Direct evidence of ferromagnetism in a quantum anomalous Hall system View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-08

AUTHORS

Wenbo Wang, Yunbo Ou, Chang Liu, Yayu Wang, Ke He, Qi-Kun Xue, Weida Wu

ABSTRACT

Quantum anomalous Hall (QAH) systems are of great fundamental interest and potential application because of their dissipationless conduction without the need for an external magnetic field1–9. The QAH effect has been realized in magnetically doped topological insulator thin films10–14. However, full quantization requires extremely low temperature (T < 50 mK) in the earliest works, athough it has been significantly improved by modulation doping or co-doping of magnetic elements15,16. Improved ferromagnetism has been shown in these thin films, yet direct evidence of long-range ferromagnetic order is lacking. Herein, we present direct visualization of long-range ferromagnetic order in thin films of Cr and V co-doped (Bi,Sb)2Te3 using low-temperature magnetic force microscopy with in situ transport. The magnetization reversal process reveals typical ferromagnetic domain behaviour—that is, domain nucleation and possibly domain wall propagation—in contrast to much weaker magnetic signals observed in the endmembers, possibly due to superparamagnetic behaviour17–19. The observed long-range ferromagnetic order resolves one of the major challenges in QAH systems, and paves the way towards high-temperature dissipationless conduction by exploring magnetic topological insulators. Long-range ferromagnetic order in co-doped topological insulator thin films and their typical ferromagnetic domain behaviour is directly evidenced by low-temperature magnetic force microscopy. More... »

PAGES

791-795

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41567-018-0149-1

DOI

http://dx.doi.org/10.1038/s41567-018-0149-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104243590


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Rutgers University", 
          "id": "https://www.grid.ac/institutes/grid.430387.b", 
          "name": [
            "Department of Physics and Astronomy, Rutgers University, Piscataway, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Wenbo", 
        "id": "sg:person.0712400530.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712400530.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ou", 
        "givenName": "Yunbo", 
        "id": "sg:person.01112706305.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112706305.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Chang", 
        "id": "sg:person.01331534615.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331534615.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Collaborative Innovation Center of Quantum Matter", 
          "id": "https://www.grid.ac/institutes/grid.495569.2", 
          "name": [
            "State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, China", 
            "Collaborative Innovation Center of Quantum Matter, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Yayu", 
        "id": "sg:person.0635640376.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635640376.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Collaborative Innovation Center of Quantum Matter", 
          "id": "https://www.grid.ac/institutes/grid.495569.2", 
          "name": [
            "State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, China", 
            "Collaborative Innovation Center of Quantum Matter, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "He", 
        "givenName": "Ke", 
        "id": "sg:person.01245570004.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245570004.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Collaborative Innovation Center of Quantum Matter", 
          "id": "https://www.grid.ac/institutes/grid.495569.2", 
          "name": [
            "State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, China", 
            "Collaborative Innovation Center of Quantum Matter, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xue", 
        "givenName": "Qi-Kun", 
        "id": "sg:person.01360601606.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360601606.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rutgers University", 
          "id": "https://www.grid.ac/institutes/grid.430387.b", 
          "name": [
            "Department of Physics and Astronomy, Rutgers University, Piscataway, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Weida", 
        "id": "sg:person.01313345637.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313345637.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.106.166802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004494001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.166802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004494001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.056801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004804892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.056801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004804892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1234414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006904305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.146802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009463313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.146802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009463313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2388", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009485853", 
          "https://doi.org/10.1038/nphys2388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.126801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015327937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.126801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015327937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.055502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017036992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.055502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017036992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat4204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021354862", 
          "https://doi.org/10.1038/nmat4204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms9474", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021584272", 
          "https://doi.org/10.1038/ncomms9474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4921093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022267412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms6349", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023707124", 
          "https://doi.org/10.1038/ncomms6349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/npjquantmats.2016.23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024518085", 
          "https://doi.org/10.1038/npjquantmats.2016.23"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.82.1539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026799805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.82.1539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026799805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.206601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031157807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.206601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031157807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01303701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036381635", 
          "https://doi.org/10.1007/bf01303701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01303701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036381635", 
          "https://doi.org/10.1007/bf01303701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.137201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037316799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.137201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037316799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038295744", 
          "https://doi.org/10.1038/nphys3053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/363056a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045624246", 
          "https://doi.org/10.1038/363056a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.161414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046090972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.161414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046090972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1424322112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047378102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.195424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048863087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.195424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048863087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep32732", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053499201", 
          "https://doi.org/10.1038/srep32732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn4038145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056225524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.346713", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057956804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4746404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058057992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4935075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058097882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.109.1492", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060419891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.109.1492", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060419891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.96.99", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060463232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.96.99", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060463232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.155309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060641261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.155309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060641261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.92.201304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060647895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.92.201304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060647895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.056802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060759346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.056802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060759346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.114.146802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060763534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.114.146802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060763534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.057206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060763899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.057206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060763899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.117.056804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060766016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.117.056804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060766016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.58.908", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060795429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.58.908", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060795429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.61.2015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060797796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.61.2015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060797796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/sciadv.1500740", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062439925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1187485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062461610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1187485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062461610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jjap.27.l209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063043570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.95.134443", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085274922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.95.134443", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085274922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.118.246801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090390957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.118.246801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090390957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201703062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092614166"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-08", 
    "datePublishedReg": "2018-08-01", 
    "description": "Quantum anomalous Hall (QAH) systems are of great fundamental interest and potential application because of their dissipationless conduction without the need for an external magnetic field1\u20139. The QAH effect has been realized in magnetically doped topological insulator thin films10\u201314. However, full quantization requires extremely low temperature (T < 50 mK) in the earliest works, athough it has been significantly improved by modulation doping or co-doping of magnetic elements15,16. Improved ferromagnetism has been shown in these thin films, yet direct evidence of long-range ferromagnetic order is lacking. Herein, we present direct visualization of long-range ferromagnetic order in thin films of Cr and V co-doped (Bi,Sb)2Te3 using low-temperature magnetic force microscopy with in situ transport. The magnetization reversal process reveals typical ferromagnetic domain behaviour\u2014that is, domain nucleation and possibly domain wall propagation\u2014in contrast to much weaker magnetic signals observed in the endmembers, possibly due to superparamagnetic behaviour17\u201319. The observed long-range ferromagnetic order resolves one of the major challenges in QAH systems, and paves the way towards high-temperature dissipationless conduction by exploring magnetic topological insulators. Long-range ferromagnetic order in co-doped topological insulator thin films and their typical ferromagnetic domain behaviour is directly evidenced by low-temperature magnetic force microscopy.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41567-018-0149-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7065307", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4319245", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1034717", 
        "issn": [
          "1745-2473", 
          "1745-2481"
        ], 
        "name": "Nature Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "name": "Direct evidence of ferromagnetism in a quantum anomalous Hall system", 
    "pagination": "791-795", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "07515f283d6add301ba264488f8cef74422b3a16c2aa9b87d67d02b20c525f82"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41567-018-0149-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104243590"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41567-018-0149-1", 
      "https://app.dimensions.ai/details/publication/pub.1104243590"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000494.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41567-018-0149-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41567-018-0149-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41567-018-0149-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41567-018-0149-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41567-018-0149-1'


 

This table displays all metadata directly associated to this object as RDF triples.

249 TRIPLES      21 PREDICATES      69 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41567-018-0149-1 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nf611bdb082e64bb2b1ae9255d6e3474a
4 schema:citation sg:pub.10.1007/bf01303701
5 sg:pub.10.1038/363056a0
6 sg:pub.10.1038/ncomms6349
7 sg:pub.10.1038/ncomms9474
8 sg:pub.10.1038/nmat4204
9 sg:pub.10.1038/nphys2388
10 sg:pub.10.1038/nphys3053
11 sg:pub.10.1038/npjquantmats.2016.23
12 sg:pub.10.1038/srep32732
13 https://doi.org/10.1002/adma.201703062
14 https://doi.org/10.1021/nn4038145
15 https://doi.org/10.1063/1.346713
16 https://doi.org/10.1063/1.4746404
17 https://doi.org/10.1063/1.4921093
18 https://doi.org/10.1063/1.4935075
19 https://doi.org/10.1073/pnas.1424322112
20 https://doi.org/10.1103/physrev.109.1492
21 https://doi.org/10.1103/physrev.96.99
22 https://doi.org/10.1103/physrevb.78.195424
23 https://doi.org/10.1103/physrevb.82.161414
24 https://doi.org/10.1103/physrevb.87.155309
25 https://doi.org/10.1103/physrevb.92.201304
26 https://doi.org/10.1103/physrevb.95.134443
27 https://doi.org/10.1103/physrevlett.101.146802
28 https://doi.org/10.1103/physrevlett.106.166802
29 https://doi.org/10.1103/physrevlett.108.056802
30 https://doi.org/10.1103/physrevlett.109.055502
31 https://doi.org/10.1103/physrevlett.112.056801
32 https://doi.org/10.1103/physrevlett.113.137201
33 https://doi.org/10.1103/physrevlett.114.146802
34 https://doi.org/10.1103/physrevlett.115.057206
35 https://doi.org/10.1103/physrevlett.115.126801
36 https://doi.org/10.1103/physrevlett.117.056804
37 https://doi.org/10.1103/physrevlett.118.246801
38 https://doi.org/10.1103/physrevlett.58.908
39 https://doi.org/10.1103/physrevlett.61.2015
40 https://doi.org/10.1103/physrevlett.90.206601
41 https://doi.org/10.1103/revmodphys.82.1539
42 https://doi.org/10.1126/sciadv.1500740
43 https://doi.org/10.1126/science.1187485
44 https://doi.org/10.1126/science.1234414
45 https://doi.org/10.1143/jjap.27.l209
46 schema:datePublished 2018-08
47 schema:datePublishedReg 2018-08-01
48 schema:description Quantum anomalous Hall (QAH) systems are of great fundamental interest and potential application because of their dissipationless conduction without the need for an external magnetic field1–9. The QAH effect has been realized in magnetically doped topological insulator thin films10–14. However, full quantization requires extremely low temperature (T < 50 mK) in the earliest works, athough it has been significantly improved by modulation doping or co-doping of magnetic elements15,16. Improved ferromagnetism has been shown in these thin films, yet direct evidence of long-range ferromagnetic order is lacking. Herein, we present direct visualization of long-range ferromagnetic order in thin films of Cr and V co-doped (Bi,Sb)2Te3 using low-temperature magnetic force microscopy with in situ transport. The magnetization reversal process reveals typical ferromagnetic domain behaviour—that is, domain nucleation and possibly domain wall propagation—in contrast to much weaker magnetic signals observed in the endmembers, possibly due to superparamagnetic behaviour17–19. The observed long-range ferromagnetic order resolves one of the major challenges in QAH systems, and paves the way towards high-temperature dissipationless conduction by exploring magnetic topological insulators. Long-range ferromagnetic order in co-doped topological insulator thin films and their typical ferromagnetic domain behaviour is directly evidenced by low-temperature magnetic force microscopy.
49 schema:genre research_article
50 schema:inLanguage en
51 schema:isAccessibleForFree true
52 schema:isPartOf N40c3db951abc4b82beeb9926880f3d7f
53 N5c168d879a4b4ce289bf592ce93bc9e8
54 sg:journal.1034717
55 schema:name Direct evidence of ferromagnetism in a quantum anomalous Hall system
56 schema:pagination 791-795
57 schema:productId N341246aa9498494eb1a179cd4a5361fb
58 N82392244a4f3475dbd52cee072a18006
59 Ne995341e5eb941229f1c61091656397f
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104243590
61 https://doi.org/10.1038/s41567-018-0149-1
62 schema:sdDatePublished 2019-04-10T22:28
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher N54cf5bb13e7f434c92847493993ef7f6
65 schema:url https://www.nature.com/articles/s41567-018-0149-1
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N212dce1472824288a235cdc8b12513d2 rdf:first sg:person.01360601606.21
70 rdf:rest N72f27196cf514ddd8551554e7046aaa2
71 N2be98fe2986f4d0caaf581d841fa51ab rdf:first sg:person.01112706305.49
72 rdf:rest N6778b3b792474fc8837034525ac4dfb7
73 N341246aa9498494eb1a179cd4a5361fb schema:name readcube_id
74 schema:value 07515f283d6add301ba264488f8cef74422b3a16c2aa9b87d67d02b20c525f82
75 rdf:type schema:PropertyValue
76 N40c3db951abc4b82beeb9926880f3d7f schema:issueNumber 8
77 rdf:type schema:PublicationIssue
78 N54cf5bb13e7f434c92847493993ef7f6 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 N5c168d879a4b4ce289bf592ce93bc9e8 schema:volumeNumber 14
81 rdf:type schema:PublicationVolume
82 N6778b3b792474fc8837034525ac4dfb7 rdf:first sg:person.01331534615.03
83 rdf:rest N6e61a4faba844361bad3f506b222aa8f
84 N6e61a4faba844361bad3f506b222aa8f rdf:first sg:person.0635640376.17
85 rdf:rest Nafa9a8ed005444afac64f318b7f23422
86 N72f27196cf514ddd8551554e7046aaa2 rdf:first sg:person.01313345637.33
87 rdf:rest rdf:nil
88 N82392244a4f3475dbd52cee072a18006 schema:name dimensions_id
89 schema:value pub.1104243590
90 rdf:type schema:PropertyValue
91 Nafa9a8ed005444afac64f318b7f23422 rdf:first sg:person.01245570004.12
92 rdf:rest N212dce1472824288a235cdc8b12513d2
93 Ne995341e5eb941229f1c61091656397f schema:name doi
94 schema:value 10.1038/s41567-018-0149-1
95 rdf:type schema:PropertyValue
96 Nf611bdb082e64bb2b1ae9255d6e3474a rdf:first sg:person.0712400530.08
97 rdf:rest N2be98fe2986f4d0caaf581d841fa51ab
98 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
99 schema:name Engineering
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
102 schema:name Materials Engineering
103 rdf:type schema:DefinedTerm
104 sg:grant.4319245 http://pending.schema.org/fundedItem sg:pub.10.1038/s41567-018-0149-1
105 rdf:type schema:MonetaryGrant
106 sg:grant.7065307 http://pending.schema.org/fundedItem sg:pub.10.1038/s41567-018-0149-1
107 rdf:type schema:MonetaryGrant
108 sg:journal.1034717 schema:issn 1745-2473
109 1745-2481
110 schema:name Nature Physics
111 rdf:type schema:Periodical
112 sg:person.01112706305.49 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
113 schema:familyName Ou
114 schema:givenName Yunbo
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112706305.49
116 rdf:type schema:Person
117 sg:person.01245570004.12 schema:affiliation https://www.grid.ac/institutes/grid.495569.2
118 schema:familyName He
119 schema:givenName Ke
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245570004.12
121 rdf:type schema:Person
122 sg:person.01313345637.33 schema:affiliation https://www.grid.ac/institutes/grid.430387.b
123 schema:familyName Wu
124 schema:givenName Weida
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313345637.33
126 rdf:type schema:Person
127 sg:person.01331534615.03 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
128 schema:familyName Liu
129 schema:givenName Chang
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331534615.03
131 rdf:type schema:Person
132 sg:person.01360601606.21 schema:affiliation https://www.grid.ac/institutes/grid.495569.2
133 schema:familyName Xue
134 schema:givenName Qi-Kun
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360601606.21
136 rdf:type schema:Person
137 sg:person.0635640376.17 schema:affiliation https://www.grid.ac/institutes/grid.495569.2
138 schema:familyName Wang
139 schema:givenName Yayu
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635640376.17
141 rdf:type schema:Person
142 sg:person.0712400530.08 schema:affiliation https://www.grid.ac/institutes/grid.430387.b
143 schema:familyName Wang
144 schema:givenName Wenbo
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712400530.08
146 rdf:type schema:Person
147 sg:pub.10.1007/bf01303701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036381635
148 https://doi.org/10.1007/bf01303701
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/363056a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045624246
151 https://doi.org/10.1038/363056a0
152 rdf:type schema:CreativeWork
153 sg:pub.10.1038/ncomms6349 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023707124
154 https://doi.org/10.1038/ncomms6349
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/ncomms9474 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021584272
157 https://doi.org/10.1038/ncomms9474
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/nmat4204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021354862
160 https://doi.org/10.1038/nmat4204
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/nphys2388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009485853
163 https://doi.org/10.1038/nphys2388
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/nphys3053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038295744
166 https://doi.org/10.1038/nphys3053
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/npjquantmats.2016.23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024518085
169 https://doi.org/10.1038/npjquantmats.2016.23
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/srep32732 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053499201
172 https://doi.org/10.1038/srep32732
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1002/adma.201703062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092614166
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1021/nn4038145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056225524
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1063/1.346713 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057956804
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1063/1.4746404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058057992
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1063/1.4921093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022267412
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1063/1.4935075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058097882
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1073/pnas.1424322112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047378102
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1103/physrev.109.1492 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060419891
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1103/physrev.96.99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060463232
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1103/physrevb.78.195424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048863087
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1103/physrevb.82.161414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046090972
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1103/physrevb.87.155309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060641261
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1103/physrevb.92.201304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060647895
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1103/physrevb.95.134443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085274922
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1103/physrevlett.101.146802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009463313
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1103/physrevlett.106.166802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004494001
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1103/physrevlett.108.056802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060759346
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1103/physrevlett.109.055502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017036992
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1103/physrevlett.112.056801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004804892
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1103/physrevlett.113.137201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037316799
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1103/physrevlett.114.146802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060763534
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1103/physrevlett.115.057206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060763899
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1103/physrevlett.115.126801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015327937
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1103/physrevlett.117.056804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060766016
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1103/physrevlett.118.246801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090390957
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1103/physrevlett.58.908 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060795429
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1103/physrevlett.61.2015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060797796
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1103/physrevlett.90.206601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031157807
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1103/revmodphys.82.1539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026799805
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1126/sciadv.1500740 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062439925
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1126/science.1187485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062461610
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1126/science.1234414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006904305
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1143/jjap.27.l209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063043570
239 rdf:type schema:CreativeWork
240 https://www.grid.ac/institutes/grid.12527.33 schema:alternateName Tsinghua University
241 schema:name State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, China
242 rdf:type schema:Organization
243 https://www.grid.ac/institutes/grid.430387.b schema:alternateName Rutgers University
244 schema:name Department of Physics and Astronomy, Rutgers University, Piscataway, NJ, USA
245 rdf:type schema:Organization
246 https://www.grid.ac/institutes/grid.495569.2 schema:alternateName Collaborative Innovation Center of Quantum Matter
247 schema:name Collaborative Innovation Center of Quantum Matter, Beijing, China
248 State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, China
249 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...