Even-denominator fractional quantum Hall states at an isospin transition in monolayer graphene View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-09

AUTHORS

A. A. Zibrov, E. M. Spanton, H. Zhou, C. Kometter, T. Taniguchi, K. Watanabe, A. F. Young

ABSTRACT

In monolayer graphene, the two inequivalent sublattices of carbon atoms combine with the electron spin to give electrons a nearly fourfold degenerate internal isospin. At high magnetic fields, the isospin degeneracy increases the already large intrinsic degeneracy of the two-dimensional Landau levels, making low-disorder graphene systems a versatile platform for studying multicomponent quantum magnetism. Here, we describe magnetocapacitance experiments of ultraclean monolayer graphene devices in which a hexagonal boron nitride substrate breaks the symmetry between carbon sublattices. We observe a phase transition in the isospin system, which is marked by unusual transitions in odd-denominator fractional quantum Hall states for filling factors ν near charge neutrality and by the unexpected appearance of incompressible even-denominator fractional quantum Hall states at ν = ±1/2 and ν = ±1/4. We propose a scenario in which the observed states are multicomponent fractional quantum Hall states incorporating correlations between electrons on different carbon sublattices, associated with a quantum Hall analogue of the Néel-to-valence bond solid transition that occurs at charge neutrality. Quantum Hall states are observed in monolayer graphene at even-denominator fractional filling of the lowest Landau level. This is linked to transitions in the spin and valley structure of the ground state. More... »

PAGES

930-935

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41567-018-0190-0

DOI

http://dx.doi.org/10.1038/s41567-018-0190-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105236495


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of California, Santa Barbara", 
          "id": "https://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "Department of Physics, University of California, Santa Barbara, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zibrov", 
        "givenName": "A. A.", 
        "id": "sg:person.011435435714.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011435435714.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Santa Barbara", 
          "id": "https://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "California Nanosystems Institute, University of California at Santa Barbara, Santa Barbara, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Spanton", 
        "givenName": "E. M.", 
        "id": "sg:person.0752375145.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752375145.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Santa Barbara", 
          "id": "https://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "Department of Physics, University of California, Santa Barbara, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "H.", 
        "id": "sg:person.015566043563.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015566043563.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Santa Barbara", 
          "id": "https://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "Department of Physics, University of California, Santa Barbara, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kometter", 
        "givenName": "C.", 
        "id": "sg:person.014770463163.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014770463163.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.21941.3f", 
          "name": [
            "Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Taniguchi", 
        "givenName": "T.", 
        "id": "sg:person.0765715521.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765715521.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.21941.3f", 
          "name": [
            "Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Watanabe", 
        "givenName": "K.", 
        "id": "sg:person.010026307551.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010026307551.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Santa Barbara", 
          "id": "https://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "Department of Physics, University of California, Santa Barbara, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Young", 
        "givenName": "A. F.", 
        "id": "sg:person.01067623275.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067623275.94"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature08522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000094388", 
          "https://doi.org/10.1038/nature08522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000094388", 
          "https://doi.org/10.1038/nature08522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.086401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000687393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.086401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000687393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.126801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001673667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.126801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001673667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.115407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003069569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.115407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003069569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.176802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004736637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.176802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004736637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.126804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006233960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.126804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006233960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.114.226801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006466169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.114.226801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006466169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.256802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008681103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.256802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008681103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/24/23/235601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010073595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.115410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010084283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.115410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010084283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010299900", 
          "https://doi.org/10.1038/nphys2007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010498483", 
          "https://doi.org/10.1038/nature12800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1237240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011524156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.155439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013657064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.155439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013657064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.256602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015081104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.256602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015081104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1244358", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016025802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.75.165411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016367596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.75.165411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016367596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.176602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017758587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.176602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017758587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.046804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020236597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.046804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020236597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.235432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021829598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.235432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021829598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.76.081403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023013410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.76.081403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023013410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.89.165313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024259908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.89.165313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024259908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.216601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026273331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.216601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026273331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.136806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030099143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.136806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030099143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.91.045109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030508461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.91.045109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030508461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.046803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030666833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.046803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030666833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3259", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030767939", 
          "https://doi.org/10.1038/nphys3259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.216801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031333681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.216801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031333681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms6838", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032679901", 
          "https://doi.org/10.1038/ncomms6838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ssc.2008.02.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034642959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.076802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034991377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.076802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034991377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.195427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036930173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.195427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036930173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.74.075422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039988058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.74.075422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039988058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.75.245440", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041918577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.75.245440", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041918577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.206801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047723765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.206801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047723765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl5003922", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056220662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3719/15/36/006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058960279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.31.6597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060537583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.31.6597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060537583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.266804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060754570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.266804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060754570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.59.1776", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060795715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.59.1776", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060795715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.1379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060804133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.1379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060804133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.1383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060804134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.1383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060804134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.674", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060804996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.674", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060804996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.3926", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060812189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.3926", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060812189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1091806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062449125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1224784", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062466855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.78.104708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063124353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.119.027601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090718777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.119.027601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090718777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature23893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091858685", 
          "https://doi.org/10.1038/nature23893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature23893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091858685", 
          "https://doi.org/10.1038/nature23893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aao2521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092105302"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-09", 
    "datePublishedReg": "2018-09-01", 
    "description": "In monolayer graphene, the two inequivalent sublattices of carbon atoms combine with the electron spin to give electrons a nearly fourfold degenerate internal isospin. At high magnetic fields, the isospin degeneracy increases the already large intrinsic degeneracy of the two-dimensional Landau levels, making low-disorder graphene systems a versatile platform for studying multicomponent quantum magnetism. Here, we describe magnetocapacitance experiments of ultraclean monolayer graphene devices in which a hexagonal boron nitride substrate breaks the symmetry between carbon sublattices. We observe a phase transition in the isospin system, which is marked by unusual transitions in odd-denominator fractional quantum Hall states for filling factors \u03bd near charge neutrality and by the unexpected appearance of incompressible even-denominator fractional quantum Hall states at \u03bd = \u00b11/2 and \u03bd = \u00b11/4. We propose a scenario in which the observed states are multicomponent fractional quantum Hall states incorporating correlations between electrons on different carbon sublattices, associated with a quantum Hall analogue of the N\u00e9el-to-valence bond solid transition that occurs at charge neutrality. Quantum Hall states are observed in monolayer graphene at even-denominator fractional filling of the lowest Landau level. This is linked to transitions in the spin and valley structure of the ground state.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41567-018-0190-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6542859", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5885411", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3479346", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1034717", 
        "issn": [
          "1745-2473", 
          "1745-2481"
        ], 
        "name": "Nature Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "name": "Even-denominator fractional quantum Hall states at an isospin transition in monolayer graphene", 
    "pagination": "930-935", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "03ebc4709b6dd02ff67e71715d5011d54e64cc08e6f20b8da2b6462497be7e08"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41567-018-0190-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105236495"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41567-018-0190-0", 
      "https://app.dimensions.ai/details/publication/pub.1105236495"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000572.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41567-018-0190-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41567-018-0190-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41567-018-0190-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41567-018-0190-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41567-018-0190-0'


 

This table displays all metadata directly associated to this object as RDF triples.

269 TRIPLES      21 PREDICATES      77 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41567-018-0190-0 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N63d0e37af8e34656b33751c13247c19a
4 schema:citation sg:pub.10.1038/nature08522
5 sg:pub.10.1038/nature12800
6 sg:pub.10.1038/nature23893
7 sg:pub.10.1038/ncomms6838
8 sg:pub.10.1038/nphys2007
9 sg:pub.10.1038/nphys3259
10 https://doi.org/10.1016/j.ssc.2008.02.024
11 https://doi.org/10.1021/nl5003922
12 https://doi.org/10.1088/0022-3719/15/36/006
13 https://doi.org/10.1088/0953-8984/24/23/235601
14 https://doi.org/10.1103/physrevb.31.6597
15 https://doi.org/10.1103/physrevb.74.075422
16 https://doi.org/10.1103/physrevb.75.165411
17 https://doi.org/10.1103/physrevb.75.245440
18 https://doi.org/10.1103/physrevb.76.081403
19 https://doi.org/10.1103/physrevb.81.115410
20 https://doi.org/10.1103/physrevb.85.155439
21 https://doi.org/10.1103/physrevb.88.115407
22 https://doi.org/10.1103/physrevb.89.165313
23 https://doi.org/10.1103/physrevb.90.195427
24 https://doi.org/10.1103/physrevb.90.235432
25 https://doi.org/10.1103/physrevb.91.045109
26 https://doi.org/10.1103/physrevlett.100.206801
27 https://doi.org/10.1103/physrevlett.101.266804
28 https://doi.org/10.1103/physrevlett.103.216801
29 https://doi.org/10.1103/physrevlett.103.256802
30 https://doi.org/10.1103/physrevlett.105.176802
31 https://doi.org/10.1103/physrevlett.107.176602
32 https://doi.org/10.1103/physrevlett.109.046803
33 https://doi.org/10.1103/physrevlett.110.216601
34 https://doi.org/10.1103/physrevlett.111.076802
35 https://doi.org/10.1103/physrevlett.112.046804
36 https://doi.org/10.1103/physrevlett.112.126804
37 https://doi.org/10.1103/physrevlett.113.086401
38 https://doi.org/10.1103/physrevlett.114.226801
39 https://doi.org/10.1103/physrevlett.119.027601
40 https://doi.org/10.1103/physrevlett.59.1776
41 https://doi.org/10.1103/physrevlett.68.1379
42 https://doi.org/10.1103/physrevlett.68.1383
43 https://doi.org/10.1103/physrevlett.68.674
44 https://doi.org/10.1103/physrevlett.75.3926
45 https://doi.org/10.1103/physrevlett.96.136806
46 https://doi.org/10.1103/physrevlett.96.256602
47 https://doi.org/10.1103/physrevlett.97.126801
48 https://doi.org/10.1126/science.1091806
49 https://doi.org/10.1126/science.1224784
50 https://doi.org/10.1126/science.1237240
51 https://doi.org/10.1126/science.1244358
52 https://doi.org/10.1126/science.aao2521
53 https://doi.org/10.1143/jpsj.78.104708
54 schema:datePublished 2018-09
55 schema:datePublishedReg 2018-09-01
56 schema:description In monolayer graphene, the two inequivalent sublattices of carbon atoms combine with the electron spin to give electrons a nearly fourfold degenerate internal isospin. At high magnetic fields, the isospin degeneracy increases the already large intrinsic degeneracy of the two-dimensional Landau levels, making low-disorder graphene systems a versatile platform for studying multicomponent quantum magnetism. Here, we describe magnetocapacitance experiments of ultraclean monolayer graphene devices in which a hexagonal boron nitride substrate breaks the symmetry between carbon sublattices. We observe a phase transition in the isospin system, which is marked by unusual transitions in odd-denominator fractional quantum Hall states for filling factors ν near charge neutrality and by the unexpected appearance of incompressible even-denominator fractional quantum Hall states at ν = ±1/2 and ν = ±1/4. We propose a scenario in which the observed states are multicomponent fractional quantum Hall states incorporating correlations between electrons on different carbon sublattices, associated with a quantum Hall analogue of the Néel-to-valence bond solid transition that occurs at charge neutrality. Quantum Hall states are observed in monolayer graphene at even-denominator fractional filling of the lowest Landau level. This is linked to transitions in the spin and valley structure of the ground state.
57 schema:genre research_article
58 schema:inLanguage en
59 schema:isAccessibleForFree true
60 schema:isPartOf N0c9598d7d4174a068b6604664380f968
61 N219744dfbc06439493b84817a2fbc40f
62 sg:journal.1034717
63 schema:name Even-denominator fractional quantum Hall states at an isospin transition in monolayer graphene
64 schema:pagination 930-935
65 schema:productId N2089523f0daa43c189cd59c5d4e3e34a
66 N8718e138110847c9a75c483db5685146
67 Nd747183d1c4c483c941fcad178df8ee3
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105236495
69 https://doi.org/10.1038/s41567-018-0190-0
70 schema:sdDatePublished 2019-04-11T00:26
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher N7d635c21981f458788f5cd76fbce36e8
73 schema:url https://www.nature.com/articles/s41567-018-0190-0
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N0c9598d7d4174a068b6604664380f968 schema:issueNumber 9
78 rdf:type schema:PublicationIssue
79 N15695079cdbf4d92ac2bf095dfda03e8 rdf:first sg:person.014770463163.51
80 rdf:rest Nc0924e9a1882429d8f0e71794f83da48
81 N17d20866608745e982a4bf8350611bf8 rdf:first sg:person.01067623275.94
82 rdf:rest rdf:nil
83 N2089523f0daa43c189cd59c5d4e3e34a schema:name dimensions_id
84 schema:value pub.1105236495
85 rdf:type schema:PropertyValue
86 N219744dfbc06439493b84817a2fbc40f schema:volumeNumber 14
87 rdf:type schema:PublicationVolume
88 N63d0e37af8e34656b33751c13247c19a rdf:first sg:person.011435435714.56
89 rdf:rest Ncd661e74ace74308b72d3a7f336e4586
90 N7d635c21981f458788f5cd76fbce36e8 schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 N8718e138110847c9a75c483db5685146 schema:name readcube_id
93 schema:value 03ebc4709b6dd02ff67e71715d5011d54e64cc08e6f20b8da2b6462497be7e08
94 rdf:type schema:PropertyValue
95 N9ede28087a144757b4221ce11a79b620 rdf:first sg:person.010026307551.76
96 rdf:rest N17d20866608745e982a4bf8350611bf8
97 Nc0924e9a1882429d8f0e71794f83da48 rdf:first sg:person.0765715521.02
98 rdf:rest N9ede28087a144757b4221ce11a79b620
99 Ncd661e74ace74308b72d3a7f336e4586 rdf:first sg:person.0752375145.18
100 rdf:rest Nce8046539bbd459bbd7e070619b1cf9a
101 Nce8046539bbd459bbd7e070619b1cf9a rdf:first sg:person.015566043563.49
102 rdf:rest N15695079cdbf4d92ac2bf095dfda03e8
103 Nd747183d1c4c483c941fcad178df8ee3 schema:name doi
104 schema:value 10.1038/s41567-018-0190-0
105 rdf:type schema:PropertyValue
106 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
107 schema:name Physical Sciences
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
110 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
111 rdf:type schema:DefinedTerm
112 sg:grant.3479346 http://pending.schema.org/fundedItem sg:pub.10.1038/s41567-018-0190-0
113 rdf:type schema:MonetaryGrant
114 sg:grant.5885411 http://pending.schema.org/fundedItem sg:pub.10.1038/s41567-018-0190-0
115 rdf:type schema:MonetaryGrant
116 sg:grant.6542859 http://pending.schema.org/fundedItem sg:pub.10.1038/s41567-018-0190-0
117 rdf:type schema:MonetaryGrant
118 sg:journal.1034717 schema:issn 1745-2473
119 1745-2481
120 schema:name Nature Physics
121 rdf:type schema:Periodical
122 sg:person.010026307551.76 schema:affiliation https://www.grid.ac/institutes/grid.21941.3f
123 schema:familyName Watanabe
124 schema:givenName K.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010026307551.76
126 rdf:type schema:Person
127 sg:person.01067623275.94 schema:affiliation https://www.grid.ac/institutes/grid.133342.4
128 schema:familyName Young
129 schema:givenName A. F.
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067623275.94
131 rdf:type schema:Person
132 sg:person.011435435714.56 schema:affiliation https://www.grid.ac/institutes/grid.133342.4
133 schema:familyName Zibrov
134 schema:givenName A. A.
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011435435714.56
136 rdf:type schema:Person
137 sg:person.014770463163.51 schema:affiliation https://www.grid.ac/institutes/grid.133342.4
138 schema:familyName Kometter
139 schema:givenName C.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014770463163.51
141 rdf:type schema:Person
142 sg:person.015566043563.49 schema:affiliation https://www.grid.ac/institutes/grid.133342.4
143 schema:familyName Zhou
144 schema:givenName H.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015566043563.49
146 rdf:type schema:Person
147 sg:person.0752375145.18 schema:affiliation https://www.grid.ac/institutes/grid.133342.4
148 schema:familyName Spanton
149 schema:givenName E. M.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752375145.18
151 rdf:type schema:Person
152 sg:person.0765715521.02 schema:affiliation https://www.grid.ac/institutes/grid.21941.3f
153 schema:familyName Taniguchi
154 schema:givenName T.
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765715521.02
156 rdf:type schema:Person
157 sg:pub.10.1038/nature08522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000094388
158 https://doi.org/10.1038/nature08522
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/nature12800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010498483
161 https://doi.org/10.1038/nature12800
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/nature23893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091858685
164 https://doi.org/10.1038/nature23893
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/ncomms6838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032679901
167 https://doi.org/10.1038/ncomms6838
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/nphys2007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010299900
170 https://doi.org/10.1038/nphys2007
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/nphys3259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030767939
173 https://doi.org/10.1038/nphys3259
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.ssc.2008.02.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034642959
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1021/nl5003922 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056220662
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1088/0022-3719/15/36/006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058960279
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1088/0953-8984/24/23/235601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010073595
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1103/physrevb.31.6597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060537583
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1103/physrevb.74.075422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039988058
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1103/physrevb.75.165411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016367596
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1103/physrevb.75.245440 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041918577
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1103/physrevb.76.081403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023013410
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1103/physrevb.81.115410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010084283
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1103/physrevb.85.155439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013657064
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1103/physrevb.88.115407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003069569
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1103/physrevb.89.165313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024259908
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1103/physrevb.90.195427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036930173
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1103/physrevb.90.235432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021829598
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1103/physrevb.91.045109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030508461
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1103/physrevlett.100.206801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047723765
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1103/physrevlett.101.266804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060754570
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1103/physrevlett.103.216801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031333681
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1103/physrevlett.103.256802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008681103
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1103/physrevlett.105.176802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004736637
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1103/physrevlett.107.176602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017758587
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1103/physrevlett.109.046803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030666833
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1103/physrevlett.110.216601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026273331
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1103/physrevlett.111.076802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034991377
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1103/physrevlett.112.046804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020236597
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1103/physrevlett.112.126804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006233960
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1103/physrevlett.113.086401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000687393
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1103/physrevlett.114.226801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006466169
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1103/physrevlett.119.027601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090718777
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1103/physrevlett.59.1776 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060795715
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1103/physrevlett.68.1379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060804133
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1103/physrevlett.68.1383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060804134
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1103/physrevlett.68.674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060804996
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1103/physrevlett.75.3926 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060812189
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1103/physrevlett.96.136806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030099143
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1103/physrevlett.96.256602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015081104
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1103/physrevlett.97.126801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001673667
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1126/science.1091806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062449125
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1126/science.1224784 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062466855
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1126/science.1237240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011524156
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1126/science.1244358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016025802
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1126/science.aao2521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092105302
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1143/jpsj.78.104708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063124353
262 rdf:type schema:CreativeWork
263 https://www.grid.ac/institutes/grid.133342.4 schema:alternateName University of California, Santa Barbara
264 schema:name California Nanosystems Institute, University of California at Santa Barbara, Santa Barbara, CA, USA
265 Department of Physics, University of California, Santa Barbara, CA, USA
266 rdf:type schema:Organization
267 https://www.grid.ac/institutes/grid.21941.3f schema:alternateName National Institute for Materials Science
268 schema:name Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba, Japan
269 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...