up, we are able to verify 9-dimensional entanglement for a pair of photons on a 11-dimensional subspace each, at present the highest amount certified without any assumptions on the state. Certification of high-dimensional entanglement is required for improved quantum communication protocols, and is now shown to be achievable in an efficient manner by measuring quantum states twice in two different bases.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41567-018-0203-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1034717", 
        "issn": [
          "1745-2473", 
          "1745-2481"
        ], 
        "name": "Nature Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "name": "Measurements in two bases are sufficient for certifying high-dimensional entanglement", 
    "pagination": "1032-1037", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "19db15c082b9a26e6790233ec0e69acd986327d217c4d324ddea2ea22d063938"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41567-018-0203-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105584559"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41567-018-0203-z", 
      "https://app.dimensions.ai/details/publication/pub.1105584559"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000604.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41567-018-0203-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41567-018-0203-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41567-018-0203-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41567-018-0203-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41567-018-0203-z'


 

This table displays all metadata directly associated to this object as RDF triples.

286 TRIPLES      21 PREDICATES      75 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41567-018-0203-z schema:about anzsrc-for:02
2 anzsrc-for:0206
3 schema:author Na37cb3180fbb49afa5691361318ff90a
4 schema:citation sg:pub.10.1038/nature22986
5 sg:pub.10.1038/ncomms10628
6 sg:pub.10.1038/ncomms15485
7 sg:pub.10.1038/ncomms15971
8 sg:pub.10.1038/ncomms3781
9 sg:pub.10.1038/ncomms5502
10 sg:pub.10.1038/nphoton.2014.149
11 sg:pub.10.1038/nphoton.2016.12
12 sg:pub.10.1038/nphys1996
13 sg:pub.10.1038/s41467-017-01215-x
14 https://doi.org/10.1016/0003-4916(89)90322-9
15 https://doi.org/10.1073/pnas.1402365111
16 https://doi.org/10.1088/1367-2630/8/5/075
17 https://doi.org/10.1088/1751-8113/41/23/235303
18 https://doi.org/10.1088/1751-8113/47/42/424005
19 https://doi.org/10.1098/rsta.2015.0442
20 https://doi.org/10.1103/physreva.54.3824
21 https://doi.org/10.1103/physreva.75.012305
22 https://doi.org/10.1103/physreva.86.022311
23 https://doi.org/10.1103/physreva.87.062322
24 https://doi.org/10.1103/physreva.88.032309
25 https://doi.org/10.1103/physreva.90.032328
26 https://doi.org/10.1103/physreva.94.012303
27 https://doi.org/10.1103/physreva.95.042315
28 https://doi.org/10.1103/physreva.97.042312
29 https://doi.org/10.1103/physreva.97.042338
30 https://doi.org/10.1103/physrevlett.101.180405
31 https://doi.org/10.1103/physrevlett.105.153601
32 https://doi.org/10.1103/physrevlett.110.143601
33 https://doi.org/10.1103/physrevlett.113.140501
34 https://doi.org/10.1103/physrevlett.114.240401
35 https://doi.org/10.1103/physrevlett.116.090405
36 https://doi.org/10.1103/physrevlett.118.110501
37 https://doi.org/10.1103/physrevlett.120.040403
38 https://doi.org/10.1103/physrevlett.68.557
39 https://doi.org/10.1103/physrevlett.80.2245
40 https://doi.org/10.1103/physrevlett.88.127902
41 https://doi.org/10.1103/physrevlett.89.240401
42 https://doi.org/10.1103/physrevlett.93.010503
43 https://doi.org/10.1103/physrevlett.95.260501
44 https://doi.org/10.1103/physrevlett.97.170409
45 https://doi.org/10.1103/physrevlett.98.230501
46 https://doi.org/10.1103/revmodphys.81.865
47 https://doi.org/10.1109/tit.2002.802612
48 https://doi.org/10.1209/0295-5075/104/30003
49 https://doi.org/10.1364/josaa.24.003500
50 https://doi.org/10.1364/optica.2.000523
51 https://doi.org/10.22331/q-2017-07-28-22
52 schema:datePublished 2018-10
53 schema:datePublishedReg 2018-10-01
54 schema:description High-dimensional encoding of quantum information provides a way of transcending the limitations of current approaches to quantum communication, which are mostly based on the entanglement between qubits—two-dimensional quantum systems. One of the central challenges in the pursuit of high-dimensional alternatives is ascertaining the presence of high-dimensional entanglement within a given high-dimensional quantum state. In particular, it would be desirable to carry out such entanglement certification without resorting to inefficient full state tomography. Here, we show how carefully constructed measurements in two bases (one of which is not orthonormal) can be used to faithfully and efficiently certify bipartite high-dimensional states and their entanglement for any physical platform. To showcase the practicality of this approach under realistic conditions, we put it to the test for photons entangled in their orbital angular momentum. In our experimental set-up, we are able to verify 9-dimensional entanglement for a pair of photons on a 11-dimensional subspace each, at present the highest amount certified without any assumptions on the state. Certification of high-dimensional entanglement is required for improved quantum communication protocols, and is now shown to be achievable in an efficient manner by measuring quantum states twice in two different bases.
55 schema:genre research_article
56 schema:inLanguage en
57 schema:isAccessibleForFree true
58 schema:isPartOf Nb3dc38a8a2ad477c9d4371c1c879e049
59 Nd692d44b3e3a411781afebe91e0a2ee8
60 sg:journal.1034717
61 schema:name Measurements in two bases are sufficient for certifying high-dimensional entanglement
62 schema:pagination 1032-1037
63 schema:productId N444bb636f4ac43bb89042f5e9650d490
64 Nce8a17b2d3634f2da978998bfc23caa6
65 Nf797edf2076b47cd86013de0318ca373
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105584559
67 https://doi.org/10.1038/s41567-018-0203-z
68 schema:sdDatePublished 2019-04-10T22:48
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher N001b35787f0c4242b00664fdcf6d3ced
71 schema:url https://www.nature.com/articles/s41567-018-0203-z
72 sgo:license sg:explorer/license/
73 sgo:sdDataset articles
74 rdf:type schema:ScholarlyArticle
75 N001b35787f0c4242b00664fdcf6d3ced schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 N18e052a348274f0b8f01e69ca311244d rdf:first sg:person.0601146377.48
78 rdf:rest rdf:nil
79 N1bcd6dd4e0a64426b31e5a5ea245049e rdf:first sg:person.010401641353.13
80 rdf:rest N45e5131cd215425f9289b345f6ca54cd
81 N2adb01bfe2744cdbb950827b4451fd3a rdf:first sg:person.016464263144.12
82 rdf:rest Nfc9da206f0924a68a9232d0210b40ecf
83 N444bb636f4ac43bb89042f5e9650d490 schema:name dimensions_id
84 schema:value pub.1105584559
85 rdf:type schema:PropertyValue
86 N45e5131cd215425f9289b345f6ca54cd rdf:first sg:person.01324247237.08
87 rdf:rest N707de0c9772e45a78e24ebca929fc01e
88 N707de0c9772e45a78e24ebca929fc01e rdf:first sg:person.0653026633.92
89 rdf:rest N18e052a348274f0b8f01e69ca311244d
90 Na37cb3180fbb49afa5691361318ff90a rdf:first sg:person.016471110457.07
91 rdf:rest N2adb01bfe2744cdbb950827b4451fd3a
92 Nb3dc38a8a2ad477c9d4371c1c879e049 schema:issueNumber 10
93 rdf:type schema:PublicationIssue
94 Nce8a17b2d3634f2da978998bfc23caa6 schema:name readcube_id
95 schema:value 19db15c082b9a26e6790233ec0e69acd986327d217c4d324ddea2ea22d063938
96 rdf:type schema:PropertyValue
97 Nd692d44b3e3a411781afebe91e0a2ee8 schema:volumeNumber 14
98 rdf:type schema:PublicationVolume
99 Ne100cc7fc10947a3bfd5e6735cd00f1a rdf:first sg:person.015157166437.03
100 rdf:rest N1bcd6dd4e0a64426b31e5a5ea245049e
101 Nf797edf2076b47cd86013de0318ca373 schema:name doi
102 schema:value 10.1038/s41567-018-0203-z
103 rdf:type schema:PropertyValue
104 Nfc9da206f0924a68a9232d0210b40ecf rdf:first sg:person.013134615026.78
105 rdf:rest Ne100cc7fc10947a3bfd5e6735cd00f1a
106 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
107 schema:name Physical Sciences
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
110 schema:name Quantum Physics
111 rdf:type schema:DefinedTerm
112 sg:journal.1034717 schema:issn 1745-2473
113 1745-2481
114 schema:name Nature Physics
115 rdf:type schema:Periodical
116 sg:person.010401641353.13 schema:affiliation https://www.grid.ac/institutes/grid.7080.f
117 schema:familyName Erker
118 schema:givenName Paul
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010401641353.13
120 rdf:type schema:Person
121 sg:person.013134615026.78 schema:affiliation https://www.grid.ac/institutes/grid.10267.32
122 schema:familyName Klöckl
123 schema:givenName Claude
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013134615026.78
125 rdf:type schema:Person
126 sg:person.01324247237.08 schema:affiliation https://www.grid.ac/institutes/grid.4299.6
127 schema:familyName Friis
128 schema:givenName Nicolai
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324247237.08
130 rdf:type schema:Person
131 sg:person.015157166437.03 schema:affiliation https://www.grid.ac/institutes/grid.424884.6
132 schema:familyName Pivoluska
133 schema:givenName Matej
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015157166437.03
135 rdf:type schema:Person
136 sg:person.016464263144.12 schema:affiliation https://www.grid.ac/institutes/grid.5399.6
137 schema:familyName Valencia
138 schema:givenName Natalia Herrera
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016464263144.12
140 rdf:type schema:Person
141 sg:person.016471110457.07 schema:affiliation https://www.grid.ac/institutes/grid.4299.6
142 schema:familyName Bavaresco
143 schema:givenName Jessica
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016471110457.07
145 rdf:type schema:Person
146 sg:person.0601146377.48 schema:affiliation https://www.grid.ac/institutes/grid.4299.6
147 schema:familyName Huber
148 schema:givenName Marcus
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601146377.48
150 rdf:type schema:Person
151 sg:person.0653026633.92 schema:affiliation https://www.grid.ac/institutes/grid.9531.e
152 schema:familyName Malik
153 schema:givenName Mehul
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653026633.92
155 rdf:type schema:Person
156 sg:pub.10.1038/nature22986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090279981
157 https://doi.org/10.1038/nature22986
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/ncomms10628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006596153
160 https://doi.org/10.1038/ncomms10628
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/ncomms15485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085600763
163 https://doi.org/10.1038/ncomms15485
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/ncomms15971 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090878365
166 https://doi.org/10.1038/ncomms15971
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/ncomms3781 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017489417
169 https://doi.org/10.1038/ncomms3781
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/ncomms5502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036757588
172 https://doi.org/10.1038/ncomms5502
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/nphoton.2014.149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025448691
175 https://doi.org/10.1038/nphoton.2014.149
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/nphoton.2016.12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016549874
178 https://doi.org/10.1038/nphoton.2016.12
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/nphys1996 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053672994
181 https://doi.org/10.1038/nphys1996
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/s41467-017-01215-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1092252225
184 https://doi.org/10.1038/s41467-017-01215-x
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/0003-4916(89)90322-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050246099
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1073/pnas.1402365111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038406568
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1088/1367-2630/8/5/075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025520135
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1088/1751-8113/41/23/235303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018924146
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1088/1751-8113/47/42/424005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031939764
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1098/rsta.2015.0442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046496575
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1103/physreva.54.3824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022782738
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1103/physreva.75.012305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044718863
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1103/physreva.86.022311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027447176
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1103/physreva.87.062322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012608694
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1103/physreva.88.032309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052053490
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1103/physreva.90.032328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060512787
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1103/physreva.94.012303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060516125
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1103/physreva.95.042315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084823996
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1103/physreva.97.042312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103337768
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1103/physreva.97.042338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106249712
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1103/physrevlett.101.180405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060754278
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1103/physrevlett.105.153601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060757514
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1103/physrevlett.110.143601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043919435
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1103/physrevlett.113.140501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005675438
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1103/physrevlett.114.240401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060763719
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1103/physrevlett.116.090405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060765109
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1103/physrevlett.118.110501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084199170
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1103/physrevlett.120.040403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100639780
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1103/physrevlett.68.557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060804963
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1103/physrevlett.80.2245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008906037
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1103/physrevlett.88.127902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022308394
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1103/physrevlett.89.240401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060825701
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1103/physrevlett.93.010503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014879979
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1103/physrevlett.95.260501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026268148
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1103/physrevlett.97.170409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038769832
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1103/physrevlett.98.230501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052676371
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1103/revmodphys.81.865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002548185
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1109/tit.2002.802612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061649633
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1209/0295-5075/104/30003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007487930
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1364/josaa.24.003500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065161842
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1364/optica.2.000523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025686794
259 rdf:type schema:CreativeWork
260 https://doi.org/10.22331/q-2017-07-28-22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090983615
261 rdf:type schema:CreativeWork
262 https://www.grid.ac/institutes/grid.10267.32 schema:alternateName Masaryk University
263 schema:name Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, Vienna, Austria
264 Institute of Computer Science, Masaryk University, Brno, Czech Republic
265 rdf:type schema:Organization
266 https://www.grid.ac/institutes/grid.424884.6 schema:alternateName Institute of Physics
267 schema:name Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, Vienna, Austria
268 Institute of Computer Science, Masaryk University, Brno, Czech Republic
269 Institute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia
270 rdf:type schema:Organization
271 https://www.grid.ac/institutes/grid.4299.6 schema:alternateName Austrian Academy of Sciences
272 schema:name Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, Vienna, Austria
273 rdf:type schema:Organization
274 https://www.grid.ac/institutes/grid.5399.6 schema:alternateName Aix-Marseille University
275 schema:name Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, Vienna, Austria
276 Université d’Aix-Marseille, Centre de Saint-Jérôme, Marseille, France
277 rdf:type schema:Organization
278 https://www.grid.ac/institutes/grid.7080.f schema:alternateName Autonomous University of Barcelona
279 schema:name Faculty of Informatics, Università della Svizzera italiana, Lugano, Switzerland
280 Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, Vienna, Austria
281 Universitat Autonoma de Barcelona, Bellaterra, Barcelona, Spain
282 rdf:type schema:Organization
283 https://www.grid.ac/institutes/grid.9531.e schema:alternateName Heriot-Watt University
284 schema:name Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, Vienna, Austria
285 Institute of Photonics and Quantum Sciences (IPaQS), Heriot-Watt University, Edinburgh, UK
286 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...